工业机械手设计
低负荷六轴工业机械手的设计与仿真

低负荷六轴工业机械手的设计与仿真设计与仿真低负荷六轴工业机械手引言六轴工业机械手是现代制造业中广泛使用的自动化设备之一,能够完成各种复杂的任务。
在设计和仿真低负荷六轴工业机械手时需要考虑机械结构、电气系统、控制系统等多个方面的因素。
本文将介绍如何进行低负荷六轴工业机械手的设计与仿真。
机械结构设计1.功能需求:首先需要确定机械手需要完成的任务以及所需的工作空间大小,确定六个关节的自由度。
2.结构选择:根据功能需求选择机械手的结构类型,例如串联关节、并联关节等。
3.关节参数设计:确定机械手的关节参数,如关节旋转角度范围、关节长度、负载能力等。
4.运动学分析:进行机械手的运动学分析,确定机械手的运动范围和工作精度。
电气系统设计1.电机选择:根据机械手的负载需求选择合适的电机,需考虑转矩、功率、速度等参数。
2.传感器选择:选择合适的传感器用于感知机械手的位置、力矩以及其他需要的信息。
3.电气线路设计:设计机械手的电气线路,包括电机驱动器、编码器等设备的连接以及电源的供应等。
控制系统设计1.控制算法选择:选择合适的控制算法,如PID控制、模糊控制等。
2.控制器选择:根据控制算法选择合适的控制器,如PLC或者单片机等。
3.控制系统实现:将控制算法和控制器实现到机械手的控制系统中,编写相应的软件。
仿真实验设计完成后,需要进行仿真实验来验证机械手的性能。
在仿真实验中可以模拟机械手的工作场景,评估机械手的工作性能并进行调整。
仿真实验可以通过使用机器人仿真软件,如MATLAB、SolidWorks等来进行。
结论本文介绍了低负荷六轴工业机械手的设计与仿真过程。
在进行设计时需要考虑机械结构、电气系统和控制系统等多个方面的因素。
通过仿真实验可以验证机械手的性能并进行调整。
通过这些步骤的设计与仿真过程可以有效地设计和优化低负荷六轴工业机械手的性能。
工业机械手控制系统设计和调试

工业机械手控制系统设计和调试首先,工业机械手控制系统设计的第一步是确定机械手的动作范围和控制要求。
根据具体的应用场景,确定机械手需要执行的任务和动作,例如抓取、转动、举升等。
同时,还需要确定机械手的工作空间和可移动范围,以及机械手的负载能力和精度要求。
接下来,设计人员需要选择适合的控制器和传感器。
工业机械手通常使用伺服控制系统来实现精密控制。
在选择控制器时,需要考虑其处理能力、稳定性和可靠性。
传感器方面,通常使用编码器、力传感器和视觉传感器等来实现对机械手位置、力量和对象识别的监测和反馈。
一旦控制器和传感器确定后,就可以进行控制系统的软件设计和编程。
通常,控制系统采用实时操作系统来控制机械手的运动。
软件设计过程包括建立机械手的运动模型、编写控制算法和生成控制指令。
在编程过程中,还需要考虑到安全性和故障处理机制,以保证机械手在异常情况下能够正确应对。
完成软件设计后,就可以进行控制系统的调试和优化。
首先,需要对控制系统进行初始化和参数设置,包括配置机械手的初始位置和速度等。
然后,通过观察机械手的运动和传感器的反馈数据,调整控制器参数和算法,以实现更准确的控制。
在调试过程中,还需要进行系统的稳定性分析和性能评估,以确保机械手能够稳定运行并满足控制要求。
最后,为了保证工业机械手控制系统的可靠性和安全性,还需要进行系统的验证和测试。
在系统验证中,需要验证控制系统能够准确地实现机械手的运动和控制要求。
而在系统测试中,需要对系统进行全面的功能和性能测试,包括验证系统在不同工作负载和环境条件下的稳定性和可靠性。
综上所述,工业机械手控制系统设计和调试是一个复杂而关键的过程,需要综合考虑机械工程、电气工程和自动化控制等多个领域的知识。
只有通过合理的设计和精确的调试,才能实现工业机械手的准确和稳定控制。
轻型平动工业机械手de设计

