几种新型制冷技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈几种新型制冷技术

专业:过程装备与控制工程

姓名:***

学号:********

浅谈几种新型制冷技术

引言:

20世纪初,人们谈论的话题只是能源,而21世纪初,人们谈论的话题则是能源危机。这说明在当今这个高速发展的社会,能源已经成为支撑国家经济发展的基础和核心问题。2010年,我国一次能源消费总量超过32亿吨标准煤,能源消费总量已经占世界总量的20%,能源消费总量已经超过美国,但经济总量仅为美国的三分之一左右。其中,我国的石油对外依存度已经超过55%,天然气也已经超过16%是进口,昨日的煤炭大国在2010年也已经是变成了净进口国。近年来,由于传统的制冷空调设备对氟利昂类制冷剂的大量使用,以及对电能的大量消耗成为导致当前环境与能源问题的重要因素。随着我国能源结构的调整,太阳能、地热能、生物质能等可再生能源的应用比例不断提高。因此,研制和发展对臭氧层无损耗、无温室效应而且可以利用低品位能源作为动力的节能环保型的制冷技术是制冷领域研究的重要课题。

一、太阳能制冷

1、背景:

人类进入21世纪以来,电力、煤炭、石油等不可再生能源频频告急,据美国石油业协会估计,地球上尚未开采的原油储藏量已不足两万亿桶,可供人类开采时间不超过95年。在2050年到来之前,世界经济的发展将越来越多地依赖煤炭。其后在2250到2500年之间,煤炭也将消耗殆尽,矿物燃料供应枯竭。

同时化石燃料燃烧后造成的排放污染问题日益凸显,能源问题日益成为制约国际社会发展的瓶颈。太阳能既是一次能源,有是可再生能源,可免费使用,又无需运输,对环境也没有污染,具有无可避免的自然优势。同时,我国幅员辽阔,有着十分丰富的太阳能资源,有2/3以上的地区日照大于2000小时,太阳能资源的理论储量大每年7000亿吨标准煤[1]。

2、原理:

主要有吸收式、吸附式、冷管式、除湿式、喷射式和光伏等制冷类型[2-3]

(1) 太阳能吸收式制冷:用太阳能集热器收集太阳能来驱动吸收式制冷系统,利用储存液态冷剂的相变潜热来储存能量,利用其在低压低温下气化而制冷,目前为止示范应用最多的太阳能空调方式。多为溴化锂—水系统,也有的采用氨—水系统。

(2) 太阳能吸附式制冷:将收式制冷相结合的一种蒸发制冷,以太阳能为热源,采用的工质对通常为活性碳—甲醇、分子筛—水、硅胶—水及氯化钙一氨等,可利用太阳能集热器将吸附床加热后用于脱附制冷剂,通过加热脱附——冷凝——吸附——蒸发等几个环节实现制冷。

(3) 太阳能除湿空调系统:是一种开放循环的吸附式制冷系统。基本特征是干燥剂除湿和蒸发冷却,也是一种适合于利用太阳能的空调系统。

(4) 太阳能喷射式制冷:通过太阳能集热器加热使低沸点工质变为高压蒸汽,通过喷管时因流出速度高、压力低,在吸入室周围吸引蒸发器内生成的低压蒸汽进入混合室,同时制冷剂任蒸发器中汽化而达到制冷效果。

(5)太阳能冷管制冷:这是一种间歇式制冷,主要结构是由太阳能冷管、集热箱、制冷箱、蓄冷器和冷却水回路等组成,是一种特殊的吸附式制冷系统

(6)太阳能半导体制冷:该系统由太阳能光电转换器(太阳能电池)、数控匹配器、储能设备(蓄电池)和半导体制冷装置四部分组成。太阳能光电转换器输出直流电,一部分直接供给半导体制冷装置进行制冷运行,另一部分则进入储能设备储存,以供阴天或晚上使用,保证系统可以全天候正常运行。[2-3]

3、优点:

热源温度要求低,可以在比较大的热源温度波动范围内工作;活动部件少;对环境无害,环保。吸附式制冷不需氯氟氢类物质,因而对环境不会产生破坏,同时可以节能。

4、应用与发展:

目前,我国的建筑能耗占社会总能耗25%以上,而在建筑能耗中,空调能耗占到50%以上,并且建筑物空调的需求量呈逐年上升趋势,给能源、电力和环境带来很大的压力,在这种情况下,推广和发展太阳能空调系统可以节约大量的一次能源并减少能源转换污染物的排放,符合可持续发展战略的要求。利用太阳能光热转换获取热量驱动空调制冷机组,具有良好的季节适应性,太阳辐射越强,系统制冷量越大,与建筑空调负荷变化一致。随着太阳能集热技术的不断发展和常规能源价格的持续上涨,太阳能空调系统的投资将越来越低,系统的性能将越来越好,运行经济性和环保效益将更加突出,将会有更多的行业在空调制冷系统中推广利用的太阳能这一取之不尽的免费清洁能源。

[4]

二、余热制冷:

1、背景:

工业余热资源普遍存在,特别在石油化工、钢铁焦化、合成氨、聚酯化纤,、橡胶和多晶硅等行业的生产过程中,都存在丰富的余热资源,但是我国工业余热资源回收率仅33.5%。工业领域中消耗的大量的能量,最终以低温热水的方式排放掉,造成了很大的浪费。同时,汽车行业每年消耗大量的化石燃料,2011年全球汽车总产量高达80,064,168辆。汽车发动机的实用效率一般为35%-40%左右,约占燃料发热量一半以上的能量被发动机赶套循环冷却水及尾气带走。所带走的热量约占发动机燃料发热量的30%,发动机尾气温度约在450°C以上,可利用的尾气余热最低温度约为180°C,相应的可利用热量约占燃料发热量的20%以上。[5]

2、原理:

工业余热制冷一般采用吸收式制冷原理,其原理如下图所示:

汽车预热制冷技术有喷射式,吸收式,混合式等方式。

吸收式制冷技术:余热驱动吸收式制冷装置以溴化锂水溶液为工质,各换热器独立安装于车厢底板下且位于同一平面内,利用特殊设计的连接管道连接形成密闭回路,合理利用车上的有限空间,解决现有汽车发动机余热驱动吸收式制冷设备因体积和重量过于庞大而无法应用于车辆上的问题。

喷射式制冷:由蒸汽喷射器、蒸发器和冷凝器(即凝汽器)等设备组成,依靠蒸汽喷射器的抽吸作用在蒸发器中保持一定的真空,使水在其中蒸发而制冷

3、发展和应用:

韩国忠北大学提出的高低温双热电发生装置的余热回收系统,可提高燃油经济性10% 以上。试验证明在室温30 o C 的环境下,4 cm×4 cm Bi2Te3 热电模块高温端在100 o C ~ 200 o C 时,能产生6.7 V/3.39 A;1.44 ~ 5.68 W 的电能。在改善燃油经济性和混合动力汽车的研究方面发挥了巨大的潜力。

Ford 汽车公司利用发动机废气余热发电技术设计了暖通空调系统(HVAC)来改善轻型车的舒适性,提高了能源的利用效率。该系统的能源利用系数设定在制冷系统cop>1.3,热泵系统cop>2.3,并且优化了热点转化材料的转换优值ZT,提高了热点转换效率。[6]

三、磁制冷

1、背景:

磁制冷技术可以克服传统的压缩制冷技术的缺点,是一种热效率高、对环境无污染、绿色环保的制冷技术。首先,磁制冷技术与传统的压缩制冷技术的制冷原理不同:磁制冷技术是依靠磁性材料的磁热效应,通过磁化和去磁过程的反复循环而达到制冷目的的。而传统的压缩制冷技术是通过气体压缩和膨胀而实现制冷目的的。第二,磁制冷技术与传统的压缩制冷技术的制冷工质不同:磁制冷技术的制冷工质是固体,这就从根本上避免了使用有毒的、消耗臭氧层以及能产生温室效应的气体的排出。

2、基本原理:

磁制冷(又称磁卡效应,M agneto-CaloricEffect)即利用磁热效应制冷。磁制冷工质在等温磁化时向外界放出热量,而绝热去磁时从外界吸收热量。对与铁磁性材料,磁热效应在其居里温度(磁有序 - 无序转变的温度)附近最为显制冷特点:著,当作用有外磁场时,该材料的磁熵值降低并放热;反之当去除外磁场时,材料的磁熵值升高并吸热[7-8]

3、制冷特点:

采用磁性物质作为制冷工质,也不导致温室效应。其运动部件少,减小了机械振动和噪声,可靠性高,效率高(能达到卡诺循环的 30%~60%)。其应用范围广,从μK、m K 直到室温以上均适用;在低温(制取液氮、液氦、液氢)领域和高温(特别是近室温)领域都有广泛应用前景[9] 3、研究现状:

2001年美国宇航公司(Astronautics Cooperation of America)联合Ames实验室开发成功了采用永磁体提供磁场的回转式磁制冷机,成为第一台室温磁制冷的制冷机。当前,低温区(20 K 以下)磁制冷的研究已比较成熟并实用化。高温区磁制冷还处于试验研究开发阶段,目前 80 K 至室温的磁制冷技术是研究的热点。研究出低成本且具有巨磁卡效应的材料以及利用 NdFeB 等永磁体产生外场(不用结构复杂而昂贵的超导磁体)是室温磁制冷关键。面临的主要困难:①每次磁制冷循环所产生的温差还不够大,只有 1~3 K,磁性材料磁熵太小;②热交换速度不够快,使制冷周期延长,整个循环效率下降;③室温条件下,不利用超导技术,仍利用电磁铁或稀土永磁材料产生磁场,则两磁极面总存在空气隙,进入磁场的磁制冷材料有限,这要求有绝热效果好的隔热层。

4、应用前景:

磁制冷技术由于其节能环保的特点成为一项极具开发潜力的高新制冷技术,有着十分广阔应用前景,有望取代传统的压缩制冷方式,用于家用、商业、工业生产、汽车空调、超级市场、医疗卫生事业及其他用途的制冷装置,因而磁制冷技术有着广泛的经济效益及社会效益。磁制冷技术要真正得

相关文档
最新文档