一道定积分题目的几种解法

合集下载

求取一元定积分和不定积分的6种方法

求取一元定积分和不定积分的6种方法

求取一元定积分和不定积分的6种方法声明:本文章为原创文章,首发于“湖心亭记”其实一元定积分的解法有几种,跳来跳去。

所以做题的时候如果想养成习惯,可以避开所有没有观察到的点。

========================================首先说明求解一元定积分的几种方法:1、奇函数和偶函数法要特别注意的是,奇函数在对称区间的定积分是0,根本不用找。

例1: \[\int_{ - 1}^1 x dx= 0\] 。

解析:显然x在[-1,1]区间内为奇函数,故不用算就知道积分为0。

2、定积分的几何意义法这类题目的特点是,一眼就能看出是圆方程;要么被积函数看似简单,但对原函数进行积分是非常困难的。

匹配后发现,被积函数其实就是我们学过的常见曲线方程(一般来说是圆方程)。

然后我们就可以利用定积分的几何意义,按照常用的方法求面积了。

例2: \[\int_{ - 3}^3 {\sqrt {9 - {x^2}} } dx =\frac{{9\pi }}{2}\]解析:很明显能直接看出被积函数就是一个半圆:x2+y2=9(y>=0),因此积分值为圆面积的一半,非常易求。

例3: \[\int_0^4 {\sqrt {4x - {x^2}} } dx = 2\pi \]解析:这道题如果按照换元法或者分部法是很难积出原函数的。

而且一眼也看不出来被积函数是圆的方程。

但是经过配凑,发现确实是圆的方程。

令 \[y = \sqrt {4x - {x^2}} \] 得到y2+x2-4x=0,进而配凑成y2+(x-2)2=4(y>0),很明显这就是一个以(2,0)为圆心,2为半径的圆。

积分值为圆的面积的一半,非常易求。

小结下:几何意义法下的题目的被积函数一般为一个根号式,式子下含有\[ - {x^2}\]项,因此碰到这样子的可以优先考虑几何意义法。

3、第一类换元法和第二类换元法第一类换元法或者可以称之为整体配凑法,如下:\[\int {f\left( {\varphi \left( x \right)} \right)dx} = k\int {f\left( {\varphi \left( x \right)}\right)d\varphi \left( x \right){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} } \]例4: \[\int {\sin 2xdx = \frac{1}{2}\int {\sin 2xd2x = - \frac{1}{2}\cos 2x} } \]第二类换元法,可以称之为直接换元,如下:\[\int {f\left( x \right)dx = \int {f\left( {\phi\left( t \right)} \right)d\phi \left( t \right) = \int {g\left( t \right)dt{\kern 1pt} {\kern 1pt} {\kern 1pt}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (x{\rm{ = }}\phi \left( {\rm{t}}\right))} } } \]也就是说将f(x)换成了比较容易积出来的g(t),当然最后别忘记将t回代成x。

求定积分的四种方法

求定积分的四种方法

求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0;⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.。

求解定积分的技巧与方法

求解定积分的技巧与方法

求解定积分的技巧与方法求解定积分是高中数学和大学数学中不可避免的一个内容。

对于许多学生和学者来说,求解定积分是一个比较棘手的问题,需要灵活的思维和丰富的数学知识。

本文将为大家介绍一些求解定积分的技巧和方法,帮助大家更好地理解和掌握这一内容。

1. 分段函数法分段函数法是解决经典定积分求解的常用技巧之一。

当我们面对一个比较复杂的积分时,可以尝试将其分解成多个简单的分段函数,进而分别求解。

例如,对于一个形如$y=|x|$ 的函数图像,我们可以将其分区间来讨论,即:当$x\leq0$ 时,$y=-x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{-1}^{0}-x\,\mathrm{d}x+\int_{0}^{1}x\,\mathrm{d}x$当$x>0$ 时,$y=x$,则:$\int_{-1}^{1}|x|\,\mathrm{d}x=\int_{0}^{1}x\,\mathrm{d}x-\int_{-1}^{0}x\,\mathrm{d}x$这样的分段讨论可以使我们更加清晰地理解函数的特性,并且更加方便地求解原函数。

2. 换元法换元法是求解复杂定积分的常用方法之一。

通常我们会利用简单的变量替换,将原积分转化为易于处理的形式。

例如,对于$\int_{-\pi}^{\pi} \frac{1}{1+\sin x}\,\mathrm{d}x$这样的积分,我们可以利用以下替换:设$t=\tan\frac{x}{2}$,则有:$\sin x=\frac{2t}{1+t^{2}},\cos x=\frac{1-t^{2}}{1+t^{2}},\mathrm{d}x=\frac{2\mathrm{d}t}{1+t^{2}}$将上述变量替换代入原式中,则有:$\int_{-1}^{1}\frac{2}{1+(2t/(1+t^{2}))}\frac{2\mathrm{d}t}{1+t^{2}}=4\in t_{-1}^{1}\frac{\mathrm{d}t}{1+t^{2}}=4\pi$所以原式的解为$4\pi$。

定积分的解法

定积分的解法

第 5 页 共 13 页

0
f
xdx
f
xdx
0 1.

