可控硅直流调速系统

合集下载

直流调速系统基本概念

直流调速系统基本概念

2. 比例控制的特点 作用及时、快速、控制作用强,而且Kp值越大,
系统的静特性越好、静差越小。
二、 积分控制与积分调节器
是指系统的输出量与输入量对时间的 积分成正比例的控制,简称I控制。
积分控制
1. 积分( I )调节器
式中 KI——I 调节器的积分常数; ——I调节器的积分时间, =1/KI。
2. 积分控制的特点 可以消除输出量的稳态误差,能实现无静差控制, 这是积分控制的最大优点。

理想空载转速 在给定电压一定时,有: n0 f 转速降
n0 Ce ( 1 K ) 1 K
K GU g
n0 f n0 如果将系统闭环与开环的理想空载转速调得一样,即, 为了获得同开环相同的 理想空载转速 R n n f Ia 闭环给定电压 U g f U g 1 K Ce ( 1 K ) 1 K
范围: M p 10% ~ 35%
超调量
2. 过渡过程时间T
从输入控制(或扰动)作用于系统 开始直到被调量 n 进入(0.05 ~0.02)n2 稳定值区间时为止(并且以后不再越出 这个范围)的一段时间,叫作过渡过程 时间。
3. 振荡次数 N
过渡过程时间 在过渡过程时间内,被调量n在其稳定值 上下摆动的次数,
1稳态uguf不变3稳速ug不变负载变化使uf变化???????????????nuuuuuundkfgf????当负载增加使???????????????nuuuuuundkfgf????当负载减小使当负载发生变化使速度发生变化后系统通过反馈能维持速度基本不变这种状态称为稳速
直流调速系统基本概念
直流调速系统主要性能指标 机电传动控制系统选择调速方案的依据: 生产机械对调速系统提出的调速技术指标 静态指标 调速系统的调速技术指标 动态指标 一、静态技术指标

电力拖动控制系统作业题解答

电力拖动控制系统作业题解答

1.某调速系统的转速降为10r/min,试求转速在1000 r/min、100 r/min、10 r/min所占的百分比,并说明电机的工作状态。

只占1% 高速转动只占10% 中速运转占100% 电动机停转2.某调速系统额定转速n ed=1430r/min,额定速降为∆n ed=115r/min。

当要求静差率s≤30%、s≤20%时,试求允许的调速范围。

解:若要求s≤30%,则调速范围若要求s≤20%3.某龙门刨床工作台拖动采用直流电动机:P ed=60KW,U ed=220V,I ed=305A,n ed=1000 r/min,要求D=20,s≤5%。

采用晶闸管电动机系统,已知主回路总电阻R=0.18Ω,电动机C e=0.2V.min/r。

试问:①当电流连续时,在额定负载下的转速降为多少?②开环系统机械特性连续段在额定转速时的静差率为多少?③如果满足D=20,s≤5%的要求,额定转速时的静差率应该时多少?①②5%的要求。

③4.已知条件如上题,再增加两个条件:晶闸管整流装置的放大系数K s=30,转速反馈系数α=0.015V.min/r。

试求满足闭环系统指标D=20,s≤5%,∆n cl≤2.63r/min所要求的放大倍数K。

解:因为所以465.已知单闭环转速负反馈系统,R=1.0Ω,K s=44,C e=0.1925V.min/r,根据稳态性能指标D=10,s≤5%计算,系统的开环放大倍数K≥53.3。

试分析系统能否稳定。

解:已知系统运动部分的飞轮力矩2210m N GD ∙=,按保证电流dmon d I I %10min =时电流连续的条,取H mH L 017.017==。

计算系统各时间常数:s T s 00167.0= (三相桥式)不稳定6. 有一晶闸管直流电动机系统,电动机参数为P ed =2.5KW ,U ed =220V ,I ed =15A ,n ed =1500 r/min ,R a =2Ω,整流装置内阻R s =1Ω,放大系数K s =30,要求D=20,s ≤10%。

