电路噪声和抗干扰措施
增加电路抗干扰能力的方法

增加电路抗干扰能力的方法随着电子产品的普及,电磁干扰已经成为了工业、交通、通讯、军事等领域所面临的普遍问题。
尤其是在高铁、地铁等复杂多变的环境中,电磁干扰更加严重。
为了有效地解决电磁干扰所带来的影响,提高电路的抗干扰能力已成为了重要议题。
以下是增加电路抗干扰能力的方法:1. 滤波器滤波器用于去除电源中的高频和低频噪声和其它干扰信号。
对于单相交流电源,使用LC滤波器来抑制高频噪声,LRC滤波器来抑制低频噪声,并采用带状滤波器来抑制EMI干扰,在输入和输出端使用衰减滤波器来抑制EMI干扰。
2.电磁屏蔽技术电磁屏蔽是指使用内部或外部的物理结构,将电路环境与电路之间隔离开来,避免电磁信号的互相干扰。
内部屏蔽有金属薄膜、金属盒、金属箔等物理结构,外部屏蔽有遮蔽罩、低噪声电缆等。
3. 接地技术正确的接地技术可以有效地降低电路的共模噪声和防止干扰信号的入侵。
最佳的接地点是电源和电路地之间的共和点,使用接地环或导体保护来降低接口电阻,将高频信号放入地时,必须注意抗地衰减特性,确保抗干扰能力。
4.电路设计在电路设计阶段,需要对指令编码进行设计,必须注意不同信号在电路中的相对位置。
使用地端,噪声过滤器和其它技术方案,能够有效地处理高频滤波,减少EMI干扰。
5.使用低噪声源在电路设计时,应该使用低噪声源,例如低噪声电缆、低噪声电源等等。
这些器件是设计低噪声和抵御干扰所必不可少的器件。
总之,增加电路抗干扰的能力是一项艰难的任务,需要综合考虑电路的特性、制造工艺、环境因素等方面,通过在滤波、屏蔽、接地、电路设计等方向上的优化来实现。
在实际情况下,电路抗干扰能力的提高还需要与测试和验证相结合,使其在实际性能中得到改进。
模拟电路设计中的噪声与干扰抑制技术

模拟电路设计中的噪声与干扰抑制技术在模拟电路设计中,噪声与干扰一直是一个令人头疼的问题。
噪声和干扰会影响电路的性能和稳定性,因此在设计电路时需要采取一些技术手段来抑制噪声和干扰。
本文将介绍一些常用的噪声与干扰抑制技术,帮助工程师们在设计模拟电路时提高抗干扰能力。
首先,对于抑制噪声,我们可以采用滤波器来减小噪声对电路的影响。
滤波器可以将噪声信号中的高频成分滤除,从而减小对电路的干扰。
常见的滤波器包括低通滤波器、高通滤波器和带通滤波器。
通过合理选择滤波器的参数和类型,可以有效地抑制噪声对电路的影响。
其次,对于抑制干扰,我们可以采用屏蔽技术来阻止外部干扰信号对电路的影响。
屏蔽技术包括电磁屏蔽和功率线屏蔽。
电磁屏蔽是通过在电路周围添加屏蔽罩或金属壳来屏蔽外部电磁干扰信号;功率线屏蔽则是通过设计合理的电源线路布局和滤波器来减小电源线对电路的干扰。
通过屏蔽技术,可以有效地减小外部干扰信号对电路的影响,提高电路的稳定性和可靠性。
此外,对于一些对噪声和干扰敏感的电路,还可以采用差分信号传输技术来抑制噪声和干扰。
差分信号传输技术通过在信号线上同时传输正向和反向信号,并在接收端通过差分放大器将两个信号相减得到原始信号,从而抵消噪声和干扰对信号的影响。
通过差分信号传输技术,可以提高信号的抗干扰能力,减小噪声和干扰对电路的影响。
总的来说,在模拟电路设计中,噪声与干扰抑制技术是非常重要的。
通过合理选择滤波器、采用屏蔽技术和差分信号传输技术,可以有效地减小噪声和干扰对电路的影响,提高电路的性能和稳定性。
希望以上介绍的技术能够帮助工程师们在设计模拟电路时更好地抑制噪声与干扰,提高电路的可靠性和抗干扰能力。
电子设计中常见的噪声问题及解决方法