例 10 设 f x在 0,b上连续且单调递增,证明:当 0 a b 时,有
b
a
xf
xdx
b b
20
f
xdx
a 2
a
0
f
xdx.
(10.1)
分析 将定积分不等式(10.1)视为数值不等式,可利用相应的函数不等式的
证明方法证明。将要证的不等式两端做差,并将 b 换成 u ,作辅助函数 F u,即

I
dx
0 1 x2 1 x
x
1 t
0
t dt 1 t2 1 t
x dx
0 1 x2 1 x
,于是
I
1 2
0
1
dx x2 1
x
x dx
1 x2
1 x
1 dx 1 arctan x .
2 0 1 x2 2
04

小结 收敛的广义积分的计算和证明依据与定积分完全类似的换元积分法和分
需证 Fb 0.


F u
u
a
xf
xdx
u 2
u
0
f
xdx
a 2
a
0
f
xdx

F
u
uf
u
1 2
uf
u
1 2
u
0
f
xdx
a u b,
1 2
u 0
f
u
f
xdx
0 (因为
f
x递增,
f
u
f

一些特殊定积分的解题技巧

一些特殊定积分的解题技巧

一些特殊定积分的解题技巧特殊定积分是指具有特定形式或特殊性质的定积分。

下面将介绍一些解特殊定积分题目的技巧。

1. 分部积分法分部积分法适用于具有乘积形式的积分。

设要求的积分为∫u dv,根据分部积分公式,可以得到:∫u dv = u v - ∫v du通过选择合适的u和dv,使得∫v du容易求解,可以简化积分的过程。

2. 换元法换元法可以将复杂的定积分转化为简单的形式。

设t = g(x)为变换函数,dx = g'(x) dt,要求的积分变为∫f(g(x)) dx = ∫f(t) g'(x) dt。

通过适当选择变换函数g(x),可以使原积分简化为常见的积分形式。

3. 对称性如果被积函数具有某种对称性质,可以利用对称性简化积分过程。

如果被积函数具有奇偶对称性,可以利用奇偶性质进行化简。

4. 利用几何意义有些特殊定积分的积分区间可以看作是几何形状的面积、体积或弧长等。

通过找到几何意义,可以将问题转化为求解几何参数的问题,从而简化积分过程。

5. 利用对数和指数函数的性质对数和指数函数具有一些特殊的性质,可以利用这些性质简化积分。

利用指数函数的性质可以将积分转化为指数函数的积分形式,再利用指数函数的积分性质求解。

7. 利用积分的加法性质定积分具有加法性质,可以将整个积分区间分成多个部分进行求解。

通过将积分区间划分为简单的子区间,可以将整个积分化简为单个子区间的积分,再将结果相加。

8. 利用积分的换序性质如果被积函数具有一定的连续性和可导性质,可以通过交换积分顺序简化积分的过程。

即,将二重积分或三重积分转化为先对一个变量进行积分,再对另一个变量进行积分的积分形式。

定积分典型例题

定积分典型例题

定积分典型例题例1求33322321lim(2)nnnn n.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1ix n ,然后把2111n n n的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)nnnn n=333112lim ()nn nnnn=1334xdx.例2222x x dx =_________.解法1由定积分的几何意义知,2202x x dx 等于上半圆周22(1)1x y(0y )与x 轴所围成的图形的面积.故222xx dx =2.解法2本题也可直接用换元法求解.令1x=sin t (22t),则222xx dx =2221sin cos t tdt =22021sin cos t tdt =2202cos tdt =2例3 比较12xe dx ,212x e dx ,12(1)x dx .分析对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1在[1,2]上,有2xxee .而令()(1)xf x ex ,则()1xf x e.当0x时,()0f x ,()f x 在(0,)上单调递增,从而()(0)f x f ,可知在[1,2]上,有1xex .又1221()()f x dx f x dx ,从而有2111222(1)xx x dx e dxe dx .解法2在[1,2]上,有2xxee .由泰勒中值定理212!xe exx 得1xex .注意到1221()()f x dxf x dx .因此2111222(1)xx x dxe dxe dx .例4 估计定积分22x xedx 的值.分析要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.解设2()x xf x e, 因为2()(21)x xf x ex, 令()0f x ,求得驻点12x, 而(0)1f e, 2(2)f e , 141()2f e,故124(),[0,2]ef x e x ,从而2122422x xeedxe ,所以2124222xxee dx e.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ,()0f x .求lim()()b n ang x f x dx .解由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x 知0M,0m .又()0g x ,则()b nam g x dx()()b nag x f x dx()b naMg x dx .由于limlim1nnnnmM,故lim ()()bnang x f x dx =()bag x dx .例6求sin limn p nnx dx x, ,p n 为自然数.分析这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1利用积分中值定理设sin ()xf x x, 显然()f x 在[,]n np 上连续, 由积分中值定理得sin sinn pnx dxp x,[,]n np ,当n时,, 而sin1, 故sin sinlim lim0n pnnx dx px.解法2利用积分不等式因为sin sin 1lnn pn pn pnnnx x n pdxdxdx xxxn,而limln0nn pn,所以sin lim0n p nnx dxx.例7求10lim1nnxdx x.解法1由积分中值定理()()()()b b aaf xg x dxf g x dx 可知101nxdx x=1011nx dx ,01.又11lim lim 01nnnx dxn 且11121,故10lim01nnxdxx.