用数学归纳法证明不等式
数学归纳法证明不等式

例4、已知x> 1,且x0,nN,n2. 求证:(1+x)n>1+nx.
证明: (1)当n=2时,左=(1+x)2=1+2x+x2
∵ x0,∴ 1+2x+x2>1+2x=右
∴n=1时不等式成立 (2)假设n=k时,不等式成立,即 (1+x)k>1+kx 当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. 因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x. 这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 2° 假设 n=k 时命题成立,即 1+ 2+ 2+„+ 2<2- 2 3 k k 1 1 1 1 当 n=k+1 时,1+22+32+„+k2+ 2< (k+1) 1 1 1 1 1 1 1 2- + <2- + =2- + - k (k+1)2 k k(k+1) k k k+1 1 =2- 命题成立. k+1 由 1° 、2° 知原不等式在 n≥2 时均成立.
2.数学归纳法适用范围,主要用于研究与正整数有关 的数学问题。 3. 数学归纳法的关键与难点: 在 “归纳递推 ” 中 , “证明当 n =k+1 时 命题也成立 ”, 必须利用归纳假设 :“当 n= k (k ≥n 0, k ∈ N *时命题成立 ” 否则便不是 , 数学归纳法。
如何通过数学归纳法证明不等式

如何通过数学归纳法证明不等式数学归纳法是一种证明数学命题的常用方法,其基本思想是利用已知的某些命题推出新的命题。
在数学证明中,常常使用归纳法来证明一些不等式,这种方法既简单又直观,下面我们来探讨如何通过数学归纳法证明不等式。
一、归纳法的基本思想首先,我们来了解一下归纳法的基本思想。
设P(n)是一个依赖于自然数n的命题,则通过归纳法证明P(n)对于所有自然数n成立的一般方法为:1.证明当n=1时P(1)成立;2.假设当n=k时P(k)成立,即前提条件为P(k)成立;3.证明当n=k+1时P(k+1)成立,即由前提条件P(k)可以导出P(k+1)。
这就是数学归纳法的基本思想。
二、通过数学归纳法证明不等式接下来我们探讨如何通过数学归纳法证明不等式。
对于一些不等式,我们可以通过归纳法来证明它们的成立性。
1. 首先,我们需要确定适用于归纳法的不等式类型。
一般来说,递推式、等差数列、等比数列等都是适用于归纳法的不等式类型。
2. 其次,我们需要证明当n=1时不等式成立。
通常情况下,我们可以通过代数化简或数值计算的方法证明不等式在n=1时成立。
3. 第三步是归纳假设。
假设当n=k时不等式成立,即前提条件为不等式在n=k时成立。
4. 第四步是证明当n=k+1时不等式成立。
通过推导得出不等式在n=k+1时成立。
5. 最后需要证明这个不等式在所有自然数下成立。
通常情况下,我们可以通过归纳证明法的反证法来证明,如果该不等式在某个自然数下不成立,那么其前面的所有自然数也不成立,即矛盾。
因此,该不等式在所有自然数下成立。
比如,对于一个递推式an=a(n-1)+n,我们可以通过数学归纳法证明其大于等于n(n+1)/2。
具体证明如下:当n=1时,an=1,n(n+1)/2=1,因此不等式在n=1时成立。
假设当n=k时,an大于等于k(k+1)/2成立。
当n=k+1时,an=a(k+1-1)+(k+1)=ak+k+1。
根据归纳假设,ak 大于等于k(k+1)/2,于是k+ak大于等于k(k+1)/2+k+1=(k+1)(k+2)/2,因此,an大于等于(k+1)(k+2)/2。
用数学归纳法证明不等式举例