电子设计中常见的噪声问题及解决方法在电子设计中,噪声是一个常见且影响深远的问题。
它会对系统性能造成严重影响,因此必须采取有效的方式进行解决。
在本文中,我们将讨论电子设计中常见的噪声问题以及相应的解决方法。
首先,让我们了解什么是噪声。
在电子设备中,噪声是指系统中出现的不希望的干扰信号,会导致输出信号的失真或降低信噪比。
电子设备中的噪声通常可以分为两类:外部噪声和内部噪声。
外部噪声是来自环境中的干扰,比如电源线上的电磁干扰、无线电信号等;内部噪声则是电子设备本身产生的信号干扰,比如器件本身的热噪声、晶体管的噪声等。
常见的电子设计中的噪声问题包括:热噪声、1/f 噪声、射频干扰以及电源干扰等。
热噪声是由于电阻器、晶体管等器件的热运动引起的,通常可以通过降低工作温度或选择低噪声器件来减小;1/f 噪声是一种与频率成反比的噪声,通常可以通过滤波器进行抑制;射频干扰是来自无线电频段的干扰信号,通常可以通过屏蔽、滤波等技术进行减小;电源干扰则是由电源波动等因素引入的干扰信号,可以通过滤波器、稳压器等措施进行消除。
为了解决这些噪声问题,我们可以采取一系列有效的解决方法。
首先,选择低噪声器件是很关键的,因为器件本身的噪声会影响整个系统的性能。
其次,合理布局电路板是很重要的,可以避免信号叠加引入额外的干扰。
此外,使用合适的滤波器、隔离器等器件也是很有效的方法,可以将不需要的干扰信号滤除。
在面对射频干扰时,可以采用屏蔽罩、隔离器件等技术来隔离干扰信号,保证系统的正常工作。
除了以上方法外,还可以利用数字信号处理技术来进行噪声消除。
通过滤波、降噪算法等方法,可以有效地去除信号中的噪声成分,提高系统的信噪比。
此外,还可以采用差分信号传输、差分输入放大器等技术来减小信号传输过程中的干扰,提高系统的抗干扰能力。
总的来说,电子设计中的噪声问题是一个不可忽视的挑战,但是只要采取适当的解决方法,就可以有效地减小噪声对系统性能的影响。
电路设计中的常见问题与解决方案

电路设计中的常见问题与解决方案电路设计是现代科技领域中不可或缺的一部分,然而常常会面临各种问题和挑战。
本文将探讨一些电路设计中常见的问题,并提供相应的解决方案。
1. 电路噪声电路噪声是电子系统中经常遇到的一个问题,尤其在高频和低功耗电路中更为明显。
电路噪声会导致信号失真、功耗增加和性能下降等问题。
解决这个问题的方法之一是使用低噪声元件,如低噪声放大器、低噪声电源等。
另外,优化电路布局和减少信号干扰也可以有效降低噪声水平。
2. 电路热失真电路在工作过程中会产生热量,这可能导致电路性能下降,甚至设备故障。
为了解决这个问题,工程师可以选择低功耗、高效率的元件和材料,如使用低功耗处理器、高效率转换器等。
此外,良好的散热系统设计也是至关重要的,通过合理的散热设计和散热材料的选择,可以有效降低电路的温度。
3. 电磁兼容性(EMC)问题电磁兼容性是指电子设备在工作时相互之间不产生干扰,以及对周围环境的影响降到最低。
电磁干扰可能导致电路的性能下降,通信质量差,甚至设备故障。
解决EMC问题的关键是合理的布局和细致的电路设计。
例如,在PCB设计过程中,可以采用分层设计、地平面设计和合理的引脚布局等方法来降低EMC干扰。
4. 电路抗干扰能力不足电路在实际工作环境中可能会受到各种外部因素的干扰,如电磁场干扰、电源电流噪声等。
为了提高电路的抗干扰能力,可以采用差分信号传输、屏蔽技术和滤波器设计等方法。
此外,选择抗干扰能力较强的元件和材料也是关键。
5. 电路功耗过高电路设计中经常面临功耗过高的问题,这会导致设备的发热量增加、电池寿命缩短等问题。
