埋管式地源热泵系统介绍,成本,运行费用
地埋管地源热泵系统

室内采用水系统,舒适性最好;氟利昂不进房间,不存在氟利昂泄漏引起的窒息等问题;室外机采用水冷,没有冷热风扰民等问题;
室内采用氟系统,舒适性一般;氟利昂进房间,存在氟利昂泄漏引起的窒息等问题;室外机采用风冷,存在冷热风扰民等问题;
安装位置
主机体积小,不用考虑排气顺畅等问题,主机安装有利于环境美观设计,但需考虑埋管的空间
同方技术
系统设计
地埋管地源热泵系统设计
阅读勘察报告,了解地质情况:岩土层结构、岩土体的热物性、岩土体初始温度、冻土层厚度、地下水的情况等
了解和估算建筑物的最大冷负荷、最大热负荷、生活热水需求量、运行时间等
根据以往的经验数据对能否采用地埋管地源热泵进行可行性分析
方案设计阶段需要了解的内容
系统设计
系统散(吸)热量计算:
循环泵
盘管
环路集管
地 表 水 体
机组
用户
机组
用户
板换
系统介绍
开式地表水地源热泵系统
水处理
换热器
用户
回水口
地表水体
取水口
热泵
热泵
地埋管地源热泵系统
地埋管地源热泵系统
垂直地埋管地源热泵系统
水平地埋管地源热泵系统
系统拓展性
可以和地板采暖系统、生活热水做成一个系统,实现初投资和运行费用的最有利化
可以和地板采暖系统、生活热水做成一个系统
系统配电
由于系统EER比较高,故建筑配电小
和地源热泵配电相当,但需要额外增加天然气
环保与舒适性
室内采用水系统,舒适性好;室外机采用水冷,没有冷热风扰民等问题;
室内采用水系统,舒适性好;主机采用水冷,存在冷却塔飘水和噪音扰民,还需要另设排烟气管道等问题
地源热泵造价与运行费用对比

目录一、公司简介。
.。
2二、标志性工程案例。
3三、地源热泵技术原理介绍。
6四、冷暖方式的分析。
15五、设计方案说明。
17六、系统设计方案。
20七、投资概算及运行费用对比。
25八、补充说明。
29九、附件(图纸、企业资质及相关政策文件)。
30一、公司简介浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。
随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。
目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。
现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。
公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。
2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。
2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。
公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。
住宅项目使用地源热泵技术的成本分析

空调即空气调节器,是指用人工手段,对空间内环境空气的温度、湿度等参数进行调节的设备。
我们常用的传统家用空调壁挂式、立柜式、窗式、VRV等对使用者及环境产生诸多问题。
容易得“空调病”、占用墙壁或地面空间、耗能、年使用费相对高等。
技术世界的问题靠技术进步来解决。
于是,在上世纪初,出现了这种新型的空调系统--地源热泵空调系统。
1、地源热泵空调系统简介地源热泵技术,是利用地下恒温层中土壤一年四季温度稳定、具有巨大的蓄热蓄冷能力的特点,冬季把土壤中热量“取”出来,给室内采暖;夏季把室内的热量“取”出来,释放到地能中去,这样一个年度一个冷热循环,且不向外界排放任何废气、废水、废渣,实现节能、减排,是一种理想的“绿色空调”。
基本原理如下图所示:地源热泵系统的能量主要是自然能源,它耗电量少、维护费用低,地下部分寿命可达50年、地上30年,被认为是一种免维护空调。
与普通空调系统的主要差异在于以下5项:地源热泵系统由三个部分组成:室外地能换热系统、机房系统、室内末端系统。
如下图所示:在欧美发达国家,地源热泵空调系统已有近100年历史、早已相当普及。
o1912年,瑞士专家提出地源热泵的概念o1946年,美国在俄勒冈州的波兰特市建成第一个地源热泵系统o1980年代后期,地源热泵技术趋于成熟,美国成为生产和使用的头号大国。
我国对地源热泵空调系统的引入时间较晚,而且由于前期的一次性投资大、场地限制这两个原因造成其推广受阻,仅在南方及部分大城市应用略多。
