微机原理

合集下载

微机原理sub

微机原理sub

微机原理sub
微机原理是一门研究微型计算机内部结构和工作原理的学科,主要内容包括计算机硬件、软件与操作系统、微处理器等方面的知识。

微机原理的学习是了解计算机技术背后的基本原理和内部机制的关键,对于理解计算机的工作方式和性能优化具有重要意义。

微机原理的核心是研究计算机硬件的工作原理。

计算机硬件包括中央处理器(CPU)、内存、输入输出设备等多个部件。

了解
这些硬件的组成和相互作用原理,可以帮助我们理解计算机的计算、存储和输入输出过程。

在微机原理的学习中,微处理器是一个重要的内容。

微处理器是计算机的核心,负责执行各种指令并控制计算机的工作。

了解微处理器的结构和工作方式,可以帮助我们理解计算机的指令执行过程、时钟频率和性能优化等方面的知识。

此外,微机原理还涉及到计算机的软件和操作系统。

软件是指计算机程序和数据的集合,操作系统是控制和管理计算机硬件和软件资源的系统软件。

了解软件与操作系统的基本原理,可以帮助我们理解计算机的应用开发和系统管理等方面的知识。

总之,微机原理是计算机科学的基础学科,通过学习微机原理,可以帮助我们理解计算机技术的基本原理和内部机制,从而更好地应用和管理计算机。

微机原理

微机原理

1、微型计算机系统是由硬件系统和软件系统两部分组成。

2、从编程结构上看,8086CPU是由指令执行部件和总线接口部件两部分组成。

3、8086CPU有16根数据线,20根地址线,具有1MB字节的存储器寻址空间。

4、逻辑地址为2000H:1234H的存储单元的物理地址是21234H。

5、8086CPU写入一个规则字,数据线的高8位写入奇存储体,低8位写入偶存储体。

6、8086CPU有最小模式和最大模式两种工作模式,当MN/MX0V时,8086工作在最大模式。

7、CPU和外设之间的数据传送方式有:程序方式、中断方式和DMA方式三种。

(×)1、8088CPU与8086CPU一样,有16根数据线。

(×)2、段内转移指令执行结果要改变IP、CS的值。

(∨)3、在串操作指令执行时,若DF=0,则地址值会自动增加。

(×)4、8086CPU从内存中读取一个字(16位)必须用两个总线周期。

(×)5、MOV AX,[BP]的源操作数物理地址为16d ×(DS)+(BP)。

(×)6、指令MOV CS,AX是正确的。

(×)7、REP的判断重复条件是(CX)=0。

(×)8、指令RCR AL,2是错误的。

(√)9、当8086CPU响应中断时,会从INTA输出两个连续的负脉冲应答信号。

(√)10、堆栈指令的操作数均为字。

1、8086CPU复位后,程序的起始物理地址为:(B)A、00000HB、FFFF0HC、10000HD、F0000H2、8086CPU的中断相量表位于:(A)A、00000H~003FFH区B、10000H~103FFH区C、0F000H~0F3FFH区D、F0000H~F03FFH区3、8086CPU可屏蔽中断的使能位为:(B)A、DFB、IFC、TFD、PF4、下面哪个运算符是用来取地址的段值:(B)A、OFFSETB、SEGC、SEGMENTD、ASSUME 5、标志寄存器压栈指令为:(C)A、SAHFB、LAHFC、PUSHFD、POPF6、指令MOVSB的功能是:(A)A、将DS:[SI]所指出的存储单元的字节送到ES:[DI]所指出的存储单元。

