线性规划教学设计

合集下载

线性规划的教案

线性规划的教案

线性规划的教案教案标题:线性规划的教案一、教学目标:1. 理解线性规划的概念和基本原理;2. 掌握线性规划的常见问题类型和解题方法;3. 能够运用线性规划解决实际问题。

二、教学内容:1. 线性规划的概念和基本原理a. 了解线性规划的定义和特点;b. 理解线性规划模型的构建过程;c. 掌握线性规划的基本术语和符号。

2. 线性规划的常见问题类型a. 单目标线性规划问题:最大化或最小化目标函数;b. 多目标线性规划问题:解决多个相互矛盾的目标;c. 混合整数线性规划问题:变量包含整数和实数部分。

3. 线性规划的解题方法a. 图解法:通过绘制约束条件和等高线图找到最优解;b. 单纯形法:通过迭代计算找到最优解;c. 整数规划法:对混合整数线性规划问题进行求解。

4. 实际问题的线性规划应用a. 生产计划问题:如何安排生产资源以达到最大利润;b. 资源分配问题:如何合理分配有限资源以满足需求;c. 运输问题:如何确定最佳运输方案以降低成本。

三、教学过程:1. 导入与激发兴趣:a. 引入线性规划的实际应用场景,如企业生产、物流配送等;b. 提出一个简单的线性规划问题,激发学生思考和讨论。

2. 知识讲解与示范:a. 介绍线性规划的基本概念和原理,引导学生理解;b. 通过示例演示线性规划问题的建模和解题过程。

3. 练习与巩固:a. 提供一些简单的线性规划练习题,让学生独立解答;b. 分组讨论解题思路和方法,并互相交流。

4. 深化与拓展:a. 给予学生一些复杂的线性规划问题,培养解决问题的能力;b. 引导学生思考线性规划在实际生活中的更广泛应用。

四、教学评估:1. 课堂练习:通过课堂练习检验学生对线性规划的理解和应用能力;2. 作业布置:布置一些线性规划相关的作业题,检验学生的独立解题能力;3. 个人报告:要求学生选择一个实际问题,运用线性规划进行求解,并进行个人报告。

五、教学资源:1. 教材:选择一本适合本教学内容的线性规划教材;2. 多媒体设备:使用投影仪展示线性规划的图像和解题过程;3. 练习题集:准备一些练习题供学生练习和巩固知识。

线性规划教案

线性规划教案

线性规划教案一、教学目标通过本教案的学习,学生将能够:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的建立和求解方法;3. 能够在实际问题中应用线性规划进行决策和优化。