我国在绿色建筑、节能城市建设等多个领域推广地源热泵这项新能源技术。
(本节主要内容来源于百度百科,特此说明)下面分享我所经历过的地源热泵项目案例,通过系统地成本分析,了解其成本构成及特点,并分析优化方法,让这种夏天送“凉”、冬天送“暖”的节能技术被更多了解、推广、使用。
2、项目概况本项目是民用住宅,位于上海市松江区,项目完工时间为2015年。
总用地面积26,951㎡,总建筑面积62,392㎡(其中地上42,049㎡,地下20,343㎡)。
地水源热泵系统介绍1(1)

2.2 水源热泵系统工作原理
• 水源热泵系统是一种可同时实现采暖和制冷的高效节能空 调系统,它主要是以地下水中的热能,作为热泵夏季制冷 的冷却源、冬季采暖供热的低温热源;即在冬季,热泵把 水中的热量“取”出来,供给建筑物室内采暖;夏季,把 建筑物室内的热量取出来,释放到地下水中去,达到建筑 物制冷目的。
• 地埋管地源热泵系统能效比高一般都在4.0以上, 通常热泵机组消耗1单位的能量,再加上土壤中储 存的3单位的能量,用户可以得到4单位以上的热 量或冷量,节能效果明显。
地源热泵系统原理示意图
地源热泵系统原理示意图
一、 地埋管地源热泵系统介绍
• 3. 地源热泵系统发展背景
• 2005年,国家发展改革委“可再生能源和新能源 高技术产业化专项”重点支持了一批风力发电、 太阳能光伏发电、太阳能供热和地源热泵供热 (制冷)、氢能等方面的产业化项目。在太阳能 供热和地源热泵供热(制冷)方面,开展新型太 阳能热水器和地源热泵系统产业化。包括高可靠 性新型真空管集热器、大面积中高温太阳能热水 系统、全天候太阳能热水系统、高效地源热泵及 其配套系统。
一、 地埋管地源热泵系统介绍
• (3) 节水省地 • 1)以土壤为冷热源,向其放出热量或吸收热量,不消耗
水资源,不会对其造成污染。 • 2)省去了锅炉房及附属煤场、储油房、冷却塔等设施,
机房面积大大小于常规空调系统,节省建筑空间,也有利 于建筑的美观 • (4) 环境效益显著 该装置的运行没有任何污染,可以建造在居民区内,在供 热时,没有燃烧,没有排烟,也没有废弃物,不需要堆放 燃料废物的场地,不会产生城市热岛效应,对环境非常友 好,是理想的绿色环保产品。 • (5) 运行安全稳定,可靠性高 • 地源热泵系统在运行中无燃烧设备,因此不可能产生二氧 化碳、一氧化碳之类的废气,也不存在丙烷气体,因而也 不会有发生爆炸的危险,使用安全。燃油、燃气锅炉供暖, 其燃烧产物对居住环境污染极
地源热泵埋管数、配电量以及投资计算

1 钻井埋管埋管数量的确定热负荷埋管数量Qr * 0.78 = L * K * n冷负荷埋管数量Ql * 1.2 = L * K * n其中:Qr---------------------冬季热负荷Ql---------------------夏季冷负荷0.78,1.2-------------系数L----------------------单孔埋管深度K----------------------单位管长换热系数N----------------------埋管数量计算后应乘以1.05的余量2 机房及配电量一般可取建筑冷负荷的三分之一(不建议采用,此句话的由来为:冷负荷/cop 。
一般地源热泵cop为6左右,通常制冷机取5.因此建议:机房设备总的功率乘上需用系数0.9-0.95,或者当设备较少时取需用系数为1 .)机房的配电量一般根据工艺的要求把同一时间可能开启的的所有设备电功率加起来乘0.9-0.95就行。
注意冬夏季负荷功率及设备运行台数会有变化,分冬夏两个工况,分开计算,最后两者取其较大值就行。
3 机房面积机房占地面积宜为空调区域建筑面积的千分之五4 冷冻水量和冷却水量冷冻水量CMH=制冷量(KW)X 0.172冷却水量CMH=制冷量(KW)X 0.2245参考资料做建筑给排水不用算商场的人数的,按面积算,最高日生活用水定额取X,其中X取5~8,单位为每平方米营业厅面积每日(L/m2 ·d),使用时数为12h,小时变化系数为1.5~1.2,具体参见《建筑给水排水设计规范》.(1)确定主机类型;根据户式中央空调系统的选择原则和用户所在之区域,确定空调系统方式和主机类型(单冷或热泵)。
(2)计算住宅夏季冷负荷 Ql 和冬季热负荷 QR ;根据用户住宅的建筑面积和用户所处区域内建筑冷、热负荷指标按下式计算住宅冷负荷Ql 和热负荷 QR 。