微机原理微型计算机的基本组成电路

微机原理微型计算机的基本组成电路

微机原理微型计算机的基本组成电路微机原理是指微型计算机的基本原理和组成。

微型计算机是一种能够完成各种计算和控制任务的计算机,其基本组成电路包括中央处理器(CPU)、存储器(内存)、输入输出设备(I/O)、总线以及时钟电路等。

中央处理器(CPU)是微型计算机的核心部件,负责执行各种计算和控制任务。

它由控制器和算术逻辑单元(ALU)组成。

控制器负责指挥和协调整个计算机系统的运行,从存储器中读取指令并解码执行;ALU则负责执行各种算术和逻辑运算。

存储器(内存)用于临时存储数据和指令。

根据存取速度和功能特点,内存可分为主存和辅存。

主存是临时存储数据和指令的地方,包括随机存取存储器(RAM)和只读存储器(ROM);辅存则是长期存储数据和程序代码的地方,包括磁盘、光盘等。

输入输出设备(I/O)用于与外部环境进行交互,实现数据的输入和输出。

输入设备包括键盘、鼠标、扫描仪等;输出设备包括显示器、打印机、音频设备等。

总线是计算机内部各个组件之间进行数据传输和通信的通道。

通常分为数据总线、地址总线和控制总线。

数据总线用于传输数据;地址总线用于指示数据在内存中的位置;控制总线用于传输各种控制信号。

时钟电路用来提供计算机系统的时序信号,使计算机内部各个组件的操作同步。

时钟电路产生一系列脉冲信号,用于指示各种操作的开始和结束。

此外,微型计算机的基本组成电路还包括各种辅助电路,如电源电路、复位电路、中断控制电路等。

电源电路提供计算机系统所需的电能;复位电路用于将计算机系统恢复到初始状态;中断控制电路用于处理外部中断信号,从而实现对外部事件的及时响应。

综上所述,微型计算机的基本组成电路包括中央处理器、存储器、输入输出设备、总线和时钟电路等。

这些电路相互配合,共同完成各种计算和控制任务,构成了一个完整的微型计算机系统。

微机原理ax

微机原理ax

微机原理ax微机原理是计算机专业的一门重要课程,它是计算机专业的基础课程之一,也是学习计算机相关知识的基石。

微机原理ax是微机原理课程中的一个重要内容,本文将对微机原理ax进行详细介绍,希望能够帮助读者更好地理解和掌握这一知识点。

首先,我们来介绍一下微机原理ax的基本概念。

微机原理ax 是指在微机原理课程中,关于ax寄存器的相关内容。

在计算机中,寄存器是一种用于暂时存储数据的设备,ax寄存器是其中的一个重要寄存器,它是通用寄存器中的一个,用于存放数据和进行运算。

了解ax寄存器的作用和使用方法,对于理解计算机的运行原理和进行程序设计都至关重要。

其次,我们将介绍一些关于ax寄存器的基本操作。

在程序设计中,我们经常需要对ax寄存器进行各种操作,比如将数据加载到ax寄存器中,将ax寄存器中的数据传送到其他寄存器中,以及对ax寄存器中的数据进行加减乘除等运算。

掌握这些基本操作,可以帮助我们更好地编写程序,提高程序的效率和性能。

接下来,我们将介绍一些与ax寄存器相关的指令。

在计算机的指令集中,有很多与ax寄存器相关的指令,比如mov指令用于将数据传送到ax寄存器中,add指令用于对ax寄存器中的数据进行加法运算,sub指令用于对ax寄存器中的数据进行减法运算等。

了解这些指令的功能和使用方法,可以帮助我们更好地编写程序,实现各种复杂的功能。

最后,我们将介绍一些与ax寄存器相关的实际应用。

在实际的程序设计和开发过程中,我们经常会用到ax寄存器,比如在进行数据传输、运算和逻辑判断时,都会涉及到ax寄存器的使用。

掌握好ax寄存器的相关知识,可以帮助我们更好地理解程序的运行原理,提高程序的效率和性能。

总之,微机原理ax是微机原理课程中的一个重要内容,掌握好ax寄存器的相关知识,对于理解计算机的运行原理和进行程序设计都至关重要。

希望本文的介绍能够帮助读者更好地理解和掌握微机原理ax的相关知识,为日后的学习和工作打下坚实的基础。

微机原理及接口技术

微机原理及接口技术

微机原理及接口技术一、前言随着信息时代的到来,计算机技术的不断发展,微机技术已经得到了广泛的应用和发展。

微机原理及接口技术作为微机技术的重要基础,对于了解微机的结构和工作原理,以及实现微机与外部设备的通信具有十分重要的意义。

本文将围绕着微机的结构、工作原理以及微机与外部设备的接口技术进行详细的介绍和分析。

二、微机的结构微机是由中央处理器(CPU)、内存(MEM)、输入/输出(I/O)接口电路、总线(BUS)等部分组成的。

CPU是微机的核心部分,它能对数据进行处理、控制微机的运作;内存是储存数据和指令的地方,CPU可以直接对内存进行读取和写入操作;I/O接口电路是微机与外部设备之间进行数据交换的桥梁;总线则是将CPU、内存和I/O接口电路连接在一起,并传递数据和控制信息。