二、教学重点1. 线性规划的基本概念和原理;2. 线性规划模型的建立和求解方法;3. 线性规划在实际问题中的应用。

三、教学难点线性规划模型的建立和求解方法。

四、教学过程1. 导入引入线性规划的概念和背景,与学生分享线性规划的应用案例,激发学生的学习兴趣。

2. 理论讲解(1)线性规划的基本概念- 线性规划的定义:线性规划是一种用于求解最优化问题的数学方法,其目标函数和约束条件都是线性的。

- 最优解的定义:线性规划的最优解是使目标函数达到最大(或最小)值的变量取值。

(2)线性规划模型的建立- 决策变量的定义:根据实际问题,确定需要优化的变量,表示为决策变量。

- 目标函数的定义:确定需要最大化(或最小化)的目标,在实际问题中通常是利润、成本等。

- 约束条件的定义:确定影响决策变量的限制条件,包括等式约束和不等式约束。

(3)线性规划模型的求解方法- 图形法:通过画出约束条件和目标函数所表示的直线或面,找到最优解所在的区域,从而确定最优解。

- 单纯形法:通过运用单纯形表格法,逐步迭代求解线性规划模型,直到得到最优解。

- 整数规划:当决策变量只能取整数值时,需要使用整数规划方法进行求解。

3. 实例演练选择一个简单的线性规划实例,带领学生一起完成模型的建立和求解过程,让学生通过实际操作,进一步理解线性规划的求解方法。

4. 拓展应用从实际生活或工作中的问题出发,引导学生运用线性规划进行决策和优化,培养学生的实际应用能力。

五、教学评价1. 在实例演练中,教师可以针对学生的解题过程和答案,进行实时评价,及时纠正错误。

2. 可以组织小组或个人探究性学习活动,让学生自主构建线性规划模型并求解,评价学生的表现和学习成果。

六、教学延伸可以引导学生进一步深入学习线性规划的应用方法、算法和模型扩展,培养学生在实际问题中的建模和求解能力。

线性规划教案

线性规划教案

线性规划教案一、教案概述本教案旨在介绍线性规划的基本概念、方法和应用,匡助学生理解线性规划的原理和解题过程,并能够运用线性规划解决实际问题。

通过本教案的学习,学生将能够掌握线性规划的基本理论和解题技巧,提高数学建模和问题求解的能力。

二、教学目标1. 理解线性规划的基本概念和特点;2. 掌握线性规划的基本模型和解题方法;3. 能够应用线性规划解决实际问题;4. 培养学生的分析问题和解决问题的能力。

三、教学内容1. 线性规划的基本概念和特点a. 线性规划的定义和基本要素b. 线性规划的约束条件和目标函数c. 线性规划的可行域和最优解2. 线性规划的基本模型a. 单纯形法b. 对偶理论c. 整数规划d. 网络流问题3. 线性规划的应用案例分析a. 生产计划问题b. 运输问题c. 资源分配问题四、教学方法1. 讲授法:通过教师讲解线性规划的基本概念、模型和解题方法,引导学生理解和掌握相关知识。

2. 实例分析法:通过实际案例分析,让学生了解线性规划在实际问题中的应用,培养解决实际问题的能力。

3. 讨论交流法:组织学生进行小组讨论,分享归纳线性规划的解题思路和方法,提高学生的合作和交流能力。

4. 实践操作法:引导学生使用线性规划软件进行实际问题的求解,培养学生的实际操作能力。

五、教学过程1. 导入:通过一个生活中的例子引出线性规划的概念和应用,激发学生的兴趣和思量。

2. 理论讲解:讲解线性规划的基本概念、模型和解题方法,包括单纯形法、对偶理论、整数规划和网络流问题等。

3. 案例分析:通过几个实际问题的案例分析,让学生掌握线性规划的应用方法和解题思路。

4. 小组讨论:组织学生进行小组讨论,分享归纳线性规划的解题方法和技巧,提高学生的合作和交流能力。

5. 实践操作:引导学生使用线性规划软件进行实际问题的求解,培养学生的实际操作能力。

6. 总结归纳:对本节课的学习内容进行总结归纳,强化学生对线性规划的理解和掌握。

高三数学下册《线性规划问题》教案、教学设计

高三数学下册《线性规划问题》教案、教学设计
-对于重点内容,通过重复练习、变式训练和错题分析,帮助学生巩固知识点。
-针对难点,采用分步教学,逐步引学生从简单到复杂的问题解决,增强学生的自信心。
-对于建模能力的培养,设计不同背景的实际问题,指导学生逐步建立和求解模型。
-整合信息技术,如使用Excel或Lingo软件辅助教学,提高学生对线性规划问题求解的效率。
3.教学评价:
-采用多元化的评价方式,包括课堂问答、小组讨论表现、课后作业、实际案例分析报告等。
-关注学生在解决问题时的思维过程和方法选择,鼓励创新和灵活运用。
-定期进行阶段性的检测,及时了解学生的学习情况,针对性地调整教学策略。
4.教学支持:
-提供丰富的教学资源,包括教材、辅导书、在线学习平台等,以满足不同学生的学习需求。
三、教学重难点和教学设想
(一)教学重难点
1.重点:线性规划问题的建模与求解,特别是图像法和单纯形法的运用。
2.难点:
-理解线性规划问题的数学模型,并将其应用于实际问题。
-掌握图像法中的临界点和最优解的判定方法。
-理解并运用单纯形法求解线性规划问题,包括基本可行解的选取和迭代过程。
(二)教学设想
1.教学方法:
高三数学下册《线性规划问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解线性规划问题的基本概念,掌握线性规划问题的数学模型及其应用。
2.学会运用图像法求解线性规划问题,并能结合实际问题进行建模和求解。
3.掌握单纯形法的基本原理和步骤,能够运用单纯形法求解线性规划问题。
4.了解线性规划问题的应用领域,如经济、管理、工程等领域,提高学生运用数学知识解决实际问题的能力。
请同学们认真完成作业,及时复习巩固,将所学知识内化为自己的能力。在完成作业过程中,如有任何问题,可通过线上平台、课后辅导等途径寻求帮助。期待大家在下次课堂上展示自己的学习成果!