为了解决这个问题,可以采用低功耗电源管理技术、节能型元件和适当的功耗控制策略。
此外,对于移动设备等特定应用场景,还可以采用动态电压调节技术和节能睡眠模式等方法。
总结电路设计中的问题常常给工程师带来挑战,但通过合适的解决方案和方法,这些问题都是可以解决的。
在电路设计过程中,工程师需要充分考虑噪声、热失真、抗干扰能力、EMC问题以及功耗等方面,合理选择元件和材料,并进行合理的布局和设计。
电路降噪方案

电路降噪方案在现代电子设备中,噪声是一个普遍存在的问题。
特别是在电路中,噪声会对电子信号的传输和质量产生不可忽视的影响。
因此,为了保证电路的正常运行和性能提升,降噪方案变得至关重要。
本文将介绍一些常见的电路降噪方案。
1.地线回流(Ground Plane)地线回流是一种常用的电路降噪方案。
在PCB设计中,将地线与电路板的表面尽可能接近,可以有效地降低信号线与地线之间的电磁辐射。
通过在电路板的一层或多层中添加完整的地平面,可以有效地降低电路中的噪声。
这种方式不仅可以提供良好的电磁屏蔽效果,还可以减少信号线与地线之间的电感耦合。
2.终端电阻(Termination Resistor)终端电阻是用于匹配传输线和电路的一种降噪方案。
信号在传输线上传输时,会产生反射并引起噪声。
通过在传输线的两个端点添加终端电阻,可以有效地消除信号的反射,并降低传输线上的噪声。
终端电阻的阻值应根据传输线的特性阻抗匹配选择,并按需调整以获得最佳降噪效果。
3.滤波器(Filter)滤波器是一种常见的用于降噪的电路组件。
它可以通过选择不同的滤波器类型(如低通滤波器、高通滤波器、带通滤波器等)来滤除不同频率范围内的噪声信号。
在电路中添加适当的滤波器可以有效地减少噪声的影响,提高电路的抗干扰性能。
4.屏蔽罩(Shielding)屏蔽罩是一种常用的电路降噪方案。
它可以通过将电路或信号线用金属屏蔽进行包围来提供电磁屏蔽保护。
金属屏蔽可以有效地阻挡外界电磁场的干扰,减少输入输出信号之间的串扰和干扰。
屏蔽罩的设计要考虑到接地、返层等因素,并确保屏蔽罩与电路板的良好接触,提高屏蔽效果。
5.消噪器(Noise Suppressor)消噪器是一种专门用于降低电路中噪声的器件。
它可以通过将电路中的噪声信号与参考信号进行比较,然后输出与噪声相反的信号,从而抵消噪声的影响。
消噪器通常用于特定频率范围内的噪声抑制,可以有效地提高电路的信噪比和性能稳定性。
电子电路中的电源噪声过滤和抑制方法有哪些

电子电路中的电源噪声过滤和抑制方法有哪些电子设备中常常会出现电源噪声的问题,这会对电路的正常工作造成干扰,影响设备的性能。
为了解决这个问题,人们经过多年的研究和实践,积累了许多电源噪声过滤和抑制的方法。
本文将介绍一些常见的方法。
一、电源滤波器电源滤波器是电子电路中常用的一种电源噪声过滤方法。
它通过在电源电路中加入适当的电感元件、电容元件和电阻元件来滤除电源中的高频噪声。
电源滤波器主要有低频滤波器和高频滤波器两种。
1. 低频滤波器低频滤波器通常采用电感元件和电容元件组成。
电感元件可以将高频噪声分离,而电容元件则能通过对电流的充放电作用来滤除低频噪声。
常见的低频滤波器有L型滤波器和π型滤波器。
2. 高频滤波器高频滤波器主要通过电容元件来滤除电源中的高频噪声。
电容元件对高频信号有较强的短路作用,可以将高频噪声导到地线上。
常见的高频滤波器有C型滤波器和π型滤波器。
二、电源隔离电源隔离是一种常用的抑制电源噪声的方法。
它通过在电源输入和输出之间加入隔离变压器或光电耦合器等器件,将电源与电路之间的接地进行物理隔离,从而达到抑制电源噪声的目的。