用数学归纳法证明不等式举例使用数学归纳法证明不等式是一种常用的方法,它可以帮助我们证明一类问题的正确性。
在这篇文章中,我们将使用数学归纳法证明一个特定的不等式,并且详细解释这个过程。
这个不等式是一个经典的例子,在不等式理论中非常有用,它的证明将展示使用数学归纳法的步骤和思路。
要证明的不等式为:对于任意正整数n,有1+2+3+...+n≤n²/2我们将使用数学归纳法证明这个不等式。
数学归纳法分为两个步骤:基础步骤和归纳步骤。
一、基础步骤:首先,我们需要验证对于n=1时,不等式是否成立。
即:1≤1²/2通过计算可知,1≤1/2,显然成立。
因此,基础步骤得证。
二、归纳步骤:我们假设对于任意的k(k≥1)都有:1+2+3+...+k≤k²/2我们需要证明当n=k+1时,也就是将k+1代入不等式中,不等式仍然成立。
即:1+2+3+...+k+(k+1)≤(k+1)²/2接下来,我们将左右两边进行推导。
我们已经假设对于任意k都有不等式成立,所以可以得到:1+2+3+...+k≤k²/2我们可以将左右两边分别加上(k+1),得到:1+2+3+...+k+(k+1)≤k²/2+(k+1)接下来,我们需要对右侧进行变换,目的是能够使用归纳假设。
我们注意到,k²/2+(k+1)=(k²+2(k+1))/2=(k²+2k+2)/2我们知道(k+1)²=k²+2k+1,所以(k+1)²/2=(k²+2k+1)/2我们可以将这个等式代入之前的不等式:1+2+3+...+k+(k+1)≤(k²+2k+1)/2对于右边的分数1+2+3+...+k+(k+1)≤(k²+2k+1)/2=(k²+2k)/2+1/2由于我们已经假设1+2+3+...+k≤k²/2,所以可以用k²/2替换分子中的1+2+3+...+k:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1/2+1/2我们可以对右边的不等式相加得到:1+2+3+...+k+(k+1)≤(k²+2k)/2+1/2≤k²/2+1我们将右侧简化得到(k²+2k)/2+1/2=(k²+2k+1)/2,因为1/2可以写成1/2的分数。
数学归纳法证明不等式

数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。
在这里,我们将使用数学归纳法来证明一个不等式。
不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。
在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。
首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。
当$n=1$时,不等式变为$2^1>1^2$,显然成立。
其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。
也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
根据我们的假设,我们知道$2^k>k^2$。
将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。
由于$k$是一个正整数,所以$k^2>k$。
将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。
也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。
通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。
根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。
综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。
4.2 用数学归纳法证明不等式 课件(人教A选修4-5)

考查学生推理论证的能力.
[解]
(1)用数学归纳法证明:2≤xn<xn+1<3.
①当 n=1 时,x1=2,直线 PQ1 的方程为 f2-5 y-5= (x-4), 2-4 11 令 y=0,解得 x2= ,所以 2≤x1<x2<3. 4 ②假设当 n=k 时,结论成立,即 2≤xk<xk+1<3. 直线 PQk+1 的方程为 fxk+1-5 y-5= (x-4), xk+1-4 3+4xk+1 令 y=0,解得 xk+2= . 2+xk+1
则当 n=k+1 时,有 1 1 1 1 1 + +„+ + + + k+1+1 k+1+2 3k+1 3k+2 3k+3 1 3k+1+1 1 1 1 1 1 1 =( + +„+ )+( + + - k+1 k+2 3k+1 3k+2 3k+3 3k+4 1 25 1 1 2 )> +[ + - ]. k+1 24 3k+2 3k+4 3k+1 6k+1 1 1 2 ∵ + = 2 > , 3k+2 3k+4 9k +18k+8 3k+1
lg3 lg3 =k(k+1)· +2(k+1)· 4 4 1 k+1 >lg(1· 3· k)+ lg3 2· „· 2 1 >lg(1· 3· k)+ lg(k+1)2 2· „· 2 =lg[1· 3· k· 2· …· (k+1)].命题成立. 由上可知,对一切正整数 n,命题成立.
本课时考点常与数列问题相结合以解答题的形式考 查数学归纳法的应用.2012年全国卷将数列、数学归纳法 与直线方程相结合考查,是高考模拟命题的一个新亮点.
(1)当n=1时,由f(x)为增函数,且f(1)<1,得
a1=f(b1)=f(1)<1, b2=f(a1)<f(1)<1, a2=f(b2)<f(1)=a1, 即a2<a1,结论成立. (2)假设n=k时结论成立,即ak+1<ak. 由f(x)为增函数,得f(ak+1)<f(ak)即bk+2<bk+1,
数学归纳法证明不等式