双闭环可逆直流调速系统讲解

双闭环可逆直流调速系统讲解

摘要本文以控制系统的传递函数为基础,采用工程设计方法对最常用的转速、电流双闭环调速系统进行设计,并用MATLAB/Simulink软件对系统进行了仿真。

首先对双闭环直流调速系统采用常规PID控制进行设计,电流调节器和转速调节器都采用了PID控制器,并分别对电流环和转速环的动态性能和抗扰动性能进行了仿真分析。

其次,由于转速调节器起主要作用,所以对转速环采用模糊控制,并设计了模糊控制器,对双闭环直流调速系统进行仿真分析,并与常规PID 控制进行了对比,仿真结果表明,模糊控制有良好的动态特性,很强的抗干扰能力。

关键词:直流调速PID控制模糊控制系统仿真目录摘要 (I)1 绪论 (1)1.1课题研究背景 (1)1.2直流调速系统的国内外研究概况 (1)1.4研究双闭环直流调速系统的目的和意义 (2)2 直流电机双闭环调速系统 (3)2.1直流电动机的起动与调速 (3)2.2直流调速系统的性能指标 (8)2.3双闭环直流调速系统的组成 (12)2.4 直流他励电动机的数学模型 (13)2.5可控硅整流装置的数学模型 (15)2.6本章小结 (16)3 常规PID控制双闭环直流调速系统的设计 (17)3.1双闭环调速系统的工程设计方法 (17)3.2双闭环直流调速系统的设计 (20)3.3设计实例 (25)3.4Matlab仿真 (30)3.5仿真结果分析 (33)3.6本章小结 (33)4结论 (34)1 绪论1.1课题研究背景直流调速是现代电力拖动自动控制系统中发展较早的技术。

就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。

然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。

可逆直流调速系统

可逆直流调速系统

2.1VS~4VS为四只可控硅,其中,处于对角线上的一对三 极管的基极,因接受同一控制信号而同时导通或截止; 3.若1VS和4VS导通,则电动机电枢上加正向电压;2VS和 3VS导通,电动机电枢上加反向电压。 4.当它们以较高的频率(一般为2000Hz)交替导通时,电
枢两端的电压波形如图所示。
由于机械惯性的作用,决定电动机转向
11.3 可逆直流调速系统
不可逆直流系统 可逆直流系统 — 向直流电动机提供单向 — 向直流电动机提供双向 电流,使电动机单向运 电流,使电动机能正、 转 反向运转
一、利用接触器进行切换的可逆线路
二、利用晶闸管切换的可逆线路
三、采用两套晶闸管整流电路的可逆线路
四、脉宽调速 1.三相交流电源经整流滤波 变成电压恒定的直流电压;
和转速的仅为此电压的平均值。
设矩形波的周期为T ,正向脉冲宽度 为t1,并设

t1 T
为占空比。
则电枢电压的平均值

U
av

U T U T
s
t 1
T t 1

U T
s
2 t1
T

当 1时 : 当 0 .5 时 : 当 0 .5 时 : 当 0 .5 时 :
U av U s U av 0 U av 0 U av 0
av
正向转速最高;
电动机正向;
电动机停止; 电动机反向;

s
2TT 2Fra bibliotek1 US
人为地改变占空比,可以达到调
当 0时 : U
U s
反向转速最高;
速的目的。连续地改变脉冲 宽度,即可实现直流电动机 的无级调速。

可控硅的调速原理

可控硅的调速原理

可控硅的调速原理
可控硅的调速原理是通过改变可控硅导通的时间或导通角来实现调速。

可控硅是一种具有双向导通特性的晶体管,在导通状态时,可以实现电流的持续传导,而在关断状态时,电流不传导。

可控硅的导通时间取决于输入脉冲的宽度和频率。

通过改变输入脉冲的宽度和频率,可以控制可控硅导通时间的长短,从而调节输出电压和电流的大小。

可控硅的导通角是指可控硅导通的相位角度。

可控硅可以通过改变输入脉冲的延迟角度来控制导通角的大小。

导通角的改变会影响电流的波形,从而实现对电压和电流的调节。

通过调节可控硅的导通时间和导通角,可以改变输出电压和电流的大小,实现对电机的调速控制。

具体的调速方式可以根据具体的应用需求来设计和实现。

直流电机无级调速电路(完整篇)