QL = 建筑面积×冷指标(w) ,QR = 建筑面积×热指标(w) 。
地源热泵分析及造价

地源热泵工程造价分析众所周知,地源热泵是一种利用浅层和深层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。
抽取地下水的水源热泵,由于技术限制,全部回灌不易做到,监督实施也比较困难,而且容易造成地下水污染。
在国外目前大面积推广使用的是埋管式地源热泵技术,是充分利用浅层地热的最佳技术途径。
在我国,建设部和一些省市的建筑节能政策中明确提出要推广使用埋管式地源热泵。
水源热泵系统的存在的困感:1、回灌困难,许多水源热泵工程难以回灌,只能将大量地下水排向市政排水管道。
一般来说回灌井与抽水井回灌比超过3,都不适合水源热泵工程。
2、容易污染地下水资源机组内工质一旦泄漏,将对地下水造成难以挽救化学污染;其次,不能严格做到同层回灌,造成不同地下层地下水的混合,使得优质地下水层的水质受到污染。
3、取水井长时间取水后,易出现水量不足。
主要原因是取水井被细沙堵塞,运行期间每隔一段时间就需要洗井,而且洗井费用较高,长期来看,系统运行费用较高。
另外一个原因就是地下水位的下降,很多地区的地下水位每年都在下降。
4、抽水井、回水井之间互相影响。
很多项目根本不具备采用水源热泵,项目硬上,水井之间距离过近,造成抽水温度接近于回水温度,热源温度越来越差,机组能效比降低。
5、水源热泵工程中,潜水泵扬程都较大,一般都在80米以上,甚至更高,系统耗电量大。
而且潜水泵一旦损坏,维修困难。
地源热泵系统一般情况下的造价不同土质地源井造价对比表(成井深度80m)土质钻井单价钻井De32双U型管双U型头单井造价单位井深换热量换热量成本单位元/m元元元/个元W/m元/W沙土3024001408130393835 1.41黄土4536001408130513835 1.84风化岩10080001408130953840 2.98说明:一般,沙土地质地源井造价在20~30元/m之间,黄土地质造价在30~45元/m之间,风化岩地质造价在80~100元/m之间,混合地质类型约为85元/m。
地源热泵设计方案及运行费用分析实例

地源热泵设计方案及运行费用分析实例时间:2006-2-19 9:24:58 作者:天津大学机械工程学院热能工程系朱强汪健生浏览次数:4666摘要:本文对津晋高速公路津港收费站地源热泵系统的设计进行了分析与计算,并对系统的实际运行费用进行了分析。
与以空气作为热源的一般空调器在相同的供热、供冷负荷下运行相比,地源热泵系统具有显著的节能效果。
关键词:热泵供热制冷引言地源热泵作为热泵技术应用的一个新的分支,由于其节能和优越的环保性能,近年来正在得到广泛的应用。
地源热泵是利用土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用;在冬季供热时,热泵系统通过预埋在地下的管道将储存在地下的热通过传热介质吸收,作为逆循环中的低温热源,由热泵完成逆循环并向热用户提供热量;在夏季供冷时,利用地下环境温度较低的特点使制冷系统中的冷凝温度降低,从而提高系统的制冷系数,与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。
由于地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。
因此,如不考虑电能的来源,地源热泵系统是城市供热及供冷的一种清洁能源,它不需要建立一般城市供热所需的锅炉房,同样也不存在由于燃料燃烧(燃煤、燃油)而带来的城市环境污染问题,可以实现冷热联供。
此外,在实际使用中,对于一些受客观条件限制而无法采用其他供热、供冷方式的场所,如高速公路收费站、人员设备相对较少的科考站、边防哨所,地源热泵则更体现出其特有的优越性;基于以上特点,本文对津港高速公路收费站地源热泵系统的设计及实际运行效果进行了系统分析。
一、地源热泵系统负荷计算1.1 热泵系统负荷计算津晋高速公路天津段自天津起至大港,全长35公里,建有三个收费站。
津港收费站包括综合楼、综合楼附属用房及7个收费亭。
其中综合楼建筑面积为744m2;综合楼附属餐厅为80m2;7个收费亭合计建筑面积47m2;津港收费站合计总建筑面积为871m2。
地源热泵系统运行费用分析

地源热泵系统运行费用分析[摘要]以长春帕拉斯大酒店土壤源热泵系统项目为依据,着重介绍了土壤源热系统运行节能分析。