电源隔离可以有效地阻止电源噪声通过电源线传导到电路中,同时也能减少地线回路的干扰。
这种方法适用于对电源噪声抑制要求较高的场合,如通信设备、医疗设备等。
三、电源滤波电容电源滤波电容是一种常见的电源噪声抑制方法。
它通过在电源输入端与地之间并联一个高频滤波电容,来滤除电源线中的高频噪声。
电源滤波电容能够提供低阻抗路径,将高频噪声导到地线上,起到隔离和抑制的作用。
电源滤波电容的选取需要根据具体的设计参数和噪声频率特性进行,常见的规格有1μF、10μF、100μF等。
四、差模抑制差模抑制是一种电源噪声抑制方法,适用于功率放大器等音频设备中。
差模抑制通过对电源中的噪声进行差分和抵消,来减少对共模信号的干扰。
差模抑制一般通过加入差分电源电路、共模电路和差分功率放大器等部件来实现。
这些部件能够将电源中的噪声进行差分运算,并抵消共模信号,提高系统的信噪比和抗干扰能力。
如何解决电路中的电源干扰问题

如何解决电路中的电源干扰问题电源干扰是电路设计中常见的问题之一,它会对电路的正常运行造成不良影响。
为了解决这个问题,本文将从电源滤波、地线布局、信号屏蔽和电源线选择等多个方面进行探讨。
以下是具体的解决方法:一、电源滤波电源滤波是解决电源干扰问题的关键一步。
在电路的输入端,我们可以添加一些适当的滤波器元件,如电容、电感和滤波电阻等,来滤除电源中的高频噪声和干扰信号。
其中,电容和电感可以组成低通滤波器,用于滤除高频噪声;而滤波电阻则可以通过串联在电源线上,用于抑制电源线路的噪声。
二、地线布局合理的地线布局也对解决电源干扰问题至关重要。
在布线过程中,我们应尽量将电源线和地线分离,并保持它们的良好隔离。
此外,应尽量避免电源线与信号线、高频线路等之间的交叉布线,以减少电源线对其他线路产生的干扰。
通过合理的地线布局可以有效地降低电源干扰的发生。
三、信号屏蔽信号屏蔽是另一个解决电源干扰问题的重要手段。
在设计过程中,我们可以采用屏蔽罩、屏蔽盒或金属屏蔽壳等屏蔽装置,将敏感的电路部分包裹在其中,避免外部电源干扰的影响。
此外,还可以使用屏蔽电缆来传输信号,以减少外界电磁波对信号的干扰。
四、电源线选择正确选择电源线也能有效地解决电源干扰问题。
通常情况下,我们可以选择阻抗较低的电源线,以减少电源线上的干扰噪声。
此外,还可以采用双绞线或者屏蔽线来传输电源信号,以提高抗干扰能力。
对于特别敏感的电路,甚至可以考虑使用独立的电源供应模块,以进一步降低电源干扰的影响。
综上所述,解决电源干扰问题需要综合考虑电源滤波、地线布局、信号屏蔽和电源线选择等多个方面的因素。
通过合理的设计和规划,我们能够减少电源干扰对电路的影响,提高电路的可靠性和稳定性。
在实际应用中,我们应根据具体的电路需求和工作环境,选择适当的方法和措施来解决电源干扰问题,以获得更好的电路性能和工作效果。
通过以上措施,我们可以有效地解决电路中的电源干扰问题,确保电路的正常运行和稳定性。
电路设计中的噪声抑制方法

电路设计中的噪声抑制方法在电路设计中,噪声是一个常见的问题,它会对电路的性能产生负面影响。
为了保证电路的正常工作和稳定性,我们需要采取一些噪声抑制方法。
本文将介绍一些常用的电路设计中的噪声抑制方法。
一、使用综合布线技术综合布线技术是一种常见的电路设计中的噪声抑制方法。
它通过合理的布线,避免信号线之间的干扰,达到减少噪声的效果。
在进行布线时,可以采用对地平面和电源平面进行分层的方法,从而有效地隔离信号线和地线,减少噪声的干扰。
