《有理数》北师大版七年级数学上册ppt课件(4篇)

合集下载

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]

则:
(千米).
答:第二天勘察队在出发点的下游 千米处.
重难易错
7.计算:
(1)(+1.2)+(-0.3)=
(2)(-3.5)+
=
(3)
=
(4)
=
0.9 ; ;
; .
8.下列各式运算正确的是( D ) A. (-7)+(-7)=0 B. C. 0+(-101)=101 D.
三级检测练
一级基础巩固练 9. 下列运算过程正确的是( D ) A. (-3)+(-4)=-3+-4=… B. (-3)+(-4)=-3+4=… C. (-3)+(-4)=3+(-4)=… D. (-3)+(-4)=-(3+4)=…

第7课 知识点2 有理数加法的应用
(2)(-19)+(-3)=-(19+3)=-22.
(3)
=

有理数的加法(1)
(2)
=

(2)绝对值相等的两个数的和等于0.
.
(1)若x的相反数是3,y=5,则x+y=

(2)(-19)+(-3)=-(19+3)=-22.
新课学习
知识点1 借助数轴比较有理数的大小 1.(1)同号两数相加,取相同的符号,并把绝对值相加.
解:-35+50=15(℃).
两个点分别在原点的两侧,这两个点表示的有理数的和是2+(-3)=-1或-2+3=1.
答:求得的和中最小的是-12.
(4) 李老师在4张纸条上分别写上4个有理数:|-3|,-(+4),+|-9|,-8,他让同学们从中抽取2张,并求出其和.

北师大版七年级数学上册 (用计算器进行运算)有理数及其运算课件教学

北师大版七年级数学上册 (用计算器进行运算)有理数及其运算课件教学

A.10g
B.20g
C.30g
答案:D
(例3)墨尔本与北京的时差是+3小时 一时刻墨尔本时间比北京时间早3小时 机从尔本飞到北京需用12小时,若乘 尔本10:00(当地时间)起飞的航班,到 机场时,北京时间是:
答案:19:00
(例4)某食品厂从生产的袋装食品中 样品20袋,检测每袋的质量是否符合
知2-讲
知识点
下列语句中,那些数据是精确的,哪些数据是近似的? 1.我和妈妈去买水果,买了8个苹果,大约5千克. 2.小民与小李买了2瓶水,4根黄瓜,6袋香巴拉牛肉
干,约20元,然后骑车去大约3.5km外去郊游,大 约玩了4.5小时回家. 3.我国共有56个民族.
精确数:8,2,4,6,56; 近似数:5,20,3.5和4.5.
(来自《点拨》)
总结
知1-讲
利用计算器探索规律的一般方法是先用计算器 对特例进行计算,再归纳猜想出一般结论,体现了 从特殊到一般的思想.
(来自《点拨》)
知1-练
1 计算器上, ON 键是( A ) A.开启键 B.关闭键 C.存储键 D.运算键
2 计算器上的 DEL 键的功能是( C ) A.开启计算器 B.关闭计算器 C.清除当前显示的数与符号 D.计算乘方
课堂小练
1.如图,检测4个足球,其中超过 量的克数记为正数,不足标准质量 记为负数。从轻重的角度看,最接 的是()
答案:C
课堂小练
2.纽约、悉尼与北京的时差如下表(正数
一时刻比北京时间早的时数,负数表示同 比北京时间晚的时数):
城市
悉尼
纽约
时差/时
+2
-13
当北京10月9日23.时,悉尼、纽约的时间

