2011年江苏盐城市中考数学试题word版及答案
2011年盐城市中考数学答案解读

绝密★启用前盐城市二○一一年高中阶段教育招生统一考试数学试题参考答案一、选择题(每小题3分,共24分)二、填空题(每小题3分,共30分)9.3 10.0.9a 11.随机 12.6.75³106 13.x +3 14.(3,1)15.等腰梯形 16.10 17.132(也可写成6.5π)18.23三、解答题19.(1)解:原式=1-4+1=-2.(2)解:去分母,得 x +3=2(x -1 . 解之,得x =5. 经检验,x =5是原方程的解. 20.解:解不等式x +231,得x <1;解不等式2(1-x ≤5,得x ≥32;∴原不等式组的解集是- 32≤x <1.解集在数轴上表示为21.解:解法一:画树状图:P (红色水笔和白色橡皮配套)= 16P (红色水笔和白色橡皮配套)= 16开始结果白灰橡皮水笔白灰白灰(红, 白 (红, 灰 (蓝, 白 (蓝, 灰 (黑, 白 (黑, 灰22.解:(1)∵24÷20%=120(份),∴本次抽取了120份作品. 补全两幅统计图(补全条形统计图1分,扇形统计图2分)(2)∵900³(30%+10%)=360(份);∴估计该校学生比赛成绩达到90分以上(含90分)的作品有360份. 23.解:(1)画图(如图;(2)当y< 0时,x 的取值范围是x <-3或x >1;(3)平移后图象所对应的函数关系式为y =- 12x -2)2+2(或写成y =- 122+2x ).24.解:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ²sin 30°= 3012 =15.在Rt △ABG 中,∠BAG =60°,∴BG =AB ²sin 60°= 40³2= 3.∴CE =CF +FD +DE 3+2=17+20≈51.64≈51.6(cm )cm. 答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm. 25.解:(1)连接OD . 设⊙O 的半径为r . ∵BC 切⊙O 于点D ,∴OD ⊥BC .∵∠C =90°,∴OD ∥AC ,∴△OBD ∽△ABC .∴OD AC = OB AB ,即 r 610-r10. 解得r = 154,∴⊙O 的半径为154.(2四边形OFDE 是菱形.∵四边形BDEF 是平行四边形,∴∠DEF =∠B .∵∠DEF 12DOB ,∴∠B =12DOB .∵∠ODB =90°,∴∠DOB +∠B =90°,∴∠DOB =60°.∵DE ∥AB ,∴∠ODE =60°. ∵OD =OE ,∴△ODE 是等边三角形.∴OD =DE . ∵OD =OF ,∴DE =OF . ∴四边形OFDE 是平行四边形. ∵OE=OF ,∴平行四边形OFDE 是菱形.26.解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.根据题意,得⎩⎨⎧x +y =53(x +1+2(2y -1=19 解得⎩⎨⎧x =2y =3答:甲商品的进货单价是2元,乙商品的进货单价是3元.A60708090100成绩/分70分20%80分35%90分30%100分 10%60分 5%(2)设商店每天销售甲、乙两种商品获取的利润为s 元,则 s =(1-m (500+100³m 0.1+(5-3-m (300+100³m 0.1即 s =-2000m 2+2200m +1100 =-2000(m -0.55 2+1705. ∴当m =0.55时,s 有最大值,最大值为1705.答:当m 定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.27. 解:情境观察AD (或A′D ),90问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE =90°.∴∠BAG +∠EAP =90°. ∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EPA =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°. AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG=∠EAP .∵∠AGB =∠EP A =90°,∴△ABG ∽△EAPAG EP = ABEA .同理△ACG ∽△FAQ AG FP =ACFA ∵AB =k AE ,AC =k AF ,∴AB EA =AC FA =k AG EP = AGFP. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF28.解:(1)根据题意,得⎩⎪⎨⎪⎧y =-x +7y=43,解得⎩⎨⎧x =3y =4,∴A (3,4 .令y =-x +7=0,得x =7.∴B (7,0). (2)①当P 在OC 上运动时,0≤t <4.由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得 12(3+7³4-12³3³(4-t - 12t(7-t - 12³4=8 整理, 得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍)当P 在CA 上运动,4≤t<7.由S △APR =12(7-t ³4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. ∴4-t )2+32,AQ=t ,PQ=7-t 当AP =AQ时,(4-t )2+32=2(4-t 2, 整理得,t 2-8t +7=0. ∴t =1, t =7(舍Q P H ABCEFGNM当AP=PQ时,(4-t )2+32=(7-t 2, 整理得,6t =24. ∴t =4(舍去当AQ=PQ时,2(4-t )2=(7-t 2整理得,t 2-2t -17=0 ∴t =1±舍当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D , 则AD =BD =4.设直线l 交AC 于E ,则QE ⊥AC ,AE =RD =t -4,AP =7-t . 由cos ∠OAC= AE AQ ACAO AQ = 53(t -4 .当AP=AQ时,7-t = 53t -4 ,解得t = 418当AQ=PQ时,AE =PE ,即AE = 12AP得t -4= 12(7-t ,解得t =5.当AP=PQ时,过P 作PF ⊥AQ 于F AF = 12= 12³53t -4.在Rt △APF 中,由cos ∠PAF =AFAP = 35AF = 35AP 即 1253t -4= 35³(7-t ,解得t= 226 43.∴综上所述,t=1或 418或5或22643 时,△APQ 是等腰三角形.。