伸缩液压缸驱动力计算
驱动力 F F摩 F惯 F摩 为摩擦阻力,手臂运动时,运动件表面的摩擦阻力。 F惯 为起动或者制动时活塞杆所受的平均惯性力。 (1)摩擦阻力计算。 如右图分析可得:
F摩 Fa摩 Fb摩 ' Fa ' Fb
La F摩 G总 ( ) 900 N a
致谢
在本论文的设计中,自始自终得到了河南 科技学院机电学院牛爱青老师的精心指导 和亲切关怀。导师严谨的治学态度、严于 律己宽以待人的做人风范是本人终身学习 的榜样。在此表示由衷的感谢! 同时对这四年来给了我教育和帮助的机电 学院老师表示感谢。最后向关心帮助我的 朋友、同班同学表示感谢。
轻型平动工业机械手设计
机电学院 机电技术教育052 高自永
摘要
本文将设计一部三自由度的工业机械手, 能够实现上下空间,平面伸缩以及机身回 转的动作,用于给设备运送物料。介绍机 械手的作用,机械手的组成和分类,说明 自由度和机械手整体座标的形式。分析搬 运机械手的设计理论与方法。全面分析搬 运机械手的手部、手臂以及机身等主要部 件的结构设计,本文将分析计算机械手的 手部,臂部,机身的结构选择合适的驱动 机构。
如图所示,手臂在 G总 的作用下有顺时针方向倾斜的趋势,而在立柱 导套可阻止手臂倾斜。导套对升降立柱的作用力如图示 FR1 和 FR 2 ,根据
升降立柱的力平衡条件,经过推导可得出:h 2 f h即为立柱导套的高度,此为不自锁条件
液压回路的设计分析
本设计中,都是采用的液压驱动。具体的液压回路设计如 Nhomakorabea图所示。
机械手的组成
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。
传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。
因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。
该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。
二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。
其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。
机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。
传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。
2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。
本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。
程序包括主程序和控制程序两部分。
主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。
3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。
同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。
三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。
首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。
同时,还需要对硬件设备进行调试和测试,确保其正常工作。
2. 程序设计程序设计是整个系统的核心部分。
根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。
毕业设计工业机械手设计

二、工业机械手简介
❖ 工业机械手是工业生产发展中的必然产物。它 是一种模仿人体上肢的部分功能,按照预定要 求输送工件或握持工具进行操作的自动化技术 装备。这种新颖技术装备的出现和应用,对实 现工业生产自动化,推动工业生产的进一步发 展起着重要作用,因而具有强大的生命力,受 到人们的广泛重视和欢迎。
工业机械手的规格参数 工业机械手的规格参数是说明机械手规格和性能
的具体指标,一般包括以下几个方面:
⑴抓重(又称臂力):额定抓取重力或称额定负荷, 单位为N(必要时注明限定运动速度下的抓重)。 ⑵自由度数目和坐标形式:机身、臂部和腕部等运 动共有几个自由度,并说明坐标形式。
⑶定位方式:固定机械挡块、可调机械挡块、行程 开关、电位器及其它各种位置设定和检测装置;各 自由度所设定的位置数目或位置信息容量;点位控 制或连续轨迹控制。 ⑷驱动方式:气动、液动、电动或机械传动。 ⑸臂部运动参数:可列成表1-1形式。 ⑹腕部运动参数:可列成表1-2形式。
计算及说明ຫໍສະໝຸດ 书四、主要部件设计
写
1、轴系部件设计
格
(1)轴承类型的选择 (2)传动件
式
(3)轴
示
1)轴的结构设计
例
: 说明书中还应包括:
结果
主要参数:
1) 设计小结; 2)参考资料(资料的编号【】及书名、作者、出版单位、出版年 月)。
必须用钢笔(或碳素笔)工整地书写在规定格式的设计计算说 明书上,要求计算正确,论述清楚、文字精炼、插图简明、书写整 洁。
❖ 1)与单机一起实现自动化
❖ 生产上出现的许多高效专用加工设备(如各种 专用机床等),如果工件的装卸等辅助作业, 继续由人工操作,不仅会增加工人劳动强度, 同时亦不能充分发挥专用设备的效能,必然会 影响劳动生产率的提高。若采用机械手代替人 工上、下料,则可改变上述不相适应的情况, 实现单机自动化生产,并为实现多机床看管提 供了条件。如:自动机床及其上下料机械手、 冲压机械手、注塑机及其取料机械手等。
机械手设计方案

机械手设计方案机械手设计方案引言:机械手是一种能模拟人手动作、完成复杂而重复的工作的机械装置。
本方案旨在设计一种功能全面、结构合理、操作简便的机械手。
一、功能设计:该机械手主要用于工业生产中的自动化操作。
设计中考虑到以下几个方面的功能需求:1.抓取能力:机械手需要具备稳定的抓取能力,能够根据需要抓取各种形状的物体。
2.运动自由度:机械手需要具备足够多的运动自由度,能够在空间中灵活操作。
3.力度控制:机械手需要根据不同任务的要求,能够对抓取力度进行精确控制。
4.操作平稳性:机械手的运动应平稳、精确,以实现高效的生产操作。
5.可编程性:机械手应具备可编程功能,可以根据不同任务需求进行多样化的操作。
二、结构设计:机械手主要分为下列几个部分:1.机械臂:机械臂是机械手的核心部分,应具备足够多的关节,以实现多自由度的运动。
同时,机械臂需要采用轻量化设计,以减小自身质量,提高运动效率。
2.末端执行器:末端执行器是机械手抓取物体的部分,应设计可自由伸缩的抓取夹具,以适应不同尺寸的物体。
3.传动系统:传动系统是机械手的动力系统,应选择高效可靠的传动装置,如电机和减速器组合,以保证机械手运动的精确性和稳定性。
4.控制系统:控制系统是机械手的智能核心,应具备高速、高精度、可编程的控制器,以实现机械手的自动化操作。
同时,控制系统应提供友好的人机界面,方便操作者使用。
三、操作流程:机械手的操作流程可分为如下几个步骤:1.输入任务指令:操作者通过控制系统输入任务指令,包括抓取位置、力度等参数。
2.开机准备:机械手启动后,进行预热和校准动作,以确保机械手处于正常工作状态。
3.感应物体:机械手的传感器感应物体位置和大小,确定抓取位置和姿态。
4.抓取物体:机械手根据输入的指令和感应到的物体信息,进行相应的运动和力度控制,将物体抓取起来。
5.完成任务:机械手将抓取的物体移动到指定位置,完成任务,并将完成情况通过控制系统反馈给操作者。
工业机械手设计

摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。
通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。
关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................281 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。
机械手的设计

机械手的设计机械手是一种具有高度灵活性和准确性的自动化设备,广泛应用于工业生产线、医疗手术、装配和包装等领域。
机械手的设计需要考虑多方面因素,包括机械结构、电气控制和运动学算法等,下面我将从这几个方面详细介绍机械手的设计。
一、机械结构机械结构是机械手设计的核心,主要包括机械臂、关节和执行器三部分。
机械臂是机械手的主体,负责完成各种运动和动作。
关节是连接机械臂的组件,能够使机械臂在多个方向进行运动。
执行器负责将机械臂传输的运动信号转化为物理动作,例如抓取、旋转等。
机械结构的设计需要考虑以下因素:1. 功能需求:根据机械手的应用需求,确定机械手需要具备哪些功能和动作,例如抓取、旋转、移动等。
2. 机械臂的结构:机械臂的结构决定了机械手的可达性、波动和抗外力等性能。
通常有三种设计方式:串联式、并联式和混合式。
3. 关节和执行器选型:需要考虑负载、精度、速度、控制方式等因素,选择合适的关节和执行器。
4. 材料选择和加工:需要根据机械手的负载、速度和精度要求,选择合适的铝合金、碳纤维等材料,并采用先进的加工技术进行制造。
二、电气控制电气控制是机械手的另一个重要组成部分。
它负责将机械手进行的任何运动和动作转换为电信号,从而实现自动化控制和精确调节。
电气控制主要包括传感器、执行器和控制系统三个方面。
电气控制的设计需要考虑以下因素:1. 传感器:传感器能够感知机械手周围的环境信息,例如位置、速度、力矩等。
需要选择合适的传感器,避免传感器数据的误差,提高机械手的运动精度和稳定性。
2. 执行器:执行器是将电信号转换为物理动作的组件。
采用先进的执行器能够提高机械手的运动速度和精度。
3. 控制系统:控制系统是机械手的大脑,负责控制机械手的运动和动作。
需要采用先进的控制系统来保证机械手的运动稳定性和精度。
三、运动学算法运动学算法是机械手设计的重要组成部分。
它的作用是根据机械手的运动学模型,计算机械手各关节的运动轨迹和角度,从而实现机械手的各种动作和运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。
通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。
关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................28 英文文献名称(工业机械手)1 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。
2 机械手设计要求要求本设计能鲜明体现设计构思,并在规定的时间内完成以下工作:1)拟定机械手的整体设计方案,特别是机械手各主要组成部分的方案。
2)根据给定的自由度和技术参数选择合适的手部、腕部、臂部和机身的结构。
3)各主要部件(手部、腕部、臂部)的设计计算。
4)工业机械手装配图的绘制。
5)编写设计计算说明书。
3 机械手总体设计方案3.1 机械手的组成工业机械手由执行机构、驱动机构和控制机构三部分组成。
3.1.1 执行机构1)手部即直接与工件接触的部分,一般是回转型或平移型,(多为回转型,因其结构简单),手部多为二指(也由多指),根据需要分为外抓式和内抓式两种,也可以用负压式或真空式的空气吸盘和电磁吸盘。
传力机构形式也很多,常用的有:滑槽杠杆式、连杆杠杆式、齿轮齿条式、丝杠螺母式、弹簧式、重力式。
2)腕部是联接手部和手臂的部件,并可用来调整被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。
目前,应用最为广泛的手腕回转运动机构为回转液压缸,它的结构紧凑、灵巧,但回转角度小,并且要求严格密封,否则就难保证稳定的输出扭矩。
3)手臂是支撑被抓物体手部、腕部的重要部件,并带动它们做空间运动,它的主要作用是带动手指去抓取工件,并按预定要求将其搬运到给定的位臵,一般手臂需要三个给定自由度才能满足要求,即手臂的伸缩、左右旋转、升降运动。
4)行走机构有的工业机械手带有行走机构,我国正处于仿真阶段。