【关键词】地源热泵;地埋管换热器;节能近年来,随着我国社会经济的发展及人民生活水平的不断提高,改善建筑热舒适条件已成为一个比较突出的要求。
空调作为目前改善建筑热舒适条件的工具,早已悄悄进入我们的生活,尤其是在公共场所,空调已经基本普及。
然而,随着空调设备的日益普及,建筑耗能量势必将迅猛增加,对大气环境的污染也将日趋严重。
如何在建筑热舒适条件得到改善的条件下把建筑耗能量减下来,减轻对大气环境的污染,成了暖通界人士首要其冲需要解决的问题。
现阶段,在保证使用功能不降低的情况下,全国各地在新建房屋的设计及施工中采取各种有效的节能技术和管理措施,把建筑的能耗较大幅度地降下来,在北方还对原有建筑物有计划地进行节能改造,达到节省能源、保护环境和提高人民生活质量的目的。
地源热泵作为一种有益环境、节约能源和经济可行的建筑物供暖及制冷新技术越来越受到关注。
它是利用地下相对稳定的土壤温度,通过媒介质来获取土壤内冷(热)能量的新型装置,可一年四季方便地调节建筑内的温度,即可制冷又可制热,而且运行费用低。
在我国冬冷夏热的北方,地源热泵系统受到越来越多的欢迎。
地源热泵节能是显而易见的,但是否就省钱呢?节能并不等于就省钱,因为还要考虑设备的投资费用、燃料价格及电力价格等,因此必须综合考虑各种影响因素,才能正确判断地源热泵是否既节能又省钱。
在这里采用投资回收年限法,对地源热泵项目进行经济性分析。
投资年限是工程增量成本与年节约运行费用的比值,它是评估能源利用是否合理的指标之一。
工程实例1、工程概况长春帕拉斯大酒店位于长春市经济开发区,建筑面积6500平米,共六层。
原建筑采暖采用自烧锅炉供热,没有制冷系统;该建筑在2010年进行了改造,为了达到室内温度舒适,冬季温暖,夏季凉爽,并且提供生活热水,因此采用了土壤源热泵系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、地源热泵系统简介0 引言“热泵”这一术语是借鉴“水泵”一词而来。
在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。
而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。
在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。
我们也可以称热泵为既可以制冷又可以供热的机组。
热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。
当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。
由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。
地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。
即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。
地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。
1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。
00 空气源热泵空气源热泵以室外空气作为热源。
在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。
空气源热泵系统简单,初投资较低。
空气源热泵的主要缺点是在夏季高温和冬季寒冷天气时热泵的效率大大降低。
而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。
因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。
此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。
在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。
在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。
空气源热泵不适用于寒冷地区,应用受到很大局限。
01地下水源热泵地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。