江苏省13市2011年中考数学试题分类解析汇编(12份)-11

江苏13市2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(苏州3分)已知1112a b -=,则ab a b -的值是 A .12 B .-12C .2D .-2【答案】D 。
【考点】代数式变形。
【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可:1111222b a ab a b ab a b--=⇒=⇒=--。
2. (无锡3分) 分解因式2x 2—4x+2的最终结果是 A .2x(x -2) B .2(x 2-2x+1) C .2(x -1)2D .(2x -2)2【答案】C 。
【考点】提取公因式法和应用公式法因式分解。
【分析】利用提公因式法和运用公式法,直接得出结果: ()()22224222121x x x x x -+=-+=-。
故选C 。
3. (常州、镇江2分)下列计算正确的是A .632a a a =*B .y y y =÷33C .mn n m 633=+D .()623x x =【答案】D 。
【考点】同底幂乘法,同底幂除法,合并同类项,幂的乘方。
【分析】根据同底幂乘法,同底幂除法,合并同类项,幂的乘方的运算法则,得出结果:A 、23235a a a a +⋅== ,故本选项错误;B 331y y ÷=,故本选项错误; C 、3m 与3n 不是同类项,不能合并,故本选项错误;D 、()23326x x x ⨯==,正确。
故选D 。
4.(南京2分)下列运算正确的是A .235a a a +=B .236a a a ⋅=C .32a a a ÷=D .()328a a =【答案】C 。
【考点】合并同类项,同底数幂的乘法和除法,幂的乘方。
【分析】根据合并同类项,同底数幂的乘法和除法,幂的乘方的法则运算:A. 2a 与3a 不是同类项,不能合并,选项错误;B. 232356a a a a a +⋅==≠,选项错误;C. 3232a a a a -÷==,选项正确;D. ()322368a a a a ⨯==≠,选项错误。
盐城市2011年高中阶段教育招生统一考试及答案和答题纸

盐城市二○一一年高中阶段教育招生统一考试数 学 试 题(仿真)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.下列运算正确的是 ( )A .3ab-2ab=1B .x 4·x 2=x 6C .(x 2)3=x 5D .3x 2÷x=2x 2.下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是 ( )A .B .C .D . 3.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 () A .58° B .32° C . 68 ° D .60°4. 如图,下列各数中,数轴上点A 表示的可能是 ( ) A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根5.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21B .πac 21C .πabD .πac21 第3题图b主视图c 左视图俯视图a第15题图6.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 7.函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少.其中正确的是 ( ) A .只有①② B .只有①③ C .只有②④ D .只有①③④8.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结HC .则以下四个结论中正确结论的个数为 ( )①OH = BF ; ②∠CHF =45°; ③GH = BC ;④DH 2=HE ·HB A .1个 B .2个 C .3个 D .4个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9. 使 有意义的x 的取值范围是10.如果1x 、2x 是一元二次方程x 2-6x-5=0的两个实根,那么21x x += .11.国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学计数法表示为12.分解因式:ax 2-2axy +ay 2=____________________.13.不等式组⎪⎩⎪⎨⎧<≤-.12,32x x 的解集是_______.14.如图,将△ABC 的三边分别扩大一倍得到△A 1B 1C 1(顶点均在 格点上),它们是以P 点为位似中心的位似图形,则P 点的坐标是 。
2011年江苏中考数学试题(含答案)

2011年苏州市初中毕业暨升学考试试卷数学注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人相符合;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫米黑色墨水签字笔填写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B铅笔涂在答题卡相对应的位置上。