数学归纳法证明不等式归纳法由有限多个个别的特殊事例得出一般结论的推理方法。
那怎么用归纳法来证明不等式呢? 接下来店铺为你整理了数学归纳法证明不等式,一起来看看吧。
数学归纳法证明不等式的基本知识数学归纳法的基本原理、步骤和使用范围(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。
在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。
数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的例如一个数列的通项公式是an=(n2-5n+5)2容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何n∈N+, an=(n2-5n+5)2=1都成立,那是错误的.事实上,a5=25≠1.因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。
形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:①1是一个自然数;②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;③a’≠1,即1不是任何自然数的“直接后续”数;④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.其中第5条公理又叫做归纳公理,它是数学归纳法的依据.(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.例如用数学归纳法证明(1+1)n(n∈N+)的单调性就难以实现.一般来说,n从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.数学归纳法证明不等式例题。
数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。
它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。
下面将介绍两种常用的数学归纳法证明不等式的技巧。
技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。
例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。
基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。
技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。
然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。
例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。
根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。
根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。
综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。
这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。
用数学归纳法证明不等式举例

第17页/共39页
【自主解答】 当n=1时,1+1 1+1+1 2+3×11+1>2a4, 则2264>2a4, ∴a<26. 又a∈N*, ∴取a=25.
第18页/共39页
下面用数学归纳法证明n+1 1+n+1 2+…+3n1+1>2254.
(1)n=1时,已证.
(2)假设当n=k时(k≥1,k∈N*),
(1)当n=2时,S22=1+
1 2
+
1 3
+
1 4
=
25 12
>1+
22,
即n=2时命题成立.
(2)假设n=k(k≥2,k∈N*)时命题成立,即S2k=1+
1 2
+
1 3
+…+21k>1+2k.
第5页/共39页
当n=k+1时, S2k+1=1+12+13+…+21k+2k+1 1+…+2k1+1 >1+2k+2k+1 1+2k+1 2+…+2k1+1 >1+2k+2k+2k 2k=1+2k+12=1+k+2 1. 故当n=k+1时,命题也成立. 由(1)、(2)知,对n∈N*,n≥2,S2n>1+n2都成立.
不等式1<an<1-1 a成立.
第15页/共39页
(2)假设n=k(k≥1 ,k∈N*)时,命题成立,即1<ak<1-1 a. 当n=k+1时,由递推公知,知 ak+1=a1k+a>(1-a)+a=1, 同时,ak+1=a1k+a<1+a=11--aa2<1-1 a, 因此当n=k+1时,1<ak+1<1-1 a,命题也成立. 综合(1)、(2)可知,对一切正整数n,有1<an<1-1 a.
1.贝努利(Bernoulli)不等式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版选修4—5不等式选讲
课题:用数学归纳法证明不等式
教学目标:
1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。
2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。
3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。
重点、难点:
1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。
2、应用数学归纳法证明的不同方法的选择和解题技巧。
教学过程:
一、复习导入:
1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤?
(1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。
(2)步骤:1)归纳奠基;
2)归纳递推。
2、作业讲评:(出示小黑板)
习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1)
