《一次函数的概念》
一次函数的概念__说课稿_

12.2
一次函数(1)
一、一次函数的定义 二、正比例函数的图象和性质
在教学过程中力求不断调动学生的 认知需求和探索心理,通过生生“对 话”,生师“对话”,“做数学,议 数学”,让学生参与知识的发生、发 现和运用的全过程,在宽松的学习环 境中展示自己,建立自信,体验发现 的乐趣,感受数学思想。
重点
教材分析 学情分析 教学目标分析 教学重难点
正比例函数的图象和性质
难点
由正比例函数的图象探究出 正比例函数的性质
教法学法
教学过程
教材分析 学情分析 教学目标分析 教学重难点
教法学法
教学过程
教学过程
教材分析
学情分析 课外作业,深化新知 师生互动,小结新知
教学目标分析
巩固练习,强化新知 教学重难点 教法学法 合作交流,探究新知 创设情境,引入新知
当k<0时,图象在二、四象限,y随x的增大而减小。
随堂练习
1.函数y=4x的图象经过点(0,__)与点(1,__), 图象经过第____象限,y随x的增大而____. 2.函数y=-2x的图象经过点(0,__)与点 (1,__),图象经过第____象限,y随x的增大而 ____. 3.正比例函数y=(m-1)x的图象经过一.三象 限,则m的取值范围是 ____ . 4.已知 和 是直线y=-3x上的两 (x1, y1) (x2 , y2) 设 计 意 图 y x x y 点,且此部分属于当堂达标作业题,注重培养学生的发散思 1 2 ,则 1 与 2 的大小关系为____.
(1)y=x-4 (3)y=2πx (2)y=5x2+6
(4 ) y
8 x
混在一起,先让学生观察式子,对以上式子进行分类, 引导学生发现一次函数自变量次数的规律,进一步总结 出一次函数的概念.
一次函数-一次函数的概念、图像、与基本性质(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
关于学生小组讨论部分,我发现学生们在讨论一次函数在实际生活中的应用时,能够提出一些有创意的想法。但在分享成果时,部分学生的表达能力仍有待提高。为了提高学生的表达能力,我计划在今后的课堂中增加一些口语表达训练,如小组代表发言、角色扮演等。
最后,在总结回顾环节,学生对一次函数的知识点有了更深刻的理解。但在课后反馈中,仍有部分学生表示对某些知识点存在疑问。针对这个问题,我将在课后加强个别辅导,关注学生的掌握情况,并及时解答他们的疑问。
(4)空间想象能力的培养:对于一次函数图像的想象和绘制,学生可能缺乏空间想象力。
突破方法:借助教学软件、实物模型等辅助工具,帮助学生建立一次函数图像的空间概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数的概念、图像与基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人一起跑步,一个人跑得快,一个人跑得慢,他们的距离是如何变化的?”这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、图像和基本性质。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第10讲 一次函数

2.(2019 临沂)下列关于一次函数 y=kx+b(k<0,b>0)的说法,错误的是( D ) (A)图象经过第一、二、四象限 (B)y 随 x 的增大而减小 (C)图象与 y 轴交于点(0,b)
性质
y 随 x 的 增 大 而 y随x的增大而 y随x的增大而 y随x的增大而
增大 .
增大 .
减小 .
减小 .
3.一次函数图象的平移 一次函数y=kx+b的图象可以看作是由直线y=kx向上(下)平移 |b| 个单 位长度而得到的.当b>0时,将直线y=kx向上平移|b|个单位长度;当b<0时,将 直线y=kx向下平移|b|个单位长度.
x>0, x<
3,
∴无解;
kx<x 0,b>0,即
x<0, x>
3,
∴解集为-3<x<0,
∴不等式 x(kx+b)<0 的解集为-3<x<0.
6.(2018上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路 程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数解析式;
解:(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150 千米. ∴当 0≤x≤150 时,1 千瓦时的电量汽车能行驶的路程为 150 =6 千米.