...........1.12()2⨯-的结果是A.-4 B.-1 C.14-D.322.△ABC的内角和为A.180°B.360°C.540°D.720°3.已知地球上海洋面积约为316 000 000km2,316 000 000这个数用科学记数法可表示为A.3.61×106B.3.61×107C.3.61×108D.3.61×1094.若m·23=26,则m等于A.2 B.4 C.6 D.85.有一组数据:3,4,5,6,6,则下列四个结论中正确的是A.这组数据的平均数、众数、中位数分别是4.8,6,6B.这组数据的平均数、众数、中位数分别是5,5,5C.这组数据的平均数、众数、中位数分别是4.8,6,5D.这组数据的平均数、众数、中位数分别是5,6,66.不等式组30,32xx-≥⎧⎪⎨<⎪⎩的所有整数解之和是A.9 B.12 C.13 D.157.已知1112a b-=,则aba b-的值是A.12B.-12C.2 D.-28.下列四个结论中,正确的是A.方程12xx+=-有两个不相等的实数根B.方程11xx+=有两个不相等的实数根C.方程12xx+=有两个不相等的实数根D.方程1x ax+=(其中a为常数,且2a>)有两个不相等的实数根9.如图,在四边形ABCD中,E、F分别是AB、AD的中点。
江苏省2011年中考数学试题(13份含有解析)-10

2011年无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效. 3.作图必须用2B 铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .3【答案】A .【考点】绝对值。
【分析】利用绝对值的定义,直接得出结果2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b 【答案】D .【考点】不等式。
【分析】利用不等式的性质,直接得出结果3.分解因式2x 2—4x+2的最终结果是 ( ▲ ) A .2x(x -2) B .2(x 2-2x+1) C .2(x -1)2 D .(2x -2)2 【答案】C .【考点】因式分解。
【分析】利用提公因式法和运用公式法,直接得出结果 ()()22224222121x x x x x -+=-+=-4.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 ( ▲ ) A .20 cm 2 8.20兀cm 2 C .10兀cm 2 D .5兀cm 2 【答案】B .【考点】图形的展开。
江苏省13市2011年中考数学试题分类解析专题(1-12)-7

江苏13市2011年中考数学试题分类解析汇编专题1:实数一、选择题1.(苏州3分)12()2⨯-的结果是A .-4B .-1C .14-D .32【答案】B 。
【考点】有理数乘法。
【分析】利用有理数运算法则,直接得出结果:1212⎛⎫⨯-=- ⎪⎝⎭,故选B 。
2.(苏州3分)已知地球上海洋面积约为316 000 000km 2,316 000 000这个数用科学记数法可表示为A .3.61×106B .3.61×107C .3.61×108D .3.61×109 【答案】C 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,n 为它第一个有效数字前0的个数(含小数点前的1个0)。
∵ 316 000 000=3.61×108 ,故选C 。
3.(苏州3分)若m ·23=26,则m 等于A .2B .4C .6D .8 【答案】D 。
【考点】指数运算法则。
【分析】利用指数运算法则,直接得出结果,6363322228m -=÷===,故选D 。
4. (无锡3分) ︳-3︳的值等于 A .3 8.-3 C .±3 D .3 【答案】A 。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-错误!未找到引用源。
到原点的距离是3,所以-错误!未找到引用源。
的绝对值是3,故选A 。
5.(常州、镇江2分)在下列实数中,无理数是 A .2 B .0 C .5 D .31【答案】C 。
【考点】无理数。
【分析】根据无理数是无限不循环小数的定义, 直接得出结果。
6.(南京2分)9的值等于A .3B .-3C .±3D .3【答案】A 。
2011年江苏省盐城市中考数学试题1
盐城市2011年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答 题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2 B .- 12C .2D .12【答案】C 。
【考点】绝对值。
【分析】根据绝对值的定义,直接得出结果。
2.下列运算正确的是A .x 2+ x 3= x 5B .x 4²x 2= x 6 C .x 6÷x 2 = x 3D .( x 2)3 = x 8【答案】B 。
【考点】同底幂的乘法。
【分析】42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是【答案】D 。
【考点】几何体的三视图。
【分析】根据几何体的三视图,直接得出结果。
4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .5【答案】A 。
【考点】代数式代换。
【分析】()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离A B CD【答案】B 。
【考点】圆心距。
【分析】126464<O O <-+∴ 两圆相交。
6.对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C 。
【考点】反比例函数。
【分析】根据反比例函数性质,直接得出结果。
2011年盐城市中考最后冲刺试卷(一)参考答案及评分标准