三、微机的工作原理微机的工作过程主要由指令执行和数据存取两个部分组成。

当CPU需要执行下一条指令时,会从内存中读取这条指令,然后进行解析并执行相应的操作。

当CPU需要访问数据时,会从内存中读取数据,并将数据写入内存中。

而CPU与输入/输出设备之间的通信也是通过I/O接口电路完成的。

CPU可以根据需要对内存进行读写操作,这是因为内存与CPU的速度非常接近,对内存的操作是非常快速的。

而CPU与外设之间通过I/O接口电路进行通信,则是因为I/O接口电路需要实现对不同类型的设备接口进行适配,对设备的操作速度也受到限制。

四、微机的接口技术为了实现微机与外部设备的通信,需要通过不同的接口技术来实现对不同类型设备的连接。

常用的接口技术有串行接口(Serial Interface)、并行接口(Parallel Interface)、通用串行总线(USB)、蓝牙接口(Bluetooth Interface)等。

其中,USB接口已经成为目前最为普遍的接口技术之一。

串行接口技术和并行接口技术是早期应用比较广泛的接口技术,它们的主要区别在于对数据的传输方式不同。

微机原理

微机原理

第一章ENIAC 的不足:运算速度慢、存储容量小、全部指令没有存放在存储器中、机器操作复杂、稳定性差 。

冯·诺依曼(Johe V on Neumman )提出了“存储程序”的计算机设计方案。

特点是: 1、采用二进制数形式表示数据和计算机指令。

2、指令和数据存储在计算机内部存储器中,能自动依次执行指令。

由控制器、运算器、存储器、输入设备、输出设备5大部分组成计算机硬件。

工作原理的核心是“存储程序”和“程序控制”。

一型计算机的分类字长:有4位、8位、16位、32位、64位微型计算机等 工艺:可分成MOS 工艺、双极型TTL 工艺的微处理器 结构类型:有单片机、单板机、位片机、微机系统等 用途:个人计算机、工作站/务器、网络计算机 体积大小:台式机、携机。

二.微型计算机的性能指标介绍位:这是计算机中所表示的最基本、最小的数据单元。

字长:是计算机在交换、加工和存放信息时的最基本的长度。

字节(Byte ):是计算机中通用的基本单元,由8个二进制位组成。

字:是计算机内部进行数据处理的基本单位。

主频:也称时钟频率,是指计算机中时钟脉冲发生器所产生的频率。

访存空间:是该微处理器构成的系统所能访问的存储单元数。

指令数:构成微型计算机的操作命令数。

基本指令执行时间:计算机执行程序所花的时间。

可靠性:指计算机在规定时间和条件下正常工作不发生故障的概率。

兼容性:指计算机硬件设备和软件程序可用于其他多种系统的性能。

性能价格比:是衡量计算机产品优劣的综合性指标。

微型计算机是以微处理器为核心,再配上存储器、接口电路等芯片构成的微型计算机系统由硬件系统和软件系统两大部分组成 :1.中央处理单元CPU (Control Processing Unit )是微型计算机的核心部件,是包含有运算器、控制器、寄存器组以及总线接口等部件的一块大规模集成电路芯片,俗称微处理器。