经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。
最近几年地下水源热泵系统在我国得到了迅速发展。
但是,应用这种地下水热泵系统也受到许多限制。
首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。
因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。
地下水热泵系统的经济性与地下水层的深度有很大的关系。
如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电将大大降低系统的效率。
此外,虽然理论上抽取的地下水将回灌到地下水层,但目前国内地下水回灌技术还不成熟,在很多地质条件下回灌的速度大大低于抽水的速度,从地下抽出来的水经过换热器后很难再被全部回灌到含水层内,造成地下水资源的流失。
此外,即使能够把抽取的地下水全部回灌,怎样保证地下水层不受污染也是一个棘手的课题。
水资源是当前最紧缺、最宝贵的资源,任何对水资源的浪费或污染都是绝对不允许的。
目前由于对环保和使用地下水的规定和立法越来越严格,地下水源热泵的应用已逐渐减少。
02地表水水源热泵地表水水源热泵系统的热源是池塘、湖泊或河溪中的地表水。
在靠近江河湖海等大量自然水体的地方,利用这些自然水体作为热泵的低温热源是值得考虑的一种空调热泵的形式。
当然,这种地表水热泵系统也受到自然条件的限制,由于地表水温度受气候的影响较大,与空气源热泵相似,当环境温度越低时热泵的供热量越小,虽环保但并不节能,在实际工程中应用较少。
03地下热交换器地源热泵地下热交换器地源热泵又叫土壤热交换器地源热泵。
该系统是把传统空调器的冷凝器或蒸发器直接埋入地下,使其与大地进行热交换,或是通过中间介质(通常是水)作为热载体,并使中间介质在由高强度塑料管组成的封闭环路中循环流动,从而实现与大地土壤进行热交换的目的。
也就是说,该系统是以大地为热源对建筑物进行空调的技术。
冬季通过热泵将大地中的低位热能提高品位对建筑供暖,同时储存冷量,以备夏用;夏季通过热泵将建筑内的热量转移到地下,对建筑物进行降温,同时储存热量,以备冬用。
大地提供了一个绝好的免费能量存贮源泉,这样就实现了能量的季节转换。
正是由于地源热泵系统采用了大地这一特殊的热源体,与广泛采用的空气源热泵相比,它的季节平均性能系数高,尤其在极端气候条件下仍能保持较高的性能系数,空调效果不受室外气温的影响,运行稳定可靠;不向建筑外大气环境排放废冷或废热,有利于环保;室外换热器埋在地下,不存在冬季除霜问题,节省了除霜所耗的电能;无室外机,不影响建筑外立面美观。
由于地源热泵系统采用的是可再生的地热能,可兼顾建筑物在不同季节的供热和供冷的需要,具有技术上的优势以及节能、环保和可持续性发展的优点,因此国际上将地下蓄能技术和高效热泵同时列入21世纪最有发展前途的50项新技术之中。
一地源热泵发展概况地源热泵(GSHP)的概念最早出现在1912年瑞士的一份专利文现中。
20世纪50年代,欧洲和美国开始了研究地源热泵的第一次高潮。
但在当时能源价格低,这种系统并不经济,因而未得到推广。
直到上世纪70年代,石油危机和日益恶化的环境把人们的注意力集中到节能、高效益用能和环境保护上时,使地源热泵的研究进入了又一次高潮,最近20年在欧美等工业发达国家取得了迅速的发展,已成为一项成熟的应用技术。
在美国地源热泵系统占整个空调系统的20%,是美国政府极力推广的节能、环保技术。
为了表示支持这种新技术,美国总统布什在他的得克萨斯州的官邸中也安装了这种地源热泵空调系统(见2001年5月28日参考消息)。
截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,其中有超过3万台在家庭、学校和商场中应用。
到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。
美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。
计划每年安装40万台的目标,能降低温室气体排放一百万吨,相当于减少50万辆汽车的污染物排放或种植树一百万英亩,年节约能源费用4、2亿美元。
瑞典、瑞士、奥地利、德国等国家主要利用浅层地热资源,地下土壤埋管的地源热泵,用于室内地板辐射供暖及提供生活热水。