二、使用滤波器滤波器是电路设计中常用的噪声抑制方法之一。
它可以通过选择合适的频带,滤除不需要的信号,从而减少噪声的干扰。
在设计电路时,可以根据需要选择不同类型的滤波器,如低通滤波器、高通滤波器等,来实现对噪声的抑制。
三、增加电源滤波器电源滤波器是另一种常用的电路设计中的噪声抑制方法。
它可以通过滤除电源中的噪声信号,使得电路所需的电源信号更干净、稳定。
电源滤波器通常由电容器和电感器组成,可以选择合适的参数来滤除不同频率的噪声。
四、地面规划和分离地面规划和分离是电路设计中常用的噪声抑制方法。
它通过合理规划和分离地面,将不同信号的地线分开,避免噪声在地线中传播。
在设计电路时,可以使用多层板来实现地面的规划和分离,从而减少噪声的干扰。
五、降低电路的阻抗降低电路的阻抗是一种有效的噪声抑制方法。
当电路的阻抗较低时,可以有效地降低噪声的干扰。
在设计电路时,可以使用合适的材料和技术来降低电路的阻抗,提高电路的抗干扰能力。
六、减少信号线的长度和面积减少信号线的长度和面积是一种简单而有效的噪声抑制方法。
信号线的长度越长,面积越大,其受到的噪声干扰也就越大。
因此,在电路设计中,应尽量减少信号线的长度和面积,以减少噪声的干扰。
综上所述,电路设计中的噪声抑制方法是非常重要的。
通过使用综合布线技术、滤波器、电源滤波器、地面规划和分离、降低电路的阻抗以及减少信号线的长度和面积等方法,可以有效地抑制噪声,提高电路的性能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•其中,
• 指放大器的噪声电压; • 指信源电阻; • 指信源电阻的热噪声; • 指放大器的噪声电流
•噪声系数:描述放大器噪声性能的一个重要指标 • 噪声系数的定义
•1、信噪比: 四端网络某一端口处信号功率与噪声功率之比。 信噪比SNR( Signal to Noise Ratio)通常用分贝数表示。
低(频)信号,数字、模拟信号要分开。尽可能把干扰源(如电
•三、电路板设计时应考虑的噪声种 类
•(三)传导噪声
•三、电路板设计时应考虑的噪声种 类
•三、电路板设计时应考虑的噪声种 类
•(三)传导噪声
四、电子电路抗干扰设计的依据
抑制干扰源 切断干扰途径 保护敏感器件
抑制干扰源常用的方法
(1)消除线圈反向电动势的方法
•减 少 辐 射 和 传 导 噪 声
抑制干扰源常用的方法
(2)消除接点火花的方法
•减 少 辐 射 噪 声
抑制干扰源常用的方法
(3)减小电机电磁噪声的方法
LI=L2=100μH、C1=C2=4700pF、C3=0.01μF左右. C1、C2接电机外壳。注意电容、电感的引线要尽量 短。
•减 少 辐 射 噪 声
抑制干扰源常用的方法
(4)减小高频噪声对IC干扰的方法
in2g 2qIG B
•式
I
•为栅极漏泄电流。
G
中
• 爆米花噪声(popcorn frequency)
•
半导体的表面若受到污染便会产生这种
噪声,其影响长达几毫秒至几秒,噪声产生的原
因仍然未明,在正常情况下,并无一定的模式。 • ):
生产半导体时若采用较为洁净的工艺,会有助减
少这类噪声。
•
•运算放大器噪声 •运放输入端等效(换算)噪声电压的计算:
in2 4kTGB
• 由于电阻受热影响,其起伏噪声电压的变化是不规则的, 其瞬时振幅和瞬时相位是随机的, 所以无法计算其瞬时值。只能 统计其平均值,一般用电压均方根值表示。为便于运算,把电 阻R看作一个噪声电压源(或电流源)和一个理想无噪声的电 阻串联(或并联),如图所示。