2011年中考数学模拟考试答案一、选择题:1、D 2、B 3、B 4、B 5、B 6、C 7、C 8、B9、B 10、C二、填空题:11、3 12、x(x+2)(x-2) 13、21(2)44y x =-++ (-2,4) 14、2或-3 15、80°和20°或50°和50° 16、5603π 17、29°18、6643(7294096)三、全面答一答19、(1) (2)2132224134=+-⨯---=-=-----------原式分分 解:分原方程无解是原方程的增根所以时,检验:当分分(去分母得:分42x 02x 2x 32163121)231121321---------==-=--------------=-=-+-----=-+------=+-x x x x x x x x20、∵AD 是中线 ∴BD=DC ----------1分 ∵CE ⊥AD ,BF ⊥AD∴∠CED=∠BFD=90-----------------------2分 在△CED 和△BFD 中,∵∠BDF=∠ADC ∠CED=∠BFDBD=DC--------------------------5分∴△CED ≌△BFD (AAS ) ∴BF=CE----------------6分21、(本小题满分6分)(1)画出△A 2B 2C 2…………2分 (2)90°…………4分(3)21x5x2+41πx 25=5+425π…………6分22、图略-------3分,,P(王杨胜)=3/12=1/4----4分,P(刘非胜)=9/12=3/4,-----5分, 不公平----6分 23、解:﹙1﹚80; …………………………………………………………2分﹙2﹚26.4, 27, 27; ………………………………………………﹙每空1分﹚5分(第18题)﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚. ………………………………8分24、连结OB .∵BC//OP ,∴∠BCO =∠POA ,∠CBO =∠POB . 又∵OC=OB ,∴∠BCO =∠CBO ,∴∠POB=∠POA .-----------------------------------------------------------------1分 又∵PO=PO ,OB=OA , ∴△POB ≌△POA .∴∠PBO =∠PAO =90°.∴PB 是⊙O 的切线.-----------------------------------------------------------2分COADPB(2)2PO =3BC (写PO=23BC 亦可). 证明:∵△POB ≌△POA ,∴PB=PA .∵BD =2PA ,∴BD =2PB .-----------------------------------------------3分 ∵BC//OP ,∴△DBC ∽△DPO . ∴23BC BD PO PD ==.∴2PO =3BC .----------------------------------5分 注:开始没有写出判断结论,正确证明也给满分. (3)∵△DBC ∽△DPO ,∴23DC BD DO PD ==,即DC=23OD .∴DC =2OC .----6分 设OA =x ,PA =y .则OD =3x ,DB =2y .在Rt △OBD 中,由勾股定理,得(3x )2= x 2+(2y )2.即2 x 2= y 2.∵x >0,y >0,∴y =2x .OP =223x y x +=.------------------------------------------7分∴sin ∠OPA =13333OA x OP x ===.-------------------------------------------------------------8分25、解:(1)设打包成件的毛巾被有x 件,则320)80(=-+x x ………………………………………2分 200=x12080=-x ………………………………………3分答:打包成件的毛巾被和棉帐篷分别为200件和120件. (注:用算术方法做也给满分.)(2)设租用甲种飞机x 辆,则⎩⎨⎧≥-+≥-+120)8(2010200)8(2040x x x x ………………………………………5分 得42≤≤x ………………………………………………………6分 ∴x =2或3或4,中国军队安排甲、乙两种飞机时有3种方案.设计方案分别为:①甲飞机2辆,乙飞机6辆;②甲飞机3辆,乙飞机5辆;③甲飞机4辆,乙飞机4辆. ………………………7分 (3)3种方案的运费分别为:①2×4000+6×3600=29600;②3×4000+5×3600=30000;③4×4000+4×3600=30400. ………………………………9分∴方案①运费最少,最少运费是29600元.…………………10分 (注:用一次函数的性质说明方案①最少也可.)26、⑴∵∠EFB =90°,∠ABC =30°∴∠EBG =30° ∵∠E =30° ∴∠E =∠EBG ∴EG =BG∴△EGB 是等腰三角形------------------3分⑵30°------------------------------------------------------4分 在Rt △ABC 中,∠C =90°,∠ABC =30°,AB =4∴BC =32;在Rt △DEF 中,∠EFD =90°,∠E =30°,DE =4 ∴DF =2∴CF =232-.---------------------6分 ∵四边形ACDE 成为以ED 为底的梯形 ∴ED ∥AC ∵∠ACB =90° ∴ED ⊥CB∵DE =4∴DF =2∴F 到ED 的距离为3------------------------------7分∴梯形的高为2333232-=+--------------------------------------8分27、∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△CDE (AAS ),∴BF =CE . 