直流电机无级调速电路(完整篇)

直流电机无级调速电路/content/12/0330/23/7988683_199474671.shtml成品直流电机无级调速电路板很贵,我在维修一台包装机时得到一块直流电机调速板,经测绘并制作成功,现奉献给大家。

这块电路板电路简单,成本不高,制作容易,电路作简单分析:220V交流电经变压器T降压,P2整流,V5稳压得到9V直流电压,为四运放集成芯片LM324提供工作电源。

P1整流输出是提供直流电机励磁电源。

P4整流由可控硅控制得到0-200V的直流,接电机电枢,实现电机无级调速。

R1,C2是阻容元件,保护V1可控硅。

R3是串在电枢电路中作电流取样,当电机过载时,R3上电压增大,经D1整流,C3稳压,W1调节后进入LM324的12脚,与13脚比较从14脚输出到1脚,触发V7可控硅,D4 LED红色发光管亮,6脚电压拉高使V1可控硅不能触发,保护电机。

电机过载电流大小由W1调节。

市电过零检测,移相控制是由R5、R6降压,P3整流,经4N35隔离得到一个脉动直流进入14脚,从8脚到5脚输出是脉冲波,调节W2电位器即调节6脚的电压大小,可以改变脉冲的宽度,脉冲的中心与交流电过零时刻重合,使得双向可控硅很好地过零导通,D4是过载指示,D3是工作指示,W2是电机速度无级调节电位器。

电路制作好后只要元件合格,不用调整就可使用。

我从100W-1000W电机都试过,运行可靠,调节方便,性能优良。

12V直流电机高转矩电子调速器直流电机在一些应用中需要随时具有高转矩输出能力,无论它是处于低速还是高速运转。

例如钻孔、打磨、掘进等应用条件下,电机必需具备高低压运转的最大力矩输出。

显然,常用的线性降压调速无法达到这一要求,因为电机空载与加载状态其转速并不与工作电压成正比,若空载即需低速运转则加载后往往无法工作。

这里介绍一种专为大范围转矩变化的直流电机调速而设计的电路,它根据电机的工作电流变化来判断其加载状态,并由此对电机转速作出自动调整。

陕西省电工高级技能鉴定题库

陕西省电工高级技能鉴定题库

铁路职业技能鉴定高级电工知识试卷一、填空题(请将正确答案填在横线空白处,每题2分,共110题)1.单根通电导体周围磁场的方向由产生磁场的( )决定,判断方法是以右手握住导体,使大拇指方向与导体的( )一致,其余4指弯曲的方向即为导体( )方向,这种方法叫( )。