大学线性规划教学设计教案

大学线性规划教学设计教案

课时:2课时教学目标:1. 理解线性规划的基本概念和意义。

2. 掌握线性规划问题的建模方法,包括目标函数和约束条件的表达。

3. 学会使用单纯形法解决线性规划问题。

4. 培养学生运用线性规划解决实际问题的能力。

教学重点:1. 线性规划问题的建模。

2. 单纯形法的应用。

教学难点:1. 线性规划问题的建模过程。

2. 单纯形法在实际问题中的应用。

教学准备:1. 多媒体课件。

2. 练习题。

3. 线性规划问题的案例。

教学过程:第一课时一、导入1. 引入线性规划的实际应用,如生产计划、资源分配等。

2. 介绍线性规划的基本概念和意义。

二、讲授新课1. 线性规划问题的建模:a. 目标函数:最大化或最小化某个线性表达式。

b. 约束条件:一组线性不等式或等式。

c. 建模示例:通过实例讲解如何将实际问题转化为线性规划问题。

2. 单纯形法:a. 简介单纯形法的基本思想。

b. 详细讲解单纯形法的步骤。

三、案例分析1. 选择一个实际案例,让学生分析并建立线性规划模型。

2. 指导学生使用单纯形法求解模型。

四、课堂练习1. 发放练习题,让学生独立完成。

2. 指导学生解答练习题,巩固所学知识。

第二课时一、复习与提问1. 回顾上节课所学内容,提问学生。

2. 检查学生对线性规划建模和单纯形法的掌握程度。

二、讲授新课1. 线性规划问题的应用:a. 介绍线性规划在实际问题中的应用领域。

b. 分析线性规划在实际问题中的应用案例。

2. 线性规划软件的使用:a. 介绍常见的线性规划软件。

b. 指导学生使用线性规划软件求解问题。

三、课堂练习1. 发放综合性练习题,要求学生运用所学知识解决实际问题。

2. 指导学生解答练习题,培养学生的综合能力。

四、总结与反思1. 总结本节课所学内容,强调线性规划在实际问题中的应用。

2. 反思线性规划建模和单纯形法的应用,引导学生深入思考。

教学评价:1. 课堂参与度:观察学生在课堂上的学习态度和参与度。

2. 作业完成情况:检查学生完成作业的情况,了解学生对知识的掌握程度。

线性规划教案

线性规划教案

线性规划教案一、引言线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。

本教案旨在介绍线性规划的基本概念、模型建立、解法和应用案例,帮助学生掌握线性规划的理论知识和实际应用能力。

二、教学目标1. 了解线性规划的基本概念和原理;2. 学会建立线性规划模型,并进行数学表达;3. 掌握线性规划的解法方法,包括图形法、单纯形法等;4. 能够运用线性规划解决实际问题;5. 培养学生的逻辑思维和问题解决能力。

三、教学内容1. 线性规划的基本概念1.1 线性规划的定义和特点1.2 线性规划的基本术语和符号1.3 线性规划的应用领域2. 线性规划模型的建立2.1 目标函数的确定2.2 约束条件的设定2.3 决策变量的定义2.4 线性规划模型的数学表达3. 线性规划的解法方法3.1 图形法3.1.1 线性规划的可行解区域3.1.2 图形法的步骤和应用3.2 单纯形法3.2.1 单纯形表格法的基本思想3.2.2 单纯形法的计算步骤3.3 整数规划的分支定界法4. 线性规划的应用案例4.1 生产计划问题4.2 运输问题4.3 投资组合问题4.4 资源分配问题五、教学方法1. 讲授法:通过教师的讲解,介绍线性规划的基本概念和理论知识,引导学生理解和掌握相关概念。

2. 实例分析法:通过实际案例的分析,让学生了解线性规划的应用场景和解决方法,培养解决实际问题的能力。

3. 讨论交流法:组织学生进行小组讨论,共同解决线性规划问题,促进学生之间的交流和合作。

六、教学评价1. 平时表现:包括课堂参与、作业完成情况等。

2. 期中考试:考察学生对线性规划基本概念和模型建立的理解能力。

3. 期末考试:考察学生对线性规划解法方法和应用案例的掌握程度。

4. 实际应用项目:要求学生选择一个实际问题,建立线性规划模型,并进行求解和分析。

七、教学资源1. 教材:《线性规划与网络流问题》2. 多媒体课件:包括线性规划的基本概念、模型建立、解法方法和应用案例的演示。

《线性规划》教学设计

《线性规划》教学设计

《线性规划》教学设计黄丽霞一、教学目标(一)知识和技能:了解线性约束条件,目标函数,线性规划可行域及最优解等概念。

掌握目标函数Z=Ax+By的几何意义,图解法找线性规划问题最优解的方法步骤。

(二)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。

考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性(三)情感与价值:通过实际问题的探讨,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。