微处理器是微型计算机的核心,它的性能决定了整个微型机的各项关键指标。

组成原理和微机原理的区别

组成原理和微机原理的区别

组成原理和微机原理的区别组成原理和微机原理是计算机科学领域的两个重要概念。

组成原理(Computer Organization)是指计算机系统中各个硬件组件之间的互联关系、工作方式及其实现原理的研究。

而微机原理(Microcomputer Principle)是指微型计算机(或称个人计算机)的工作原理、结构组成、运行机制等方面的研究。

虽然两个概念关注的层次不同,但它们在一定程度上是相互关联的。

首先,组成原理是计算机科学的基础。

它研究计算机硬件如何运行和协同工作,如处理器、内存、存储器、输入输出设备等。

这些硬件组件之间的互联关系和工作方式的设计对计算机的整体性能和效率有着重要影响。

组成原理主要关注硬件层次的设计和实现,例如如何设计指令集、如何实现数据通路和控制单元、如何进行内存管理等。

它涉及到底层电路设计、逻辑门电路的实现、微结构设计等技术。

与此相反,微机原理更加关注的是微型计算机系统的工作原理和内部结构。

微机原理包括微型计算机系统的组成以及各个组成部分之间的关系,例如中央处理单元(CPU)、内存、输入输出设备、总线系统等。

微机原理还包括微型计算机的运行机制,例如指令的执行过程、CPU与内存之间的数据传输过程、输入输出设备的工作机制等。

微机原理主要关注的是微型计算机整体的结构和工作机制,目的是深入理解计算机系统的运行方式,为提高计算机性能和效率提供理论和技术支持。

总的来说,组成原理和微机原理从不同的角度研究计算机系统。

组成原理关注底层电路设计和硬件层面的实现,它是计算机科学的基础,为高级计算机体系结构和程序设计提供支持。

微机原理关注微型计算机系统的结构和工作原理,目的是理解和优化微型计算机的性能和效率。

它与组成原理有一定的重叠,但更加关注整体系统的层面。

另外,随着计算机技术的发展,微机原理逐渐与计算机组成原理结合在一起,形成了计算机体系结构(Computer Architecture)这一更为综合的学科。

微机原理名词解释

微机原理名词解释

微机原理名词解释
微机原理是指微型计算机的基本工作原理和组成结构。

微机是指由微型集成电路技术制造的计算机,包括中央处理器(CPU)、内存、输入输出设备、总线等组件。

微机原理涵盖了微型计算机的计算、存储、控制等关键原理。

1. 中央处理器(CPU):微机的核心部件,负责执行指令、算术逻辑运算、控制和数据传输等功能。

2. 内存:用于存储程序和数据的地方,包括主存和辅助存储器,如RAM(随机存取存储器)和ROM(只读存储器)。

3. 输入输出设备:用于与外部环境交互的设备,如键盘、鼠标、打印机、显示器等。

4. 总线:用于不同部件之间进行信息传输的通道,包括地址总线、数据总线和控制总线。

5. 指令周期和时钟频率:指令周期是指处理器执行一条指令所需的时间,时钟频率是指单位时间内时钟信号的频率,两者共同决定了处理器的运行速度。

6. 指令集架构:规定了处理器能够执行的指令和操作,决定了计算机的功能和性能。

7. 中断和异常:用于处理处理器与外部设备之间或程序执行过程中的异常情况,如中断请求、浮点运算溢出等。

8. 数据通路和控制单元:数据通路负责数据的传输和运算,控制单元负责控制数据的流动和整个计算机的工作顺序。

微机原理是理解和设计微型计算机的基础,掌握微机原理可以帮助进行计算机硬件调试、故障诊断和性能优化等工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机原理复习重点第二章微机组成原理第一节、微机的结构1、计算机的经典结构——冯.诺依曼结构(1)计算机由运算器、控制器、输入设备和输出设备五大部分组成(运算器和控制器又称为CPU)(2)数据和程序以二进制代码形式不加区分地存放在存储器总,存放位置由地址指定,数制为二进制。

(3)控制器是根据存放在存储器中的指令序列来操作的,并由一个程序计数器控制指令的执行。

3、系统总线的分类(1)数据总线(Data Bus),它决定了处理器的字长。

(2)地址总线(Address Bus),它决定系统所能直接访问的存储器空间的容量。

(3)控制总线(Control Bus)第二节、8086微处理器1、8086是一种单片微处理芯片,其内部数据总线的宽度是16位,外部数据总线宽度也是16位,片内包含有控制计算机所有功能的各种电路。

8086地址总线的宽度为20位,有1MB (220)寻址空间。

2、 8086CPU由总线接口部件BIU和执行部件EU组成。

BIU和EU的操作是异步的,为 8086取指令和执行指令的并行操作体统硬件支持。

3、 8086处理器的启动4、寄存器结构(重点 )8086微处理器包含有13个16位的寄存器和9位标志位。

4个通用寄存器(AX,BX,CX,DX) 4个段寄存器(CS,DS,SS,ES)4个指针和变址寄存器(SP,BP,SI,DI)指令指针(IP) 1)、通用寄存器(1)8086含4个16位数据寄存器,它们又可分为8个8位寄存器,即: AX AH,AL BX BH,BL CX CH,CL DX DH,DL常用来存放参与运算的操作数或运算结果(2)数据寄存器特有的习惯用法AX:累加器。