如采用下面的证法,对吗?
证明:①当n=1时,左边=2=右边,则等式成立。
②假设n=k时,(k∈N,k≥1)等式成立,
即2+4+6+8+……+2k=k(k+1)
当n=k+1时,
2+4+6+8+……+2k+2(k+1)
∴ n=k+1时,等式成立。
由①②可知,对于任意自然数n,原等式都成立。
(1)学生思考讨论。
(2)师生总结:1)不正确
2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。
二、新知探究
明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。
(出示小黑板)
例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。
{a n=n2}:1,4,9,16,25,36,49,64,81, ……
{b n=2n}:2,4,8,16,32,64,128,256,512,……
(1)学生观察思考
(2)师生分析
(3)解:从第5项起,a n< b n,即 n²<2n,n∈N+(n≥5)
证明:(1)当 n=5时,有52<25,命题成立。
即k2<2k
当n=k+1时,因为
(k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1
所以,(k+1)2<2k+1
即n=k+1时,命题成立。
由(1)(2)可知n²<2n(n∈N+,n≥5)
学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2
②归纳假设:2k2<2×2k
例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+)
分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。
证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。
(2)假设当n=k(k≥1)时命题成立,
即有│Sin kθ│≤k│Sinθ│
当n=k+1时,
│Sin (k +1)θ│=│Sin k θCos θ+Cos k θSin θ│ ≤│Sin k θCos θ│+│Cos k θSin θ│ =│Sin k θ││Cos θ│+│Cos k θ││Sin θ│ ≤│Sin k θ│+│Sin θ│ ≤k │Sin θ│+│Sin θ│ =(k +1)│Sin θ│
所以当n=k+1时,不等式也成立。
由(1)(2)可知,不等式对一切正整数n 均成立。
学生思考、小组讨论:①绝对值不等式: │a+b │≤ │a │+│b │
②三角函数的有界性:│Sin θ│≤1,│Cos θ│≤1 ③三角函数的两角和公式。
(板书)例3 证明贝努力(Bernoulli )不等式:
如果x 是实数且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n
>1+nx 分析:①贝努力不等式中涉几个字母?(两个:x,n )
②哪个字母与自然数有关? (n 是大于1的自然是数)
(板书)证:(1)当n=2时,左边=(1+x )2
=1+2x+x 2
,右边=1+2x ,因x 2
>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x 2
>0是由已知条件x ≠0获得,为下面证明做铺垫)
(2)假设n=k 时(k ≥2),不等式成立,即(1+x )k >1+kx . 师:现在要证的目标是(1+x )k+1
>1+(k+1)x ,请同学考虑.
生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当
n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x )k+1=(1+x )k
(1+x ),因为x >
-1(已知),所以1+x >0于是(1+x )k
(1+x )>(1+kx )(1+x ).
师:现将命题转化成如何证明不等式 (1+kx )(1+x )≥1+(k+1)x . 显然,上式中“=”不成立.
故只需证:(1+kx)(1+x)>1+(k+1)x.
提问:证明不等式的基本方法有哪些?
生:证明不等式的基本方法有比较法、综合法、分析法.
(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)
生:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.
(1+kx)(1+x)-[1+(k+1)x]
=1+x+kx+kx2-1-kx-x
=kx2>0(因x≠0,则x2>0).
所以,(1+kx)(1+x)>1+(k+1)x.
生:也可采用综合法的放缩技巧.
(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.
因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x 成立.
生:……
(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)
师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生用放缩技巧证明显然更简便,利于书写.
(板书)将例3的格式完整规范.
证明:(1)当n=2时,由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。
(2)假设n=k(k≥2)时,不等式成立,
即有(1+x)k>1+kx
当n=k+1时,
(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)
=1+x+kx+ k x2>1+x+kx=1+(k+1)x
所以当n=k+1时,不等式成立
由①②可知,贝努力不等式成立。
(通过例题的讲解,在第二步证明过程中,通常要进行合理放缩,以达到转化目的)
三、课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.
四、课后作业
1.课本P53:1,3,5
2.证明不等式:。