树立“数学与我有关,数学是有用的,我要用数学,我能用数学” 的理念。

二、教学内容及重难点分析教学内容:本节给出:Z = 2x + y ,变量x、y满足条件:rx —4y < —3Y 3x + 5y < 25I x> 1求Z的最大值,最小值。

以数形结合思想为指导,通过图解法求Z最大、最小值引出线性规划问题及线性约束条件,目标函数、可行域,最优解相关概念和目标函数几何意义并求出Z最值。

教学重难点:目标函数Z = Ax + By的几何意义的探究。

根据目标函数几何意义确定最优解。

三、教学对象分析授课班级虽是高一实验班,但学生的学习兴趣不高,老师在授课时有一定的难度,并且学生数形结合的意识和技能还很低,需要以直观形象感性经验为支撑。

学生学生虽能进行简单的探讨,补充,交流,但还需要培养自主、合作、探究的学习能力。

四、教学策略和教学方法设计(一)教学策略:教师以实际社会经济生活问题创设情景,激发学生内在积极性、创造性、主动性为目的。

以探究线性规划图解法的实质依据为主线,既抓住重点,又突出学生的主体地位。

(二)教学方法:本节课将线性规划问题的可行域,图解法以信息技术的形式展现,降低了理解上难度,便于学生掌握理解,易于操作,加快了作图速度;提高课堂效率改变学生传统的数学学习方式。