• 当实际电路中包含多个电阻时。每一个电阻都将引入 一个噪声源。一般若有多个电阻并联时,总噪声电流等 于各个电导所产生的噪声电流的均方值相加,若有多个 电阻串联时,总噪声电压等于各个电阻所产生的噪声电 压的均方值相加。
其功率谱密度为 SI 2qIO
•式中IO•为流过PN结的电流,q•为电子电荷量。
• பைடு நூலகம்于晶体三极管的发射结正偏,所以散粒噪声主要
决定于发射极工作电流 Ie •,其噪声电流的均方值
ie2n 2qIe为B
•散粒噪声(Shot Noise)
•对于场效应管来说:
• 散粒噪声是由栅极内的电荷不规则起伏所引起的噪 声。对结型场效应管来说,则由通过PN结的漏电流引起 的噪声电流均方值为
4kTG
• 在频带宽度B内产生的热噪声电压均方值和电流的均方 值分别为
n2 4kTRB in2 4kTGB
•以上各式中,k•为玻耳兹曼常数(Soltzmann Constant)
k •=1.38×1023 J K •;T •为热力学温度,单位 K •。
为 •因此,噪声电压或电流的有效值
为
n2 4kTRB
•例:电阻热噪声的计算 •结论:电阻越大、温度越高,电阻的热噪声越大。
•对于LC并联谐振电路,所产生的噪声电压均方值
为
n2 4kTReB
•式中,Re •为谐振电路的谐振电阻。
r •对图8.2.5(a)所示的电路来说,损耗电阻 •所产生的
•声电压均方值为n2r 4kTrB
噪
• 在回路谐振时,折算到
•三、电路板设计时应考虑的噪声种 类
•(二)辐射噪声
• 对PCB板子的预留调测点(测试点)也要在设计阶段加以考 虑,测试点的物理位置,测试点的隔离等因素不可忽略,因为有 些小信号和高频信号是不能直接把探头加上去进行测量的。 此外 还要考虑其他一些相关因素,如采用元器件的封装外形,板子的 机械强度等。在做PCB板子前,要做出对该设计的设计目标心中 有数。
•起伏电流流经电 R•时,电阻两端就会产生噪声电 n
阻
压
•和噪声功率。常 SV ( f )•表示噪声的电压功率谱密度,SI ( f ) 以 •表示噪声的电流功率谱密度。
• 理论和实践证明,当温度为T(K)时,阻值为R的电阻所 产生的噪声电压功率谱密度和噪声电流功率谱密度分别为
SI
(
f
)
4kT
1 R
• 设计人员经常遇到的情况:硬件部分设计出来以 后,却发现电路中的噪声太大,不得不进行重新设计 和布线。
• 电子电路的噪声问题更多地依赖于经验去解决, 而不是根据规范的方法和严格的科学计算。但是, 避免噪声还是存在一定的设计准则去遵循,并在电 路设计开始时,就应该认真考虑与噪声相关的问题。
•电子系统的噪声和干扰
•(1)电阻热噪声(Thermal Noise)
• 电阻中的带电微粒(自由电子)在一定温度下受到热激 发后,在导体内部作无规则的运动(热骚动)而相互碰撞,两 次碰撞之间行进时,就产生一持续时间很短的脉冲电流。许多 这样的随机热骚动的电子所产生的这种脉冲电流的组合,就在 电阻内部形成了无规律的电流。在一足够长的时间内,其电流 平均值等于零,而瞬时值就在平均值的上下变动,称为起伏电 流。温度越高, 运动越剧烈。只有当温度下降到绝对零度时, 运 动才会停止。自由电子这种热运动在导体内形成非常微弱的电 流, 起伏噪声电流流过电阻本身就会在其两端产生起伏噪声电 压。
• 闪烁噪声(1/f 噪声)
• 由于半导体晶体表面不断产生或整合载流子而 产生的噪声。闪烁噪声大多集中在低频范围,对电阻 器及半导体会造成干扰,而双极芯片所受的干扰比场 效应晶体管大。其功率频谱密度随频率降低而增大。 在高频工作时, 可以忽略闪烁噪声。