60 35
(2)当150≤x≤200时,求y关于x的函数解析式,并计算当汽车已行驶180千 米时,蓄电池的剩余电量.
一次函数概念

微课程1:函数及相关概念【考点精讲】考点定义剖析常量和变量在某一个变化过程中,数值保持不变的量叫做常量;数值发生变化的量叫做变量。
①关键是看它们在变化过程中数值有没有改变;②常量和变量都是从变化过程中区分出来的,而不是单独判断的。
函数一般地,在一个变化的过程中,如果有两个变量x和y,并且对于变量x的每一个确定的值,变量y都有唯一的值与它对应,那么我们称y是x的函数。
其中x是自变量,y是因变量。
①变化过程中;②两个变量;③一个变量随另一个变量的变化而变化;④对于自变量x的每一个确定的值,函数y都有唯一的值与它对应(但有可能有多个不同的自变量数值对应一个函数值)。
函数的表示方法表格、图形、数学式子①不是任何变化过程都能用数学式子表示;②表格的优点是准确、直观;图像的优点是直观、形象;解析法的优点是全面、准确;③由数学式子可以列出表格画出函数的图象。
函数关系式表示两个变量之间关系的式子,通常称为函数关系式。
用数学式子表示变量之间的函数关系时,要抓住问题中所隐含的数量关系。
函数的图象在平面直角坐标系中,如果描出以自变量的值为横坐标、相应的函数值为纵坐标的点,那么所有这样的点组成的图形叫做这个函数的图象。
作函数的图象必须要正确地描点,画图时要注意有的图形具有无限性,如直线不能画成线段。
自变量与函数值在一个变化过程中,自变量的取值通常有一定的范围。
给定自变量的一个值,就可以求出对应的函数值。
自变量的取值必须考虑两点:①使函数关系式成立,如y=2x ,x必须大于等于2;②使实际问题有意义,如时间、距离、重量等应为非负数,人、物的个数应为正整数。
【典例精析】例题1 (衡阳中考)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为t,正方形除去圆部分的面积为S (阴影部分),则S与t的大致图象为()A B C D例题2 某种报纸的单价为b 元,x 表示购买的这种报纸的份数,请写出购买报纸的总价y 与x 的关系,并指出其中的常量与自变量。
一次函数的概念

一次函数的概念一次函数是一类在数学中常见的函数形式,其定义可以被表达为f(x) = ax + b的形式,其中a和b是常数,且a不等于零。
一次函数也被称为线性函数或一次多项式。
一次函数的图像是一条直线,因此其特点包括斜率和截距。
斜率a 决定了直线的倾斜程度,其值为正时直线上升,为负时直线下降,而斜率为零则表示水平直线。
截距b表示直线与y轴的交点,即当x等于零时,函数的值为b。
同时,斜率通过其大小可以判断函数在x轴方向上的变化速率。
一次函数可以用来描述许多实际问题,比如直线运动、成本与收入关系等。
在直线运动中,位置与时间的关系可以由一次函数表示。
假设一个物体在时刻t=0时的位置为x=0,以恒定速度v运动,则可以用一次函数x(t) = vt来描述其位置与时间的关系。
在这个例子中,斜率v 表示物体在单位时间内移动的距离,截距0表示起始位置。
在经济学中,成本与收入之间的关系通常可以用一次函数来描述。
假设销售产品的成本是每个单位产品的固定成本加上每个单位的变动成本,且每个单位产品的售价是固定的。
则成本C和销售数量x之间的关系可以用一次函数表示为C(x) = a + bx,其中a代表固定成本,b 代表每个单位产品的变动成本。
这个函数告诉我们在不同销售数量下的总成本是多少。
一次函数也可以通过图像来帮助理解。
当斜率不等于零时,直线的斜率决定了直线的倾斜程度。
斜率越大,直线越陡峭;斜率越小,直线越平缓。
同时,直线与y轴的交点称为截距,它决定了直线在y轴上的位置。
不同的斜率和截距组合形成了一次函数的不同图像,帮助我们直观地理解函数的特性。
总结起来,一次函数是一种常见的数学模型,用来描述直线关系。
它的定义形式为f(x) = ax + b,并具有斜率和截距两个重要特征。
一次函数在实际问题中具有广泛的应用,能够帮助我们理解和解决各种与直线关系相关的情况。
通过对一次函数的研究和应用,我们可以更好地理解数学与现实世界的联系。