28、解:(1)设EF 的解析式为y=k x +b,把E (-3,1)、F (433-,0)的坐标代入 1=-3k+b 解得:k=3 0=433-k+b b=4 所以,直线EF 的解析式为y=3x +4------------------------------------3分 (2)设矩形沿直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′ ∵BE=33-3=23;∴B ′E= BE=23--------------------4分在Rt △AE B ′中,根据勾股定理,求得: A B ′=3,∴B ′的坐标为(0,-2)----5分 设二次函数的解析式为:y=ax 2+b x +c把点B (-33,1)、E (-3,1)、B ′(0,-2)代入-2=c a=13- 3a -3b+c=1 解得: b=433- 27a -33b+c=1 c=-2 ∴二次函数的解析式为y=13-x 2433-x -2------------------------------7分(3)能,可以在直线EF 上找到点P,连接C,交直线EF 于点P ,连接BP.由于B ′P=BP,此时,点P 与C 、B ′在一条直线上,所以,BP+PC = B ′P+PC 的和最小,由于BC 为定长,所以满足△PBC 周长最小。
江苏省13市2011年中考数学试题分类解析汇编(12份)
江苏13市2011年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (常州、镇江2分)若2-x 在实数范围内有意义,则x 的取值范围A .x ≥2 B.x ≤2 C.x >2 D .x <2【答案】A.【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】根据二次根式被开方数必须是非负数的条件,要使2x -在实数范围内有意义,必须202x x -≥⇒≥,故选A 。
2.(常州、镇江2分)在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1、B ()1,1-、C ()1,1--、D ()1,1-,y 轴上有一点P ()2,0。
作点P 关于点A 的对称点1P ,作1P 关于点B 的对称点2P ,作点2P 关于点C 的对称点3P ,作3P 关于点D 的对称点4P ,作点4P 关于点A 的对称点5P ,作5P 关于点B 的对称点6P ┅,按如此操作下去,则点2011P 的坐标为A .()2,0B .()0,2C .()2,0-D . ()0,2-21世纪教育网 【答案】D 。
【考点】分类归纳,点对称。
【分析】找出规律,P 1(2,0),P 2(0,-2),P 3(-2,0),P 4(0,2},……,P 4n (0,2},P 4n+1(2,0),P 4n+2(0,-2),P 4n+3(-2,0)。
而2011除以4余3,所以点P 2011的坐标与P 3坐标相同,为(-2,0)。
故选D 。
21世纪教育网3.(宿迁3分)在平面直角坐标中,点M(-2,3)在A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 。
[来源:21世纪教育网]【考点】点的坐标。
【分析】利用平面直角坐标系中各象限符号特征进行判断:点M(-2,3)横坐标小于0,纵坐标大于0,则这点在第二象限。
故选B 。
4.(徐州2分)若式子1x -在实数范围内有意义,则x 的取什范围是A .1x ≥B ..1x >C ..1x <D .1x ≤【答案】A 。
江苏省13市2011年中考数学试题分类解析汇编(12份)-7
江苏13市2011年中考数学试题分类解析汇编专题7:统计与概率一、选择题1.(苏州3分)有一组数据:3,4,5,6,6,则下列四个结论中正确的是 A .这组数据的平均数、众数、中位数分别是4.8,6,6 B .这组数据的平均数、众数、中位数分别是5,5,5 C .这组数据的平均数、众数、中位数分别是4.8,6,5 D .这组数据的平均数、众数、中位数分别是5,6,6 【答案】C 。
【考点】平均数,众数,中位数。
【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,∴这组数据的平均数=345564.85++++=;众数是在一组数据中,出现次数最多的数据,∴这组数据的众数6;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),∴这组数据的中位数5。
故选C 。
2. (无锡3分) 100名学生进行20秒钟跳绳测试,测试成绩统计如下表: 跳绳个数x 20<x≤30 30<x≤40 40<x≤50 50<x≤60 60<x≤70 x>70 人数5213312326则这次测试成绩的中位数m 满足 A .40<m≤50 B.50<m≤60 C.60<m≤70 D .m>70 【答案】B 。
【考点】中位数。
【分析】中位数是将一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数或最中间两个数据的平均数。
这100名学生20秒钟跳绳测试成绩共100个,中位数m 应位于第50人和第51人的成绩之间,它们都位于50<x≤60。
故选B 。
3. (常州、镇江2分)某地区有所高中和22所初中。