多用于存放中间运算结果。

所有I/O指令必须都通过AX与接口传送信息; BX:基址寄存器。

在间接寻址中用于存放基地址;CX:计数寄存器。

用于在循环或串操作指令中存放循环次数或重复次数;DX:数据寄存器。

在32位乘除法运算时,存放高16位数;在间接寻址的I/O指令中存放I/O端口地址。

2)、指针和变址寄存器SP:堆栈指针寄存器,其内容为栈顶的偏移地址;BP:基址指针寄存器,常用于在访问内存时存放内存单元的偏移地址。

SI:源变址寄存器 DI:目标变址寄存器变址寄存器常用于指令的间接寻址或变址寻址。

3)、段寄存器CS:代码段寄存器,代码段用于存放指令代码 DS:数据段寄存器ES:附加段寄存器,数据段和附加段用来存放操作数SS:堆栈段寄存器,堆栈段用于存放返回地址,保存寄存器内容,传递参数 4)、指令指针(IP)16位指令指针寄存器,其内容为下一条要执行的指令的偏移地址。

5)、标志寄存器(1)状态标志: 进位标志位(CF):运算结果的最高位有进位或有借位,则CF=1 辅助进位标志位(AF):运算结果的低四位有进位或借位,则AF=1 溢出标志位(OF):运算结果有溢出,则OF=1 零标志位(ZF):反映指令的执行是否产生一个为零的结果 符号标志位(SF):指出该指令的执行是否产生一个负的结果 奇偶标志位(PF):表示指令运算结果的低8位“1”个数是否为偶数(2)控制标志位中断允许标志位(IF):表示CPU是否能够响应外部可屏蔽中断请求 跟踪标志(TF):CPU单步执行5、8086的引脚及其功能(重点掌握以下引脚)AD15~AD0:双向三态的地址总线,输入/输出信号INTR:可屏蔽中断请求输入信号,高电平有效。

可通过设置IF的值来控制。

NMI:非屏蔽中断输入信号。

不能用软件进行屏蔽。

RESET:复位输入信号,高电平有效。

复位的初始状态见P21 MN/MX:最小最大模式输入控制信号。

微机原理与接口技术第三章 8086指令系统说明:8086指令系统这章为重点章节,对下面列出的指令都要求掌握。

第一节 8086寻址方式一、数据寻址方式(重点 ) 1、立即寻址操作数(为一常数)直接由指令给出 (此操作数称为立即数) 立即寻址只能用于源操作数例:MOV AX, 1C8FHMOV BYTE PTR[2A00H], 8FH错误例:× MOV 2A00H,AX 错误!指令操作例:MOV AX,3102H; AX 3102H执行后,(AH) = 31H,(AL) = 02H2、寄存器寻址(1)操作数放在某个寄存器中(2)源操作数与目的操作数字长要相同(3)寄存器寻址与段地址无关例:MOV AX, BXMOV [3F00H], AX MOV CL, AL 错误例:× MOV AX,BL 字长不同× MOV ES:AX,DX 寄存器与段无关 3、直接寻址(1)指令中直接给出操作数的16位偏移地址偏移地址也称为有效地址(EA, Effective Address)(2)默认的段寄存器为DS,但也可以显式地指定其他段寄存器——称为段超越前缀(3)偏移地址也可用符号地址来表示,如ADDR、V AR 例:MOV AX ,[2A00H]MOV DX ,ES:[2A00H]MOV SI,TABLE_PTR4、间接寻址操作数的偏移地址(有效地址EA)放在寄存器中 只有SI、DI、BX和BP可作间址寄存例: MOV AX,[BX]MOV CL,CS:[DI]错误例:× MOV AX, [DX]× MOV CL, [AX]5、寄存器相对寻址EA=间址寄存器的内容加上一个8/16位的位移量 例: MOV AX, [BX+8] MOV CX, TABLE[SI]MOV AX, [BP]; 默认段寄存器为SS 指令操作例:MOV AX,DA TA[BX]若(DS)=6000H, (BX)=1000H, DATA=2A00H, (63A00H)=66H, (63A01H)=55H则物理地址 = 60000H + 1000H + 2A00H = 63A00H指令执行后:(AX)=5566H6、基址变址寻址若操作数的偏移地址:由基址寄存器(BX或BP)给出——基址寻址方式由变址寄存器(SI或DI)给出——变址寻址方式由一个基址寄存器的内容和一个变址寄存器的内容相加而形成操作数的偏移地址,称为基址-变址寻址。