19.2.2 一次函数的概念 课件(共23张PPT)

(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
一次函数的概念

一次函数的概念教材分析本节课是义务教育课程标准实验教材人教版数学八年级上册14.2.2 一次函数。
它是在认识了函数、函数的图象和正比例函数的基础上进行的,一次函数是最基本、最简单的函数,本节课主要学习一次函数的概念。
本节内容既是前面知识的深化和应用,又为今后学习反比例函数、二次函数的概念,提供了一般思路和方法。
因此本节课具有承上启下的重要作用,在函数的学习中起到非常重要作用。
本节课以教课书中的问题和大量的实例为背景,引出一次函数的概念。
一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。
本质是自变量x的k(常数)倍与一个常数的和的函数。
因此本节课的教学重点是一次函数的概念及其应用。
学情分析学生在函数这一章的前四节课对函数有了初步的认识并且还学习了正比例函数。
对一种函数的学习已经有了初步的认知,对本节一次函数概念的学习可以比照正比例函数概念的学习方法,但是,学生刚刚开始接触函数的学习,还是会觉得抽象,所以概括一次函数的概念比较困难,无从下口。
教学目标1、知识与技能①让学生经历对具体情境的探究过程,通过举出生活实例观察、比较、探索、归纳得出一次函数概念。
②理解一次函数与正比例函数的联系和区别。
③培养学生独立思考与合作交流的能力。
初步发展他们抽象思维能力和发展他们的数学应用能力2、过程与方法:①能根据实际条件,分清两个变量间的关系,列出一次函数解析式。
②能在探索一次函数活动中发现并提出数学问题,初步体会在解决问题的过程中与他人合作、交流的重要性。
通过类比的方法学习一次函数,体会数学研究方法多样性,利用数形结合思想进一步分析一次函数与正比例函数的联系。
3、情感与态度目标:①体验函数与人类生活的密切联系,增强对函数学习的求知。
,②体验数学充满着探索性和创造性,从而培养学生对学习数学的兴趣。
教学重点和难点教学重点: 一次函数的概念及与正比例函数两者之间的关系。
会根据已知信息写出一次函数的表达式。
一次函数的概念教案

一次函数的概念教案一、教学目标1.了解一次函数的概念和特点。
2.理解函数的自变量和因变量的概念。
3.熟悉一次函数的解析式和函数图像的基本形状。
4.掌握一次函数的求解方法。
二、教学重点1.一次函数的概念和特点。
2.一次函数的解析式和函数图像的基本形状。
三、教学难点1.一次函数的解析式与函数坐标的对应。
2.函数图像与函数性质的联系。
四、教学过程(一)引入老师可以发一组数据给学生,例如:| X | Y ||---|---|| 1 | 2 || 2 | 4 || 3 | 6 || 4 | 8 || 5 | 10 |然后,老师可以问学生:“你们看到这组数据有什么关系呢?”学生可能会回答:“每一次X增加1,Y增加2。
”老师继续问:“这种关系叫什么呢?”学生可能不知道,这时老师可以引导学生思考画出这组数据的点,然后连成一条线,就是一条直线。
老师告诉学生:“这样的一条线,我们称之为一次函数。
”(二)讲解1、一次函数的概念一次函数是指函数的表达式中只含有一次方程,它的解析式一般为:y = kx + b,k 为斜率,b为截距。
2、一次函数的特点①一次函数的函数图像为一条直线。
②斜率代表直线的倾斜程度,斜率为正,表示函数值随着自变量的增大而增大;斜率为负,则表示函数值随着自变量的增大而减小;③截距表示函数在自变量为0时的函数值,截距为正,表示函数图像上移,截距为负则表示函数图像下移。
3、一次函数的解析式和函数图像的基本形状以y=kx+b为例:①当k>0时,图像向右上方斜着。
②当k<0时,图像向右下方斜着。
③当k=0时,图像水平放置在y=b处。
4、一次函数的求解方法知道两个点的坐标(x_1,y_1)和(x_2,y_2),则可以用斜率公式求出斜率k:k=\frac{y_2-y_1}{x_2-x_1}再代入b的值,就可以得到一次函数的解析式。