要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是 A .从该地区随机选取一所中学里的学生B.从该地区30所中学里随机选取800名学生C.从该地区一所高中和一所初中各选取一个年级的学生D.从该地区的22所初中里随机选取400名学生【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.-2的绝对值是 A .-2B .- 12C .2D .122.下列运算正确的是 A .x 2+ x 3= x 5B .x 4²x 2 = x 6C .x 6÷x 2 = x 3D .( x 2)3 = x 83.下面四个几何体中,俯视图为四边形的是4.已知a -b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .55.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离6.对于反比例函数y = 1x ,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30B .众数为29C .中位数为31D .极差为58.小亮从家步行到公交车站台,等公交车去学校.折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A B C DA .他离家8km 共用了30minB .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是350m/min二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.27的立方根为 ▲ .10.某服装原价为a 元,降价10%后的价格为 ▲ 元.11.“任意打开一本200页的数学书,正好是第35页”,这是 ▲ 事件(选填“随机”或“必然”).12.据报道,今年全国高考计划招生675万人.675万这个数用 科学记数法可表示为 ▲ .13.化简:x 2 - 9x - 3= ▲ .14.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4). 将△ABC 沿y 轴翻折到第一象限,则点C 的 对应点C ′的坐标是 ▲ . 15.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD ,则四边形ABCD 的形状是 ▲ .16.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的中点.若DE =5,则AB 的长为 ▲ .17.如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 ▲ cm . 18.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右 第n 个数,则(5,4)与(15,7)表示 的两数之积是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分8分)(1)计算:(3)0- (12 )-2 +tan45°; (2)解方程:x x -1 - 31-x= 2.DCB A F ED CB A(第15题图) (第16题图) (第17题图)AB CD E111122663263323第1排第2排第3排第4排第5排(第14题图)20.(本题满分8分)解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来.21.(本题满分8分)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.22.(本题满分8分)为迎接建党90周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?23.(本题满分10分)已知二次函数y = -12x 2-x +32.(1)在给定的直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y< 0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.24.(本题满分10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ? (结果精确到0.1cm ,参考数据:3≈1.732)作品成绩扇形统计图60分 %100分 10%90分30%80分%70分20%成绩/分1009080706025.(本题满分10分)如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F . (1)若AC =6,AB =10,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状, 并说明理由.26.(本题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?27.(本题满分12分)情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A (A′)、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的线段是 ▲ ,∠CAC ′= ▲°.图1 图2C'A'B A DCABCDBCD A (A')C'A问题探究如图3,△ABC 中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论. 拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H . 若AB =k AE ,AC =k AF ,试探究HE 与HF 之间的数量关系,并说明理由.28.(本题满分12分)如图,已知一次函数y =-x +7与正比例函数y = 43x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图4MNGFECBAH图3AB CEFGPQ盐城市二○一一年高中阶段教育招生统一考试数学试题参考答案二、填空题(每小题3分,共30分)9.3 10.0.9a 11.随机 12.6.75³10613.x +3 14.(3,1)15.等腰梯形 16.10 17.132π(也可写成6.5π)18.2 3三、解答题19.(1)解:原式=1-4+1=-2.(2)解:去分母,得 x +3=2(x -1) . 解之,得x =5. 经检验,x =5是原方程的解.20.解:解不等式x +23<1,得x <1; 解不等式2(1-x )≤5,得x ≥-32;∴原不等式组的解集是- 32≤x <1.解集在数轴上表示为21.解:解法一:画树状图:P (红色水笔和白色橡皮配套)= 16.