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

(2024秋新版本)北师大版七年级数学上册 《有理数的混合运算》PPT课件

A.﹣16
B.16 C.20
2. 计算:(-13-12)÷54 = -23 .
D.24
课堂检测
基础巩固题
1.计算12-7×(-4)+8÷(-2)2的结果是( D )
A.-24
B.-20
C.6
D.42
2.下列各式中,计算结果等于0的是( C )
A.(-4)2-(-42) B.-42-42 C.-42+(-4)2 D.-42-(-4)2 3.设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为( B )
=-54+12+15
=-8+(-3)×18-(-4.5)
=-27;
=-8-54+4.5 =-57.5.
课堂检测
基础巩固题
5.找错,并把正确的答案写在横线上.
(1)-24 -
22 3
+
9 4
=
-16 -
4 9
+
4 9
=
-16;
解:-24 -
22 3
+
9 4
=
-16 -
4 3
+
4 9
=
-
152 9

(2)-(-2)3 ÷49×(-32)2
=-3-2÷3 =-3-23 =-131
探究新知
素养考点 有理数的混合运算
例 计算:(1)18-6÷(-2)×(-13); 解:原式 =18-(-3)×(-13) =18-1
=17;
探究新知
(2)(-3)2×[-23+(-59)] .
解法一:原式=9×(-191) 解法二:原式=9×(-23)+ 9×(-59)

2.1 认识有理数(第2课时 相反数与绝对值)(课件)-七年级数学上册(北师大版2024)

2.1 认识有理数(第2课时 相反数与绝对值)(课件)-七年级数学上册(北师大版2024)

±2 025 .
±2 025的绝对值都是2 025.
练一练
5
7.写出下列各数的绝对值:-8,3.9,- ,-10.5,0,-(-2).
2
解: | -8 | =8,
求-2的相反数的绝对值,
| 3.9 | =3.9,
即求2的绝对值.
5
|- |
2
5
= ,
2
| -10.5 | =10.5,
| 0 | =0,
的绝对值”.
| 3 | = 3, |
3
2
|=
3
2
课本例题
例2
求下列各数的相反数和绝对值:
4
-2, ,0,-3.8,30.
9
4
4
解:-2, ,0,-3.8,30的相反数分别是:2,- ,0,3.8,-30;
9
9
4 4
|-2|=2,| |= ,
9 9
|0|=0, |-3.8|=3.8, |30|=30.
两个负数比较大小,绝对值大的反而小.

C. -


的绝对值是(
A
)
B. 10


D. -10
9. 在有理数中,绝对值等于它本身的数是( D
A. 0
B. 正数
C. 负数
D. 非负数
)
10. 【新考法·分类讨论法】如果| x |=2,那么 x =( C
A. 2
B. -2
C. 2或-2
D. 2或-


)
11. 写出下列各数的相反数及绝对值:
18. 【新考法·猜想归纳法】(1)化简:
;-(+2)= -2
+(-2)= -2

(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件

(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件

(2)该厂实际共生产多少辆自行车?平均每天生产多少辆自
行车?

课堂检测
能 力 提 升 题
解:(1)以每日生产400辆自行车为标准,多出的数记作正数,
不足的数记作负数,则有
+5,-7, +10,+9,-13,+6,-3;
(2) 405+393+410+409+387+406+397 =2807(辆),
-2
-2
-|-2|=________,-|+2|=________,
|0|=________.
0
思考: 一个数的绝对值与这个数有什么关系?
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数;
(3) 0的绝对值是0.
探究新知
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
a
(1)当是正数时,|a|=____;
A.物体又向右移动了2米 B.物体又向右移动了4米
C.物体又向左移动了2米 D.物体又向左移动了4米
方法点拨:表示具有相反意义的量时,首先找到具有相反意
义的同类量,然后将其中一个量用正数表示,与其意义相反
的量就用负数表示.需注意的是:用正数、负数表示相反意义
的量时,一定要说明数量和单位.
巩固练习
变式训练
-8.44,22,+
巩固练习
变式训练
1
1
在0, 2, -7,−5 ,3.14,−3 ,-3, +0.75中, 负数共有
3
7
( D )
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 3

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )

北师大版七年级上册数学《有理数的除法》有理数及其运算PPT教学课件

北师大版七年级上册数学《有理数的除法》有理数及其运算PPT教学课件

想一想:
(-18) ÷6=___-__3_,
5

1 5

____—__2_5,
(-27) ÷ (-9)=__3_____,0÷ (-2)=___0____,
观察上面的算式及计算结果,你有什么发现?换
一些算式再试一试.
知1-讲
除法法则1: 两个有理数相除,同号得__正__,异号得__负__, 并把绝对值__相__乘__. 0除以任何非0的数都得___0___. 注意:0不能作除数.
-12

1 2

(3)0÷(-3.72);(4)(-4.7)÷1.
导引:直接运用法则,先确定符号,然后再求数值.
解:(1)(-42)÷(-6)=+(42÷6)=7.
(2)
-12

1 2
=-
12
1 2
=-24.
(3)0÷(-3.72)=0.
(4)(-4.7)÷1=-4.7.
(来自《点拨》)
总结
知1-讲
A.
(-5)

1 2
=(-5)
(-2)
B. 1 (-3)=3 (-3) 3
C.
(-2)
(-3)=(-2)

1 3
D.
2 3

4 9

2 3

9 4
(来自《典中点》)
3 下列计算正确的是( C )
A. 0 -3=- 1
3
B.

3 7

3 35
=-5
C.
1

1 9
=-9
D.

3 4
除法法则确定商的符号与积的符号确定方法 一样.注意:①0除以任何不等于0的数直接得0; ②任何数除以1都等于原数.

北师大版七年级数学上册《有理数》课件(共29张PPT)

北师大版七年级数学上册《有理数》课件(共29张PPT)
(3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 _____ ,第320个数的符号 为___,规律是______________;
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量0.03克;
(3)每袋大米的标准质量应为10kg,但实际每袋大 米可能有150g的误差,即最多超出标准质量150g, 最少少于标准质量150g.
练习:
1.把消费价格比上年上涨4.8%记为+4.8%,那么下跌 0.6%记为-0.6%. 2.零上温度1℃记为+1℃,零下温度5℃记为 -5℃ . 3.生活中你见过其他用负数表示的量吗?与同伴进行
全国主要城市某一天的天气预报
城市
天气 高温 低温
城市
天气 高温
低温
15 6 哈尔滨 小雨 长春 多云 18 10
沈阳
小雨 19 7
12 天津
小雨
8
西宁
5 小雪
-4 银川
小雪
0
-3
兰州 小雪 3 -3 西安 小雨 16 7
3、正、负数的概念
1 2
像+5,+1.2,+ 等大于零的数,叫做正数。 它们都比零大1 。
零上与零下
盈利与亏损 加分与扣分
具有相反意义的量
高出值与低于值
具有相反意义的量:上升与下降、增与减、收
入与支出、胜与负、进与退、多与少、盈利与
亏损向东与向西、顺与逆、过剩与不足、重与 轻等
用正数和负数可以表示具有相反意义的量
为了表示具有相反意义的量,我们把其中一个量规定为 正的,用正数表示.把与这个意义相反的量规定为负的, 用负数表示.
46
麦德龙
46663.6
295.1
171440
66
家乐福
39855.7
805.6
297290
111
特斯科
30351.9
1088.4
134896
153
大荣
25320.1
-195.2
47953
184
佳士客
22451.3
-25.2
34375
单位:百万美元
例1 (1) 在知识竞赛中,如果用+10分表 示加10分,那么扣20分怎样表示?
2
像-5,-1.5, - 等在正数前面加上“-”号的数 它4、们用都正比负零数小表。示生活中 “意议0义 一”既相 议不反 :是的 举正量一数些,生也活不中是负数。 “0”具有中性特征 象增加与减少,
财富全球强中的主要零售企业
排名
公司
年收入
利润
雇员人数/人
2
沃尔玛
166809.0
5377.0
1140000
答错
不回答
某班举行知识竞赛,评分标准是:答对一题加1 分,答错一题扣1分,不回答得0分;每个队的基本 分均为0分.两个代表队答题情况如下表:
答题情况
第 一 队
第 二 队
如果答对题所得的分用正数表示,那么你能用 正负数表示每个代表队答题得分的情况吗?
试完成下表:
答对题的得分
答错题的得分
未回答题的得分
0表示什么?
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示?
(2)在某次乒乓球质量检测中,一只乒乓球超出标准 质量0.02克记作+0.02克,那么﹣0.03克表示什么?
(3)某大米包装袋上标注着:“净重量:10kg±150g”, 这里的“10kg±150g” 表示什么?
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作 _______________.
随堂演练
用一句话“我知道了……我学会了……我还想 知道……”小结本课.
作业:习题2.1
第二章 · 有理数及其运
有理算 数
教学过程: 1、数的起源
古代猎人打了一只老 鹰,用数如何表示一 只老鹰——有了整数 。 二人分一只西瓜
货币购物,用数
2、负数来源 于生活 例1、2月3日,深圳气温零上
15°c,哈尔滨气温零下10°c,若 零上15°c,用+15°c表示,那么 零下10°c 如何表示?
数怎么 不够用了?
思 考 题 : 有 没 有 比 零 小 的 数 ?
例2、我国有一座世界最高峰 ——珠穆朗玛峰,高度比海平 面高8848米,在新疆境内,还 有一个吐鲁番盆地,高度比海 平面低155米,若海平面的高 度为零度,则它们的高度分别 如何表示?
8848吐鲁珠穆朗玛峰-15
海 平 面
加1分 扣1分 得0分
第1题 第2题 第3题 第4题 第5题 第一队 第二队 第三队 第四队
第1题 第2题 第3题 第4题 第5题 合计
第一队 +1 -1 +1 +1 -1 +1 第二队 -1 +1 0 +1 +1 +2 第三队 +1 +1 -1 -1 0 0 第四队 +1 -1 +1 -1 -1 -1
(1)将学过的数进行分类,并与同伴交流.
正整数
整数