电流方向;电流方向;周围磁场:右手螺旋定则2.当导体在( )中作( )运动,或者线圈中的( )发生变化时,产生感生电动势的现象称之为( )。

磁场;切割磁力线;磁通;电磁感应3.感生电流所产生的磁通总是要( )原磁通的( )。

阻碍;变化4.感生电动势的方向可根据( )定律来确定,大小根据( )定律来确定。

楞次;法拉第电磁感应5.由一个线圈中的( )发生变化而使其它线圈产生( )的现象叫互感现象,简称( )。

电流;感应电动势;互感6.分析放大电路的基本方法有( )、( )和( )。

图解法;估算法;微变等效电路法7.当基极直流电流I b确定后,直流负载线与输出曲线上的( )就是电路的( ),进而得出( )的I CQ和U CEQ值。

交点;静态工作点;静态时8. 在变压器耦合式放大器中,变压器对直流( ),前后级静态工作点( ),而变压器可变换( ),所以该方式广泛应用于( )放大器。

不起作用;互不影响;阻抗;功率9.反馈按照作用可分为两大类:一类是( ),另一类是( ),放大器一般采用( ),振荡器一般采用( )。

正反馈;负反馈;负反馈;正反馈10.稳压管工作在( )的情况下,管子两端才能保持( )电压。

反向击穿;稳定11.串联稳压电路应包括这样五个环节:( )、( )、( )、( )和( )。

整流滤波;取样;基准;放大;调整12.在串联稳压电路中,如果输入电压上升,调整管压降( ),才能保证输出电压( )。

跟着上升;不变13. 基本逻辑门电路有( )、( )和( ),利用此三种基本逻辑门电路的不同组合,可以构成各种复杂的逻辑门电路。

"与"门;"或"门;"非"门14.在数字电路中,用来完成先"与"后"非"的复合逻辑门电路叫( ),其逻辑表达式是( )。

直流电机的PWM冲调速控制技术

直流电机的PWM冲调速控制技术

直流电机的PWM冲调速控制技术直流电机的PWM冲(宽度调变)调速控制技术为调节马达转速和方向需要对其直流电压的大小和方向进行控制。

目前,常用大功率晶体管脉宽调制(PWM)调速驱动系统和可控硅直流调速驱动系统两种方式。

可控硅直流(SCR)驱动方式,主要通过调节触发装置控制SCR 的导通角来移动触发脉冲的相位,从而改变整流电压的大小,使直流电机电枢电压的变化易平滑调速。

由于SCR本身的工作原理和电源的特点,导通后是利用交流过零来关闭的,因此,在低整流电压时,其输出是很小的尖峰值的平均值,从而造成电流的不连续性。

由于晶体管的开关响应特性远比SCR 好,因此前者的伺服驱动特性要比后者好得多。

所谓脉冲宽度调变(Pulse Width Modulate 简称 PWM)信号就是一连串可以调整脉冲宽度的信号。

脉宽调变是一种调变或改变某个方波的简单方法。

在它的基本形式上,方波工作周期(duty cycle)是根据输入信号的变化而变化。

在直流电机控制系统中,为了减少流经电机绕线电流及降低功率消耗等目的,常常使用脉冲宽度调变信号(PWM)来控制交换式功率组件的开与关动作时间。

其最常使用的就是借着改变输出脉冲宽度或频率来改变电机的转速。

图1 PWM 脉冲宽度调变信号图若将供应电机的电源在一个固定周期做ON及OFF的控制,则ON的时间越长,电机的转速越快,反之越慢。

此种ON与OFF比例控制速度的方法即称为脉冲宽度调变,ON的期间称为工作周期(duty cycle),以百分比表示。

若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。

若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。

PWM产生器方块图如下图所示,计数器采下数计数器与上数计数器的两种PWM讯号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可控硅直流调速系统(电气综合课程设计)目录前言-----------------------------------------------------3第1章课程的设计和要求1.1主要性能指标-----------------------------------------41.2设计要求----------------------------------------------------41.3给定条件----------------------------------------------------4 第2章系统的原理与方案选择2.1直流电动机调速的原理依据------------------------------42.2直流调速系统方案的选择---------------------------------52.3控制系统的选择--------------------------------------------6 第3章调速系统的设计3.1系统的组成-------------------------------------------------63.2系统的动态数学模型--------------------------------------8 第4章双闭环直流调速系统的设计(工程设计法)4.1主要装置的选用和参数的计算----------------------------84.2电流调节器的设计-----------------------------------------104.3转速调节器的设计-----------------------------------------124.5整机电路图-------------------------------------------------15第五章总结----------------------------------------------16参考文献------------------------------------------16前言1957年,晶闸管问世,它是一种大功率半导体可控整流元件,俗称可控硅整流元件,简称“可控硅”,20世纪60年代起就已生产出成套的晶闸管整流装置。

晶闸管问世以后,变流技术出现了根本性的变革。

目前,采用晶闸管整流供电的直流电动机调速系统(即晶闸管-电动机调速系统,简称V-M系统,又称静止Ward-Leonard系统)已经成为直流调速系统的主要形式。

众所周知直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,所以在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。