(三)练习接下来,老师可以出一些练习题,让学生巩固所学知识。
例题1:已知直线L过点(1,-2),且斜率k=3,求直线L的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》教学设计
教学目标:
1 、知识目标:
①理解一次函数和正比例函数的概念,以及它们之间的关系。
②能根据所给条件写出简单的一次函数表达式。
2、能力目标:
①经历一般规律的探索过程、发展学生的抽象思维能力。
②通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
3、情感目标:
①通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。
②经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
教学重点:
①一次函数、正比例函数的概念及关系。
②会根据已知信息写出一次函数的表达式。
教学难点:建立一次函数模型解决实际问题
教学方法:引导发现与自主探究
设计思路:以“问题情境——自主探究——拓展应用”的模式展开教学。
首先,创设问题情境,激发学生的好奇心和求知欲;其次进行知识的横纵联系,抽象概括,将感性知识上升到理性认识;最后,在习题演练中巩固概念,理解概念,让学生认识到数学知识在解决实际问题中发挥的作用,从而增强对数学学科的喜爱。
教学用具:多媒体课件等
教学过程
一、创设情境,引入新课
星期天,数学老师提着篮子(篮子重0.5斤)去市场买10斤鸡蛋,当他往篮子里装称好的鸡蛋时,发觉比过去买10斤鸡蛋的个数少很多,于是他将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,即刻他要求摊主退1斤鸡蛋的钱。
你能说出其中的奥秘吗?
【点拨】摊主称的质量与准确值有差异,如果知道它们的函数关系,问题就可以解决了,用摊主的秤也能称出准确的质量。
【设计意图】以买鸡蛋的实际问题引入课题,内容符合实际生活,调动了学生的学习欲望,为新课的学习打下了一个良好的开端。
二、横向联系,探索原理
师:弹簧秤有自然长度,在弹性限度内,随着所挂物体的质量的增加,弹簧的长度相应的会拉长,那么所挂物体的质量与弹簧的长度之间就存在什么样的关系?请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。
(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:
x/千克 0 1 2 3 4 5
y/厘米 3 3.5 4 4.5 5 5.5
(2)你能写出x与y之间的关系式吗?
生:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。
【设计意图】弹簧秤和买鸡蛋有联系,并且都含有一次函数的模型。
三、纵向联系,形成概念
师:某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。
(1)完成下表:
汽车行驶路程x/千米 0 50 100 150 200 300
油箱剩余油量y/
升
你能写出x与y之间的关系吗?( y=100-0.18x )
生:上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
【设计意图】概念的形成要注意准确且与实际问题相联系。
四、应用迁徙,巩固新知。
例1:下列函数中,y是x的一次函数的是()
①y=x-6;②y= ;③y= ;④y=7-x
A、①②③
B、①③④
C、①②③④
D、②③④
变式训练:见下表:
X -2 -1 0 1 2 ……
Y -5 -2 1 4 7 ……
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函
数? y是否为x有正比例函数?
【设计意图】了解什么是一次函数,并且知道为什么是一次函数。
例2:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?
