整式的乘法与因式分解知识点

合集下载

整式乘法及因式分解

整式乘法及因式分解

整式乘法及因式分解整式乘法是代数学中的基本运算之一,它涉及到多项式的相乘。

而因式分解则是整式乘法的逆运算,即将一个整式分解为若干个不可再分解的因式相乘的形式。

本文将详细介绍整式乘法的基本原理和方法,并且讨论因式分解的技巧和应用。

一、整式乘法整式乘法是指两个或多个整式相乘的运算。

在整式乘法中,我们需要根据单项式和多项式的乘法规则来进行计算。

单项式乘法的规则是,对于两个单项式相乘,只需要将它们的系数相乘得到新的系数,将它们的字母部分相乘得到新的字母部分,并将得到的新的系数和字母部分相乘的结果作为最终的乘积。

例如,对于单项式2x和3y的乘法,我们得到的结果是6xy。

在多项式相乘中,我们需要将每个单项式与另一个多项式的每个单项式进行乘法运算,然后将得到的乘积相加得到最终的结果。

具体来说,我们可以使用分配律的原理,将一个多项式中的每个单项式逐一与另一个多项式的每个单项式相乘,然后将得到的乘积相加。

例如,对于多项式(2x+3y)(4x+5y)的乘法,我们可以先将2x与4x相乘得到8x^2,再将2x与5y相乘得到10xy,然后将3y与4x相乘得到12xy,最后将3y与5y相乘得到15y^2,将这些乘积相加得到最终的结果为8x^2+22xy+15y^2。

二、因式分解因式分解是指将一个整式分解为若干个不可再分解的因式相乘的形式。

因式分解在代数学中具有重要的应用,它可以帮助我们简化复杂的整式,使其更易于理解和计算。

在进行因式分解时,我们需要利用整式乘法的逆运算,即将整式分解为多个因式相乘的形式。

一般来说,我们首先要找出整式的公因式,即可以整除整式中每个项的公因式。

然后,将整式中的每个项都除以公因式,得到一个新的整式。

最后,我们可以将新的整式继续进行因式分解,直到不能再分解为止。

例如,对于整式12x^2y+18xy,我们可以先找出公因式6xy,将整式每一项都除以6xy,得到新的整式2x+3。

这时,新的整式2x+3已经不能再分解了,因此我们得到了最终的结果为6xy(2x+3)。

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。

3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。

2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。

三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。

2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

3. 公式法:利用平方差公式和完全平方公式进行因式分解。

注意:分解因式必须分解到每一个因式都不能再分解为止。

四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。

方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。

五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。

在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。

熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。

掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。

七下整式乘法与因式分解知识点归纳小结

七下整式乘法与因式分解知识点归纳小结

七下整式乘法与因式分解知识点归纳小结整式乘法与因式分解是初中数学七年级上学期的一个重要知识点。

整式乘法是指两个或多个多项式相乘的运算,而因式分解则是指将一个多项式分解成两个或多个因式的过程。

下面将通过归纳总结的方式来介绍整式乘法与因式分解的基本概念和方法。

一、整式乘法的基本概念与性质:1.多项式的基本概念:多项式是由常数项、含有未知数的项及它们的系数的乘积相加或相减得到的代数式。

例如:3x²-2x+12.单项式与多项式:只有一个项的代数式称为单项式,例如:4x³;含有两个或两个以上项的代数式称为多项式,例如:5x²+2x+33.多项式的乘法规则:多项式A和多项式B相乘得到的结果是一个多项式C,其每一项是A和B的对应项乘积的和。

例如:(3x+2)(2x-1)=6x²-3x+4x-2=6x²+x-2二、整式乘法的展开:1.一般情况下,多项式的乘积可以通过分配律展开。

例如:(2x+3)(x+4)=2x(x+4)+3(x+4)=2x²+8x+3x+12=2x²+11x+122. 特殊情况下,有一些常见的乘积公式可以直接应用,如(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²等。