随着交流变频调速技术的快速发展,虽然直流调速一统天下的格局已被打破,但由于其具有良好的起动、制动、正反转及调速性能,目前在调速领域中仍占有一定地位,特别是一些对精度、快速性要求较高的场合,仍倍受亲昧。

直流调速系统结构形式种类繁多,本文以广泛应用的晶闸管三相全控桥、转速、电流双闭环控制调速系统为例介绍系统设计的一些方法与技巧。

由于直流调速系统涉及电力电子、变压器、电机、电工电子等诸多电学领域,掌握其工作原理及检测调试方法,对提高综合电气水平大有裨益,利用其相关原理及方法学习与解决其它自动控制系统有触类旁通之功效。

系统的动态调试是指根据负载性质对系统的要求调整系统参数,以满足动态性能指标。

如上升时间、最大超调量、调节时间、动态速降等。

尽量发挥电机潜力,以达到生产工艺要求的目的。

第1章课程的设计和要求1.1主要技术指标(1)静态:无静差(2)动态:电流超调量≤5%1.2设计要求(1)选择可控硅直流电动机调速系统的方案。

(2)主回路参数计算选择。

(3)控制系统设计1.3给定条件直流电机的参数:Zz=22, Ped=1.1kw, Ued=220V,Ied= 6.5A, ned=1500r.p.m Us = 220V励磁方式:他励直流测速发电机参数: Ped=22W, Ued=110V, Ied =220mA, ned=2000p.m 定额:连续。

第2章 系统的原理与方案选择2.1直流电动机调速的原理依据根据直流电机转速方程(1-1)式中 n — 转速(r/min );U — 电枢电压(V );I — 电枢电流(A );R — 电枢回路总电阻( W );Φ— 励磁磁通(Wb );Ke — 由电机结构决定的电动势常数。

由式(1-1)可以看出,有三种方法调节电动机的转速:(1)调节电枢供电电压 U ;(2)减弱励磁磁通 F ;Φ-=e K IR U n(3)改变电枢回路电阻 R。

对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。

改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。

因此,自动控制的直流调速系统往往以调压调速为主。

2.2直流调速系统方案的选择变压调速是直流调速系统的主要方法,调节电枢供电电压需要有专门的可控直流电源。

常用的可控直流电源有以下三种:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。

(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。

晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。

晶闸管可控整流器的功率放大倍数在10000 以上,其门极电流可以直接用晶体管来控制,不再像直流发电机那样需要较大功率的放大器。

在控制作用的快速性上,晶闸管整流器是毫秒级,这将大大提高系统的动态性能。

因此,在这里选用可控硅直流调速方法。

可控硅整流调速装置的接线方式有单相半桥式,单相全控式,三相半波,三相半控桥和三相全控桥式。

各种方式适应于各种不同调速范围和控制要求的电动相全控桥式整流装置,其电路图如图2-1图2-1可控硅三相桥式整流装置2.3控制系统的选择由于设计要求无静差调速,电流超调量≤5%,因此可以选择转速,电流双闭环控制直流调速系统。

其中采用转速负反馈和PI调节器的直流反馈调速系统可以在保证系统稳定的前提下实现转速无静差,而速度反馈保证系统的较高动态性能,例如:要求快速起制动,突加负载动态速降小等等。

其系统的组成框图如图2-2所示。

图2-2转速,电流双闭环直流调速系统框图第3章调速系统的设计3.1系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

二者之间实行嵌套(或称串级)联接如下图3-1所示。

起动过程,只有电流负反馈,没有转速负反馈。

稳态时,只有转速负反馈,没有电流负反馈。

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I调节器,所以对于系统来说,PI调节器是系统核心,必须掌握其性能,其原理图如图3-2:图3-2. PI调节器输入与输出的关系:PI调节器的工作过程:当输入电压突然加上时,电容C相当于短路,这时便是一个比例调节器。