①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)
[(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数。
【点拨】写函数表达式一般要按照以下步骤:先认真审题,根据题意找出等量关系,再按照等量关系写出含有两个变量的等式,最后将等式变形为用含自变量的代数式表示函数的式子。
【设计意图】此题考查了实际问题中的一次函数问题。
例3:我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)元;当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关某人某月收入为960元,他应缴所得税多少元?
如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?
分析:(1)当月收入大于800元而小于1300元时,
y=0.05×(x-800);
(2)当x=960时,y=0.05×(960-800)=8(元);
(3)当x=1300时,y=0.05×(1300-800)=25(元),25>19.2,因此本月工资少于1300元,设此人本月工资是x元,则0.05×(x-800)=19.2,x=1184。
变式训练:
为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。
设每户每月用水量为x米3,应缴水费y元。
写出每月用水量不超过6米3
和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。
已知某户5月份的用水量为8米3,求该用户5月份的水费。
[①y=0.6x,y=x-2.4,y是x的一次函数。
②y=8-2.4=5.6(元)]
【设计意图】此题考查了分段计费问题。
同时让学生知道在实际问题中,自变量的取值有一定范围。
五、课堂小结,上升理性:
1、一次函数、正比例函数的概念及关系。
2、能根据所给条件写出一次函数的表达式。
六、课堂反馈,快乐闯关
轻松完成
某种大米的单价是2.2元/千克,当购买 x千克大米时,花费为y元。
y是x的一次函数吗?是正比例函数吗?
(y=2.2x, y是x的一次函数,也是x的正比例函数.)
稍加思考
如图,甲、乙两地相距100千米,现有一列火车从乙地出发,以80千米/时的速度向丙地行驶。
设x(时)表示火车行驶的时间,y(千米)表示火车与甲地之间的距离,写出x,y之间的关系式,并判断 y是否为x的一次函数。
(解:y=100+8x,y是x有一次函数。
)
勇于挑战
某织布厂有工人200名,为改善经营,增设制衣项目。
已知每人每天能织布30米,或用所织布制衣4件,制衣一件需用布1.5米;将布直接售出,每米可获利2元;将布制成衣后售出,每件可获利25元,若每名工人只能做一项工作,且不计其他因素,设安排x名工人制衣,则:
①一天中制衣所获利润P为多少元?
②一天中剩余布所获利润Q为多少元?
③当x取何值时,该厂一天中所获总利润y为最大?最大利润为多少元?
解: (1)P=25×4x=100x(元)
(2)Q=2[30(200-x)-6x]= - 72x+12000(元)
(3)一天所获利润为制衣所获利润与剩余布所获利润之和,所以
y=P+Q=100x+( - 72x+12000)=28x+12000,这是关于 x的一次函数;而当制衣
最多时,也就是制衣人最多时,获得利润最大,即x=166时,最大值为
y=28×166+12000=16648(元)
【设计意图】这一内容设计的立足点在于强化双基训练,而且以“轻松完成”、“稍加思考”、“勇于挑战”三个小标题来引导、鼓励学生求知的积极性。
并且三个内容有梯度,满足多个层面学生的需求。
【教后反思】一次函数是初中阶段学习的第一个函数模型,它的应用非常广泛。
本课习题与实际生活有联系。
体现了“人人学有价值的数学”的理念。
本课的成功之处在于通过横纵联系形成概念;拓展练习很精彩。
拓展练习中,学生的基础不同会有差异。
但通过沟通、交流,每个同学都有所收获。
体现了“人人都能获得必需的数学,不同的人在数学上得到不同的发展。
”的理念。
不足之处在于学习的内容本身比较抽象、枯燥。
而且教材中关于个人所得税的例题陈旧。
现在新的个人所得税起征点已经变为1600元。
如果能在课后组织学生收集一次函数在生活中应用的社会调查,那必将使学生对一次函数的了解上升到一个新的台阶。