据1999年的统计,为家用的供热装置中,地源热泵所占比例:瑞士为96%,奥地利为38%,丹麦为27%。
在我国由于能源价格的特殊性以及其它一些因素的影响,地源热泵技术发展比较缓慢,人们对之尚不十分了解,推广较困难,然而随着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化,地源热泵技术已越来越引起人们的重视。
科技日报2000年2月12日3版刊登有关《中美签署地源热泵示范工程合作协议》的报道,标志着我国开始引进推广地源热泵技术。
在目前节能和环保的潮流下,该技术以其特有的节能性和稳定性受到行业的瞩目,国内许多院校、科研所作了大量的应用研究。
国家建设部在《夏热冬冷地区居住建筑节能设计标准》中专门作了推荐。
据统计,仅在北京2004年施工并投入运行的地源热泵系统空调工程占全年空调工程保有量的2/3以上。
可以预见,随着经济的发展,人们节能、环保意识的日益提高,地源热泵作为一种节能、环保的绿色空调设备适应可持续发展要求,在中国必将有广阔的应用和发展前景。
二土壤热交换器地源热泵系统工作原理〈1〉工作原理:地源热泵空调的心脏是一个“热泵”(制冷、供热)。
供暖时,它吸取地热向用户排放,此过程只消耗少量电能,如图1所示。
制冷时,它吸取用户室内的热量向地下排放,同样也消耗少量热能,如图2所示〈2〉机组运行过程:冬天热泵中制冷剂正向流动,压缩机排出的高温高压R22气体进入冷凝器向集水器中的水放出热量,相变为高温高压的液体,再经热力膨胀阀节流降压变为低温低压的液体进入蒸发器,从地下循环液中吸取低温热后相变为低温低压的饱和蒸汽后进入压缩机吸气端,由压缩机压缩排出高温高压气体完成一个循环。
如此循环往复将地下低温热能“搬运”到集水器,从而不断的向用户提供45℃-50℃的热水。
如图3所示。
夏天热泵中制冷剂逆向流动,与用户换热的冷凝器变为蒸发器从集水器中的低温水(7-12℃)提取热能,与地下循环液换热的蒸发器变为冷凝器向地下循环液排放热量,循环液中热量再向地下低温区排放,如此循环往复连续地向用户提供7-12℃的冷水。
〈3〉土壤热交换器埋管形式:地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。
选择哪种形式取决于现场可用地表面积、当地岩土类型以及钻孔费用。
尽管水平埋管通常是浅层埋管,可采用人工开挖,初投资比垂直埋管小些,但它的换热性能比竖埋管小很多,并且往往受可利用土地面积的限制,所以在实际工程应用中,一般都采用垂直埋管。
(见图4)三地源热泵空调系统的特点〈1〉利用可再生能源,环保效益高:地源热泵从浅层常温土壤中吸热或向其排热,浅层土壤之热能来源于太阳能,它永无枯竭,是一种可再生能源,所以当使用地源热泵时,其土壤热源可自行补充,持续使用。
机组在运行过程中,无废气污染物排放,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。
〈2〉高效节能,运行费用低:在制热时,地源热泵可将土壤中的热能“搬运”到室内,其能量70%来自土壤,制热系数高达——。
即输入1KW 的电量可以得到——以上的制冷制热量。
运行费用每年每平方米仅为15——18元,比常规中央空调系统低40%——50%,比空气热泵低30%——40%。
〈3〉节水省地:1)以土壤为热载体,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染。
2)省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规设备)3)埋管可埋在车库、停车场、花园、操场等下面,不占用使用面积〈4〉灵活多用:制冷、供热兼提供生活热水,真正做到一机三用。
2)由于机组占地面积小,可灵活安置,系统末端也可作多种选择。
〈5〉行安全稳定,可靠性高:地源热泵系统在运行中无燃烧设备,因此不可能产生二氧化碳、一氧化碳之类的废气,也不存在丙烷气体,因而也不会有发生爆炸的危险,使用安全。
燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。
由于土壤深处温度非常恒定,主机吸热或放热不受外界气候影响,运行工况比较稳定,优于其它空调设备。
不存在空气源热泵除霜和供热不足,甚至不能制热的问题。
土壤源热泵地下换热管路采用高密度聚乙烯塑料管,使用寿命长达50年以上,可与建筑物寿命相当.空调机组结构简单,运转部件少,使用寿命可达到20年以上。