有理数
负整数
分数
正分数
负分数
整数与分数统称为有理数
还可以怎 么分类
(2)把下列各数填入相应的集合中:
3,-7, ,2 5,.60, 3
,8115,
4
1 9

正数集合:{ 负数集合:{ 整数集合:{ 分数集合:{
2
3, 3
,5.6
1
,15…,9}
-7,
交流.
议一议 你能选定一个高度为标准,用正负数表示本班
每位同学的身高与选定的身高标准的差异吗?你 是怎样表示的?与同伴交流.
我们把正整数、0和负整数统称为整数; 正分数和负分数统称为分数. 如2 2是整数,而且是正整数; 3是分数,而且是2正分数, -2是负整数, 是3 负分数.
整数和分数统称为有理数.
第一队
+6
-3
0
第二队
+8
-2
生活中你还见过其它 带有“-”号的数吗?
30 25 20 15 10
5 0 -5 -10
你会读温度计吗?
30 25 20 15 10
5 0 -5 -10
30 25 20 15 10
5 0 -5 -10
你能用负数表示下面的量吗?
世界最高峰珠穆朗玛峰比海平面高8844.43m,新疆 吐鲁番盆地比海平面低155 m.
第二章 有理数及其运算
有理数
目录
Contents
01 复习回顾
02 探索新知
03 实际应用
04 合作交流
05 反思小结
(1)生活中我们会遇到用负数表示的量,你能 说出一些例子吗?
(2)你对负数有什么样的认识? (3)有了负数,数的运算与过去相比有什么区 别和联系?
有了负数,能解决哪些实际问题?
答对
8 1 4
…}
3,-7,0,15
2, 5.6,
3
8 1 , …1}
49
…}
随堂演练
1.填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个物体向西 运动4米,那么+2米表示___________,物体原地不动记作 ________.
相关文档
最新文档