解法二:用列表法:白 灰 红 (红,白) (红,灰) 蓝 (蓝,白) (蓝,灰) 黑(黑,白)(黑,灰)P (红色水笔和白色橡皮配套)= 16.22.解:(1)∵24÷20%=120(份),∴本次抽取了120份作品.补全两幅统计图 (补全条形统计图1分,扇形统计图2分)(2)∵900³(30%+10%)=360(份);∴估计该校学生比赛成绩达到90分以上(含90分)的作品有360份. 23.解:(1)画图(如图);(2)当y< 0时,x 的取值范围是x <-3或x >1;(3)平移后图象所对应的函数关系式为y =- 12(x -2)2+2(或写成y =- 12x 2+2x ).24.解:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ²sin 30°= 30³12 =15.在Rt △ABG 中,∠BAG =60°,∴BG =AB ²sin 60°= 40³32 = 20 3.∴CE =CF +FD +DE =15+203+2=17+203≈51.64≈51.6(cm )cm. 答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm.开始 蓝 黑 结果白 灰 橡皮 水笔 白 灰 白 灰 (红,白) (红,灰) (蓝,白) (蓝,灰) (黑,白) (黑,灰) 橡皮11O 成绩/分70分20%80分35%90分30%100分 10%60分 5%水笔结果25.解:(1)连接OD . 设⊙O 的半径为r . ∵BC 切⊙O 于点D ,∴OD ⊥BC .∵∠C =90°,∴OD ∥AC ,∴△OBD ∽△ABC .∴OD AC = OB AB ,即 r 6 = 10-r10. 解得r = 154, ∴⊙O 的半径为154.(2)四边形OFDE 是菱形.∵四边形BDEF 是平行四边形,∴∠DEF =∠B .∵∠DEF =12∠DOB ,∴∠B =12∠DOB .∵∠ODB =90°,∴∠DOB +∠B =90°,∴∠DOB =60°.∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形.∴OD =DE .∵OD =OF ,∴DE =OF .∴四边形OFDE 是平行四边形.∵OE =OF ,∴平行四边形OFDE 是菱形.26.解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3答:甲商品的进货单价是2元,乙商品的进货单价是3元.(2)设商店每天销售甲、乙两种商品获取的利润为s 元,则s =(1-m )(500+100³m 0.1)+(5-3-m )(300+100³m0.1)即 s =-2000m 2+2200m +1100 =-2000(m -0.55)2+1705. ∴当m =0.55时,s 有最大值,最大值为1705.答:当m 定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.27.解:情境观察AD (或A′D ),90 问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE =90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EP A =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .∵∠AGB =∠EP A =90°,∴△ABG ∽△EAP ,∴AG EP = ABEA.同理△ACG ∽△F AQ ,∴AG FP = ACF A.AQ P H ABCEFGNM∵AB =k AE ,AC =k AF ,∴AB EA = AC F A =k ,∴AG EP = AGFP. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF28.解:(1)根据题意,得⎩⎪⎨⎪⎧y =-x +7y=43x ,解得 ⎩⎨⎧x =3y =4,∴A (3,4) .令y =-x +7=0,得x =7.∴B (7,0).(2)①当P 在OC 上运动时,0≤t <4. 由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得 12(3+7)³4-12³3³(4-t )- 12t(7-t )- 12t ³4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍) 当P 在CA 上运动,4≤t <7.由S △APR = 12³(7-t ) ³4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. ∴AP=(4-t )2+32,AQ=2t ,PQ=7-t 当AP =AQ 时, (4-t )2+32=2(4-t )2, 整理得,t 2-8t +7=0. ∴t =1, t =7(舍) 当AP=PQ 时,(4-t )2+32=(7-t )2, 整理得,6t =24. ∴t =4(舍去) 当AQ=PQ 时,2(4-t )2=(7-t )2整理得,t 2-2t -17=0 ∴t =1±3 2 (舍)当P 在CA 上运动时,4≤t <7. 过A 作AD ⊥OB 于D ,则AD =BD =4.设直线l 交AC 于E ,则QE ⊥AC ,AE =RD =t -4,AP =7-t .由cos ∠OAC= AE AQ = ACAO ,得AQ = 53(t -4).当AP=AQ 时,7-t = 53(t -4),解得t = 418.当AQ=PQ 时,AE =PE ,即AE = 12AP得t -4= 12(7-t ),解得t =5.当AP=PQ 时,过P 作PF ⊥AQ 于F AF = 12AQ = 12³53(t -4).在Rt △APF 中,由cos ∠P AF =AFAP = 35,得AF = 35AP 即 12³53(t -4)= 35³(7-t ),解得t= 22643. ∴综上所述,t=1或 418或5或 22643时,△APQ 是等腰三角形.。