•散粒噪声(Shot Noise)
• 对于双极型晶体管,散粒噪声是主要噪声源。 • 它是由单位时间内通过PN结载流子数目的随机起 伏而造成的。这种噪声具有宽带的特性。 • 散粒噪声的大小与晶体管的静态工作点电流有关,
•一、研究噪声和干扰的必要性
• 噪声与干扰没有本质区别,习惯上从器件外部窜扰进来的,
称为外部噪声(干扰),从器件内部产生的, 称为内部噪声。
•PCB调试时频繁遇到噪声称为:
• 器件噪声、辐射噪声和传导噪声。 •干扰源:•自然干扰:天电干扰、宇宙干扰、大地干扰
•工业干扰:广播电视、无线基站、工业设备
•(EMI)
每个IC并接一个0.01~O.1μF的高频滤波电容
•消 除 传 导 噪 声
抑制干扰源常用的方法
(5) PCB板的正确布线
•减 少 辐 射 噪 声
抑制干扰源常用的方法
•减
(6)消除可控硅干扰的方法
少
辐
一般C1=0.01μ F、R1=100—
射
300Ω左右。
噪
声
切断干扰传播路径
按干扰传播路径 可分为传导干扰 和辐射干扰两类 (1)消除电源噪声 的方法
ab两端的电压均方值为
n2
2 nr
Q2
4kTrB
L
r
2
4kT
2L2
r
B
4kTRe B
•得到如图8.2.5(b)所示的等效电路。
• 注意:
•1、热噪声电压虽很小,但被多级放大后,特别是有用 信号很微弱的情况下,会淹没在噪声中而无法被处理。
•2、理想电抗元件是不会产生噪声的, 但实际电抗元件 • 是有损耗电阻的, 这些损耗电阻会产生噪声。对于 • 实际电感的损耗电阻一般不能忽略, 而对于实际电 • 容的损耗电阻一般可以忽略。
切断干扰传播路径
(2)与噪声源隔离的方法
L1=1.3μH左右(为磁珠电感器)。也可用1OOΩ左
右的电阻代替。C1=C2=1000pF左右
•切
断
噪
声
传
递
路
径
切断干扰传播路径
(3)晶振的正确安装
•切 断 辐 射 噪 声 传 递 路 径
切断干扰传播路径
(4)设计PCB板时分区要合理,如强、弱信号,高(频)、
•电子电路的噪声和干扰
•一、研究噪声和干扰的必要性
• 电子系统或电子设备性能很大程度上与噪声和 干扰有关,电子电路处理电信号的灵敏度与噪声有 关。噪声对有用信号的处理产生了干扰, 特别是当 有用信号较弱时, 噪声的影响就更为突出, 严重时 会使信号淹没在噪声之中而无法处理。
•电子系统的噪声和干扰
•一、研究噪声和干扰的必要性
• 随着信号频率的提高,PCB上相邻信号线间的串扰将成正比 地增加,并且信号线上的反射将会相应增加。如果频率更高一些, 对布线的长度就有更严格的限制,根据分布参数的网络理论,高 速电路与其连线间的相互作用是决定性因素,在系统设计时不能 忽略。
•三、电路板设计时应考虑的噪声种 类
•(二)辐射噪声
• 通常高速电路的功耗和热耗散也都很大,在做高速PCB时应 引起足够的重视。 当板上有毫伏级甚至微伏级的微弱信号时,对 这些信号线就需要特别的关照,小信号由于太微弱,非常容易受 到其它强信号的干扰,屏蔽措施常常是必要的,否则将大大降低 信噪比。以致于有用信号被噪声淹没,不能有效地提取出来。
•放大器的噪声系数Nf(Noise Figure)定义:
•输入信噪比与输出信噪比的比值, 即:
N f
S / N i Psi / pni S / N o Ps0 / pn0
•用分贝数表示:
N f
10lg
psi /pni pso /pno
dB
N f
S / N i Psi / pni pn0 pn0 S / N o Ps0 / pn0 pni AP pnO1