因此,输出量产生一个立即响应输出量的跳变,随着对电容的充电,输出电压逐渐升高,这时相当于一个积分环节。

只要,U0将继续增长下去,直到时,才达到稳定状态。

这样构成的双闭环直流调速系统的电路原理图示于下图3-3。

图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c 为正电压的情况标出的,并考虑到运算放大器的倒相作用。

同时图中表出,两个调节器的输出都是带限幅作用的。

转速调节器ASR 的输出限幅电压U*im 决定了电流给定电压的最大值;电流调节器ACR 的输出限幅电压U cm 限制了电力电子变换器的最大输出电压U dm 。

3.2系统的动态数学模型双闭环调速系统的实际动态结构框图如图2-所示,它包括了电流滤波,转速滤波和给定信号的滤波环节。

其时间常数分别为Toi 和Ton 。

图3-4双闭环调速系统的动态结构图图中W ASR(s )和W ACR(s )分别表示转速调节器和电流调节器的传递函数。

图3-3 双闭环直流调速系统电路原理图+ + - -TG+-+ - RP 2 U *n R 0 R 0 U c U iR i C i + + - R 0 R 0 R n C n ASR ACRLM RP 1 U n U *i LM + M TA I d U d M T UPE + - + -第4章双闭环直流调速系统的设计(工程设计方法)4.1主要装置的选用和参数的计算4.1.1整流装置的参数可控硅整流装置选用三相桥式,整流变压器△/Y联结, 二次线电压∪21=230V,内阻R=0.5Ω ,电压放大系数K S=40。

直流电源给定值±7.5V。

4.1.2电流互感器的选取考虑电机允许过载倍数为1.5倍,两个给定电压的最大值为7.5V,选电流互感器TA的电流反馈系数β=7.5/1.5I N=0.769V/A。

4.1.3转速反馈环节的反馈系数和参数转速反馈系数α包含测速发电机的电动势Cetg和其输出电位器RP2的分压系数α2,即α=α2×Cetg根据测速发电机的额定数据,有Cetg=1102000V min/r=0.055 V min/r试取α2=0.085,如测速发电机与主电动机直接相连,则在电动机最高转速1500r/min时,转速反馈电压为Un=α2Cetg×1500r/min=0.085×0.055×1500=7.0125V 稳态是△Un很小,Un*只要略大与Un即可,现在直流稳压电源为±7.5V,完全能够满足给定电压的需要,因此,取α2=0.085是正确的。

于是,转速反馈系数的计算结果是α=α2×Cetg=0.085×0.055=0.0047 V min/r4.1.4电位器R P2的选取为了使测速发电机的电枢电压降对转速检测信号的线性度没有显著的影响,取测速发电机转速输出最高电压时,其电流约为额定值的20%,则R RP2=0.05515000.20.20.22nCetgItg⨯=Ω⨯=1875Ω此时R P2消耗的功率为W=nCetg×0.2Itg=0.055×1500×0.2×0.22=3.36W为了不致使电位器温度很高,实选电位器的瓦数应为所消耗功率一倍以上,故可将RP2选为10W,1.5KΩ的可调电位器。

4.1.5平波电抗器按工程计算公式选取平波电抗器,对于三相桥式整流电路其电感量计算公式为L=0.693U2/Idmin取 Idmin=10%Ied =0.1×6.5=0.065AU 2= U2l/1.732= 230V/1.732=132.8V 0则L=0.693U 2/Idmin =1415.85mH4.1.6直流电动机参数的计算按经验公式估算直流电动机的内阻 222206.51100331500UnIn Pn Ra n -⨯-===5.207Ω 电枢回路的电阻R=Ra+R=5.207+0.5=5.707Ω电磁时间常数Tl=L/R=141.585/5.707=0.0248S电机参数的计算Ce=Un InRa n-=0.1241V min/r Cm=9.55Ce=1.1852 V min/r电机时间常数Tm=2375GD R CeCm=1.036S4.2电流调节器的设计4.2.1电流环结构图的简化首先在按动态性能设计电流环时,因其变化较慢,可以暂不考虑反电动势变化的动态影响,即D E ≈0。

相关文档
最新文档