解法2因为01x,故有1nnx x x.于是可得111nnxdxx dx x.又由于110()1nx dx nn.因此10lim1nnxdx x=0.例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dxf .证明在(0,1)内存在一点c ,使()0f c .分析由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f 即可.证明由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dxf f ,其中3[,1][0,1]4.于是由罗尔定理,存在(0,)(0,1)c,使得()0f c .证毕.例9(1)若22()x t xf x e dt ,则()f x =___;(2)若0()()x f x xf t dt ,求()f x =___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dtf v x v x f u x u x dx.解(1)()f x =422xxxee ;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x xf t dt ,则可得()f x =()()xf t dtxf x .例10 设()f x 连续,且31()x f t dtx ,则(26)f =_________.解对等式310()x f t dtx 两边关于x 求导得32(1)31f xx,故321(1)3f xx,令3126x得3x ,所以1(26)27f .例11函数11()(3)(0)x F x dt xt 的单调递减开区间为_________.解1()3F x x,令()0F x 得13x,解之得19x,即1(0,)9为所求.例12求0()(1)arctan x f x t tdt 的极值点.解由题意先求驻点.于是()f x =(1)arctan x x .令()f x =0,得1x,0x.列表如下:故1x为()f x 的极大值点,0x为极小值点.例13已知两曲线()y f x 与()y g x 在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt ,[1,1]x,试求该切线的方程并求极限3lim ()nnf n.分析两曲线()yf x 与()yg x 在点(0,0)处的切线相同,隐含条件(0)(0)f g ,(0)(0)f g .解由已知条件得2(0)(0)0t f g edt,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x xef g x.故所求切线方程为y x .而x(,0)0(0,1)1(1,)()f x -+-3()(0)3lim ()lim33(0)330nnf f n nf f nn.例14 求22000sin lim(sin )x x xtdt t t t dt;分析该极限属于00型未定式,可用洛必达法则.解22000sin lim (sin )x x xtdt t tt dt=222(sin )lim (1)(sin )x x x x xx =220()(2)lim sin x x x x =304(2)lim1cos x xx=212(2)limsin xxx=0.注此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b ,使等式221lim1sin x xt dtxb xat成立.分析易见该极限属于00型的未定式,可用洛必达法则.解2201limsin x xt dt xb xat=22lim1cos x xa xb x =221lim lim1cos x xxb xa x21lim 11cos x xb xa,由此可知必有0lim(1cos )0xb x ,得1b.又由212lim11cos xxxa a,得4a .即4a ,1b为所求.例16设sin 2()sin xf x t dt ,34()g x xx ,则当0x时,()f x 是()g x 的().A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1由于223()sin(sin )cos limlim()34xxf x x xg x xx2200cos sin(sin )lim lim 34x x x x x x 2211lim 33x x x.故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 22337111()[()]sin sin 3!342x f x tt dtxx,则344341111sin (sin )sin ()1342342lim lim lim ()13x x x x x xf xg x xxx.例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()b axf x dx()2b aa bf x dx .证法1 令()F x =()()2x x aaax tf t dtf t dt ,当[,]t a x 时,()()f t f x ,则()F x =1()()()22x aaxxf x f t dt f x =1()()22x ax a f x f t dt1()()22x ax af x f x dt =()()22xa xa f x f x 0.故()F x 单调增加.即()()F x F a ,又()0F a ,所以()0F x ,其中[,]x a b .从而()F b =()()2b b aaa b xf x dxf x dx0.证毕.证法2由于()f x 单调增加,有()[()()]22a b a bxf x f 0,从而()[()()]22b aa ba b xf x f dx0.即()()2b aa bxf x dx ()()22b aa ba bxf dx =()()22b aa ba b f xdx =0.故()b axf x dx()2b aa bf x dx .例18计算21||x dx .分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解21||x dx =021()x dxxdx =22021[][]22xx=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dxxx ,则是错误的.错误的原因则是由于被积函数21x在0x 处间断且在被积区间内无界.例19计算22max{,}x x dx .