三、因式分解的基本概念与性质:1.因式分解的定义:将一个多项式分解成两个或多个因式相乘的形式,其中每一个因式都是原多项式的一个因数。

2.公因式提取法:当一个多项式的每一项都有一个公因式时,可以提取公因式。

例如:4x+2y=2(2x+y)。

3. 分组分解法:将多项式的项按照其中一种规则进行重新排列分组,然后进行提取公因式的操作。

例如:4xy+2x+3y+6=2x(2y+1)+3(y+2)。

4.差平方公式:a²-b²=(a+b)(a-b)。

5. 公式的应用:多项式的因式分解常常会用到如(x+a)(x+b)=x²+(a+b)x+ab等常见公式。

八年级数学整式的乘法与因式分解常考必考知识点总结

八年级数学整式的乘法与因式分解常考必考知识点总结

一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。

2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。

b.公式法:利用已知的一些公式对整式进行因式分解。

c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。

d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。

3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。

整式的乘法及因式分解单元总结与归纳

整式的乘法及因式分解单元总结与归纳

《整式的乘法及因式分解》单元总结与归纳【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【答案与解析】解:依题意得:21x x +=,∴3223x x ++,=3223x x x +++,=22()3x x x x +++,=23x x ++,=4;类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【答案与解析】解:()()2259x x x x x -+--, =322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-, 当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y --- (3)()()22224222x xy y x xy y -+-+.【答案与解析】 解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=- 5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--。

整式的乘法与因式分解知识点总结 (1)精选全文完整版

整式的乘法与因式分解知识点总结 (1)精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解知识点总结一、同底数幂的乘法1. 同底数幂相乘,底数不变,指数相加。

即:m n m n a a a +⨯=(m 、n 为正整数)注:(1)底数可以是任意实数,也可以是单项式、多项式。

(2)当幂的指数为1时,计算不要遗漏,也可以省略不写,即a a =1。

2. 在幂的运算中,经常用到以下变形:二、幂的乘方1. 幂的乘方:底数不变,指数相乘。

即:()n m mn aa =(m 、n 为正整数) 注:(1)公式的推广: (,均为正整数) (2)逆用公式:三、积的乘方1. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即:()nn n ab a b = (n 为正整数) 注:(1)公式的推广: (为正整数). (2)逆用公式: 四、单项式与单项式相乘1. 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

五、单项式与多项式相乘1. 单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加.公式:mc mb ma c b a m ++=++)(,其中m 为单项式,c b a ++为多项式。

()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数(())=m n p mnp a a0≠a ,,m n p ()()n m mn m n a a a ==()=⋅⋅n n n nabc a b c n ()nn n a b ab =六、多项式与多项式相乘1. 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

公式:()()nb na mb ma b a n m +++=++七、同底数幂的除法1. 同底数幂相除,底数不变,指数相减。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解一、知识点1.幂的运算性质:同底数幂相乘,底数不变,指数相加。

即,am·an=am+n(m、n为正整数)。

例如:(-2a)2(-3a2)3 = 4a2·-27a6 = -108a8.2.幂的乘方性质:幂的乘方,底数不变,指数相乘。

即,a(mn)=(am)n(m、n为正整数)。

例如:(-a5)5 = (-1)5·a25 = a25.3.积的乘方性质:积的乘方等于各因式乘方的积。

即,(ab)n = an·bn(n为正整数)。

例如:(-a2b)3 = (-1)3·a6·b3 = -a6b3.4.幂的除法性质:同底数幂相除,底数不变,指数相减。

即,a/m ÷ a/n = a(m-n)(a≠0,m、n都是正整数,且m>n)。

例如:(1) x8÷x2 = x6;(2) a4÷a = a3;(3) (ab)5÷(ab)2 = a3b3.5.零指数幂的概念:a0 = 1(a≠0)。

任何一个不等于零的数的零指数幂都等于1.例如:若(2a-3b)0=1成立,则a,b满足任何条件。

6.负指数幂的概念:a-p = 1/ap(a≠0,p是正整数)。

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数。

例如:(m/n)-2 = n2/m2.7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:(1) 3a2b·2abc·abc2 = 6a4b2c3;(2) (-m3n)3·(-2m2n)4 = -8m14n7.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。

例如:(1) 2ab(5ab+3ab) = 16a2b2;(2) (ab2-2ab)·ab = a2b3-ab2.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结一、整式的乘法1.乘法法则:(1)两个整系数多项式相乘,按照分配律逐项相乘再相加即可。

(2)对于整式的乘幂,将底数相乘,指数相加。

(3)进行乘法时,可以将同类项合并。

2.乘法的性质:(1)乘法交换律:a*b=b*a(2)乘法结合律:(a*b)*c=a*(b*c)(3)乘法的分配律:a*(b+c)=a*b+a*c3.乘法公式:(1) 平方公式:(a + b)^2 = a^2 + 2ab + b^2(2)平方差公式:(a+b)(a-b)=a^2-b^2(3) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.乘法的运用:(1)计算多项式的立方和高次幂。