EA=(BX)+(SI)或(DI); EA=(BP)+(SI)或(DI)同一组内的寄存器不能同时出现。

注意:除了有段跨越前缀的情况外,当基址寄存器为BX时,操作数应该存放在数据段DS 中,当基址寄存器为BP时,操作数应放在堆栈段SS中。

例: MOV AX, [BX] [SI] MOV AX, [BX+SI]MOV AX, DS: [BP] [DI] 错误例:× MOV AX, [BX] [BP] × MOV AX, [DI] [SI]指令操作例:MOV AX,[BX][SI]假定:(DS)=8000H, (BX)=2000H, SI=1000H 则物理地址 = 80000H + 2000H + 1000H = 83000H 指令执行后: (AL)=[83000H](AH)=[83001H]7、相对基址变址寻址在基址-变址寻址的基础上再加上一个相对位移量EA=(BX)+(SI)或(DI)+8位或16位位移量;微机原理与接口技术7 / 20EA=(BP)+(SI)或(DI)+8位或16位位移量指令操作例:MOV AX,DATA[DI][BX]若(DS)=8000H, (BX)=2000H, (DI)=1000H, DA TA=200H 则指令执行后(AH)=[83021H], (AL)=[83020H]寄存器间接、寄存器相对、基址变址、相对基址变址四种寻址方式的比较:寻址方式指令操作数形式寄存器间接只有一个寄存器(BX/BP/SI/DI之一) 寄存器相对一个寄存器加上位移量 基址—变址两个不同类别的寄存器相对基址-变址两个不同类别的寄存器加上位移量二、地址寻址方式(了解有4类,能判断)简要判断依据(指令中间的单词):段内直接 short,near 段内间接 word 段间直接 far 段间间接 dword第二节 8086指令系统一、数据传送指令(重点 )1、通用传送指令(1) MOV dest,src; dest←src传送的是字节还是字取决于指令中涉及的寄存器是8位还是16位。

具体来说可实现:① MOV mem/reg1,mem/reg2指令中两操作数中至少有一个为寄存器② MOV reg,data ;立即数送寄存器③ MOV mem,data ;立即数送存储单元④ MOV acc,mem ;存储单元送累加器⑤ MOV mem,acc ;累加器送存储单元⑥ MOV segreg,mem/reg 存储单元/寄存器送段寄存器⑦ MOV mem/reg,segreg 段寄存器送存储单元/寄存器MOV指令的使用规则①IP不能作目的寄存器②不允许mem←mem ③不允许segreg←segreg④立即数不允许作为目的操作数⑤不允许segreg←立即数⑥源操作数与目的操作数类型要一致⑦当源操作数为单字节的立即数,而目的操作数为间址、变址、基址+变址的内存数时,必其中OFFSET BUFFER表示存储器单元BUFFER的偏移地址。

二者都可用于取存储器单元的偏移地址,但LEA指令可以取动态的地址,OFFSET只能取静态的地址。

二、算术运算指令 1、加法指令(1) 不带进位的加法指令ADD 格式: ADD acc,dataADD mem/reg,data ADD mem/reg1,mem/reg2 实例:ADD AL,30H ADD SI,[BX+20H] ADD CX,SI ADD [DI],200H•ADD指令对6个状态标志均产生影响。

例:已知(BX)=D75FH指令 ADD BX,8046H 执行后,状态标志各是多少?D75FH = 1110 0111 0101 1111 8046H = 1000 0000 0100 01101 1 11 11 0110 0111 1010 0101结果:C=1, Z=0, P=0, A=1, O=1, S=0判断溢出与进位(重点 )从硬件的角度:默认参与运算的操作数都是有符号数,当两数的符号位相同,而和的结果相异时有溢出,则OF=1,否则OF=0(2)带进位的加法ADCADC指令在形式上和功能上与ADD类似,只是相加时还要包括进位标志CF的内容,例如: ADC AL,68H AL←(AL)+68H+(CF) ADC AX,CX ;AX←(AX)+(CX)+(CF)ADC BX,[DI] ;BX←(BX)+[DI+1][DI]+(CF)(3)加1指令INC 格式:INC reg/mem功能:类似于C语言中的++操作:对指定的操作数加1 例: INC ALINC SIINC BYTE PTR[BX+4]注:本指令不影响CF标志。

相关文档
最新文档