高中数学线性规划教案

高中数学线性规划教案

高中数学线性规划教案
一、教学目标:
1. 了解线性规划的基本概念和相关术语。

2. 掌握线性规划的解题方法和步骤。

3. 能够应用线性规划解决实际问题。

二、教学内容:
1. 线性规划的概念与基本性质。

2. 线性规划的标准形式。

3. 线性规划的解法:图形法和单纯形法。

三、教学重点:
1. 了解线性规划的基本概念和性质。

2. 掌握线性规划的标准形式和解法。

四、教学难点:
1. 理解线性规划的复杂问题。

2. 掌握线性规划的解题方法。

五、教学方法:
1. 讲授相结合,注重启发学生思维。

2. 课堂练习和实践操作。

六、教学过程:
1. 章节导入:通过案例分析引出线性规划问题。

2. 知识讲解:介绍线性规划的基本概念、标准形式和解法。

3. 例题讲解:通过例题演示线性规划的解题过程。

4. 练习训练:进行相关练习,巩固所学知识。

5. 拓展应用:让学生应用线性规划解决实际问题。

6. 总结归纳:对本节课内容进行总结梳理。

七、教学评价:
1. 能够准确运用线性规划的相关知识解决问题。

2. 能够理解线性规划的应用场景及其实际意义。

3. 能够独立分析和解决线性规划问题。

八、课后作业:
1. 完成相关练习题目。

2. 思考线性规划在实际问题中的应用。

以上为高中数学线性规划教案范本,希望对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划教学设计
教学目标●掌握如何利用二元一次不等式及不等式组表示平面区域;掌握线性约束条件等基本概念;掌握利用图形解决线性规划问题的方法,并能应用这个方法解
决简单的实际问题.
●培养学生画图能力和解决实际问题的能力.
重点难点●重点是会利用二元一次方程表示平面区域来解决问题
●难点是如何把实际问题转化为线性规划问题,并解决.
●疑点是怎样的实际问题的最优解可用线性规划来解决.
教学过程
●引入新课我们知道,二元一次不等式和二元一次不等式组都表示平面区域,从这里开始,我们来研究它的应用.
●引导设问画出下列不等式组表示的平面区域
x-4y≤-3
3x+5y≤25
x≥1
○学生活动学生利用上节课的知识很容易就可以画出来.
●引导设问设z=2x+y,式中变量x,y满足上列条件,求z的最值(图像略).
▲教师引导 z=2x+y中,假如z是常数,那么它表示一条直线.这道题实际上就是求x+2y的变化范围.那怎样才能表示出它的范围呢?
○学生活动学生应该能用图形的方法看出正确答案.
▲教师讲述点(0,0)不在这个三角形区域内,(图可由大屏幕上给出)点(0,0)在直线L
:2x+y=0上.作一组和之平行的直线L:2x+y=t, t∈R.可知,当L在
L
的右上方时,直线L上的点(x,y)满足2x+y>0.
即当t>0,而且L往右平移时,t随之增大,在经过不等式组表示的平面区域内
的点且平行于L的直线中,以经过点A(5,2)的直线L
1
对应的t最大,以经过点
B(1,1)的直线L
2
对应的t最小,所以
Z
max =12; Z
min
=3.
▲教师讲述在上述问题中,不等式组是一组对变量x,y的约束条件,这组
约束条件都是关于x,y的一次不等式,所以又称为线性约束条件.z=2x+y是欲达到最小值或最大值所涉及的变量x,y的解析式,叫做目标函数.由于z=2x+y又是x,y的一次解析式,所以又叫做线性约束函数.上述问题就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题.
线性约束条件除了用一次不等式表示外,有时也用一次方程表示.一般地,求线性目标函数在约束条件下的最大值和最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,他们都叫做这个问题的最优解.
●引导设问例一: 解下列线性规划问题:求z=2x+y的最小值和最大值,使式中的x,y满足约束条件
y≤x
x+y≤1
y≥-1
同学们根据上面的题的解决方法来解决这道题.用刚才学习的定义来说明,并写出解决此类问题的具体解决步骤.
○学生活动在老师的提示下,按照前一个题的解决过程,快速的解决此问题,并可以给出解决步骤.
▲教师讲述解:先作出可行域来(图像略),再求得可行域所确定三角形的三个顶点A(0.5,0.5), B(-1,-1), C(2,-1).
作出直线L0:2x+y=0,再将直线L0平移,当L0的平行线L1过B点时,可使z=2x+y达到最小值,当L0的平行线L2过C点时,可使z=2x+y达到最大值.
所以,Z min=2×(-1)+(-1)=-3, Z max=2×2+(-1)=3.
●课堂练习课后练习第一题.解下列线性规划问题:
(1).求z=2x+y的最大值,使式中的x,y满足约束条件
y≤x
x+y≤1
y≥-1
(2).求z=3x+5y的最大值和最小值,使式中的x,y满足约束条件
5x+3y ≤15
y ≤x+1
x-5y ≤3
▲教师说明 我们上面解决的问题可以说是纯粹的问题,和具体的生产实际没有什么联系.而生产实际中有许多问题都可以归结为线性规划问题.下面我们来解决一道这类应用题.
●提出问题 例二: 要将两种大小不同的钢板截成A,B,C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
类型 A 规格 B 规格 规格
钢板
第一种钢板 2 1 1
第二种钢板 1
2 3
今需要A,B,C 三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少.
▲教师说明 解决此类问题的第一步是列出不等式组作出可行域;第二步是找出最优解对应的点;第三步是求最值.
○学生活动 据解决问题的步骤慢慢的,有次序的解决此类问题.
▲教师讲述 解:设需截第一种钢板x 张,第二种钢板y 张,则
2x+y ≥15 x+2y ≥18
x+3y ≥27
x ≥0
y ≥0
作出可行域(图像略).
目标函数为 z=x+y.
作出在一组平行线x+y=t (t 为常数)中经过可行域内的点且和原点距离最近的直线,此直线经过直线x+3y=27和直线2x+y=15的交点A(
539,518).直线方程为x+y=557.由于518和5
39都不是整数,而最优解(x,y)中,x,y 必须是整数,所以,可行域
内点(5
39,518)不是最优解. 经过可行域内的整点(横,纵坐标都是整数的点)且与原点距离最近的直线是x+y=12,经过的整点是B(3,9)和C(4,8),它们是最优解.
答: 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张,第二种钢板9张; 第二种截法是截第一种钢板4张,第二种钢板8张. 两种方法都最少要截两种钢板共12张.
▲注意问题 要讲清楚如何找整点.
●课堂练习 课后练习第二题
课堂总结
▲作业 P 65 2.(1);3.
▲总结归纳 解线性规划应用题的步骤
1).审题;
2).列出目标函数和线性约束条件;
3).作图,找出可行域;
4).找最优解;
5).回答实际问题.。

相关文档
最新文档