(2)将多项式与常数相乘。

(3)将多项式乘以一个多项式。

二、因式分解1.因式分解的定义:因式分解是指将一个多项式表示为几个乘积的形式,其中每个乘积称为因式。

2.因式分解的方法:(1)公因式提取法:将多项式的所有项提取出一个最高公因式,然后将剩余部分因式分解。

(2)公式法:利用数学公式,如平方公式、立方公式等进行因式分解。

(3)分组分解法:将多项式分成若干组,每组提取公因式后进行因式分解。

3.公式法的常见因式分解:(1)平方差公式:a^2-b^2=(a+b)(a-b)(2) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2(3) 差平方公式:a^2 - 2ab + b^2 = (a - b)^2(4) 立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)(5) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.分组分解法的常见因式分解:(1)将多项式分成两组,每组提取公因式后进行因式分解。

(2)将多项式分成三组,每组提取公因式后进行因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式乘除与因式分解一.知识点 (重点)1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a )2(-3a 2)32.()n m a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.例: (-a 5)53.()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积.例:(-a 2b )3练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减.例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅- 8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅- (3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(2322 9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)= 3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k =9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b = 11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为 ,体积为 。

12.一个长方形的长是10cm ,宽比长少6cm ,则它的面积是,若将长方形的长和都扩大了2cm ,则面积增大了。

10.单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例:(1)28x 4y 2÷7x 3y (2)-5a 5b 3c ÷15a 4b (3)(2x 2y )3·(-7xy 2)÷14x 4y 311.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.例: 练习:1.计算:(1)223247173y x z y x ÷-; (2)()⎪⎭⎫ ⎝⎛-÷-2232232y x y x ; (3)()()26416b a b a -÷-. (4)()()322324n n xy y x -÷ (5)()()39102104⨯-÷⨯2.计算:(1)33233212116⎪⎭⎫ ⎝⎛-⋅÷xy y x y x ; (2)32232512152⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛xy y x y x (3)22221524125⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+n n n n b a b a b a 3.计算:(1)()()[]()()[]234564y x x y y x y x +⋅-÷+-; (2)()()[]()()[]235616b a b a b a b a -+÷-+. 4.若 (ax 3my 12)÷(3x 3y 2n )=4x 6y 8 , 则 a = , m = ,= ;易错点:在幂的运算中,由于法则掌握不准出现错误;有关多项式的乘法计算出现错误;xy xy y x 6)63()1(2÷-)5()15105()2(3223ab ab b a b a -÷--误用同底数幂的除法法则;用单项式除以单项式法则或多项式除以单项式法则出错;乘除混合运算顺序出错。

12.乘法公式:①平方差公式:(a +b )(a -b )=a 2-b 2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.例1: (1)(7+6x)(7−6x); (2)(3y + x)(x−3y); (3)(−m +2n)(−m−2n). 例2: (1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2练习:1、()()4352a a -⋅-=_______。

3222323()2()()x x y x y xy ⎡⎤-⋅-⎣⎦=______________。

2、2323433428126b a b a b a b a =-+(_____________________) 3、222____9(_____)x y x ++=+;2235(7)x x x +-=+(______________) 4、已知15x x +=,那么331x x +=_______;21x x ⎛⎫- ⎪⎝⎭=_______。

5、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。

6、多项式2,12,2223--+++x x x x x x 的公因式是_____________________。

7、因式分解:=+2783x __________________________。

8、因式分解:=++224124n mn m ____________________________。

9、计算:=⨯-⨯-⨯8002.08004.08131.0_____________________。

10、A y x y x y x ⋅-=+--)(22,则A =_____________________ 易错点:错误的运用平方差公式和完全平方公式。

13.因式分解(难点)因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.例:(1)323812a b ab c + (2)35247535x y x y -2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a 2-b 2= (a +b )(a -b )②完全平方公式:a 2+2ab +b 2=(a +b )2a 2-2ab +b 2=(a -b )2例:(1)2220.25a b c - (2)29()6()1a b b a -+-+(3)42222244a x a x y x y -+ (4)22()12()36x y x y z z +-++ 练习:1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。

2、22)(n x m x x -=++则m =____n =____3、232y x 与y x 612的公因式是_4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的有________________________ ,其结果是 _____________________。

6、若16)3(22+-+x m x 是完全平方式,则m=_______。

7、_____))(2(2(_____)2++=++x x x x8、已知,01200520042=+++++x x x x Λ则.________2006=x9、若25)(162++-M b a 是完全平方式M=________。

10、()22)3(__6+=++x x x , ()22)3(9___-=++x x11、若229y k x ++是完全平方式,则k=_______。

相关文档
最新文档