分析被积函数在积分区间上实际是分段函数212()1x x f x xx.解23212221201011717max{,}[][]23236x x x x dxxdx x dx 例20设()f x 是连续函数,且1()3()f x x f t dt ,则()________f x .分析本题只需要注意到定积分()b af x dx 是常数(,a b 为常数).解因()f x 连续,()f x 必可积,从而10()f t dt 是常数,记10()f t dta ,则()3f x xa ,且11(3)()x a dxf t dt a .所以2101[3]2x ax a ,即132a a ,从而14a,所以3()4f x x.例21设23,1()52,12x x f x x x,0()()x F x f t dt ,02x ,求()F x , 并讨论()F x 的连续性.分析由于()f x 是分段函数, 故对()F x 也要分段讨论.解(1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x时,[0,][0,1]x , 因此233()()3[]x xxF x f t dtt dt t x .当(1,2]x时,[0,][0,1][1,]x x , 因此, 则121()3(52)x F x t dtt dt =31201[][5]xt t t =235xx ,故32,01()35,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(35)1xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处连续, 从而()F x 在[0,2]上连续.错误解答(1)求()F x 的表达式,当[0,1)x 时,233()()3[]x xxF x f t dtt dt t x .当[1,2]x 时,有0()()x F x f t dt(52)x t dt =25x x .故由上可知32, 01()5,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(5)4xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处不连续, 从而()F x 在[0,2]上不连续.错解分析上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因为当[1,2]x 时,0()()x F x f t dt 中的积分变量t 的取值范围是[0,2],()f t 是分段函数,11()()()()xxF x f t dtf t dtf t dt才正确.例22 计算2112211x x dx x.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解2112211x x dx x=211112221111x x dxdx x x.由于22211xx是偶函数,而211x x是奇函数,有112011x dx x, 于是2112211x x dx x=2102411xdx x=2212(11)4x x dx x=112441dx x dx由定积分的几何意义可知1214x dx , 故211122444411x x dx dx x.例23计算3412ln (1ln )e e dx x x x .分析被积函数中含有1x 及ln x ,考虑凑微分.解3412ln (1ln )e e dx x x x =34(ln )ln (1ln )e ed x x x =34122(ln )ln 1(ln )e e d x x x =341222(ln )1(ln )e e d x x =3412[2arcsin(ln )]e e x =6.例24计算40sin 1sin x dx x .解40s i n 1s i nx dx x =42sin (1sin )1sin x x dx x=2442sin tan cos x dxxdxx=2442cos (sec 1)cos d x x dxx =44001[][tan ]cos xx x=224.注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算222a x ax x dx ,其中0a.解222a x ax x dx =222()a x axa dx ,令sin xa a t ,则222a x axx dx =3222(1sin )cos at tdt=32202cos 0atdt=32a .注若定积分中的被积函数含有22ax ,一般令sin xa t 或cos x a t .例26 计算022a dx xax,其中0a.解法1令sin xa t ,则22a dx xax2cos sin cos t dttt201(sin cos )(cos sin )2sin cos t t t t dttt 201(sin cos )[1]2sin cos t t dttt201ln |sin cos |2t tt =4.解法2 令sin xa t ,则22a dx xax=20cos sin cos t dt tt.又令2tu ,则有20cos sin cos t dt tt=20sin sin cos u du uu.所以,22a dx xax=2201sin cos []2sin cos sin cos t t dtdt tttt=2012dt =4.注如果先计算不定积分22dx xax,再利用牛顿莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 5013xxxeedx e.分析被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解设1xue,2ln(1)xu,221u dxdu u,则ln 5013xxxeedx e=2222(1)241u u udu u u 222222442244u udu du uu 2221284duduu4.例28 计算22()x d tf xt dt dx,其中()f x 连续.分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于22()x tf xt dt =2221()2x f xt dt .故令22xtu ,当0t 时2ux ;当tx 时0u,而2dt du ,所以22()x tf xt dt =21()()2x f u du =201()2x f u du ,故220()x d tf x t dt dx=201[()]2x d f u du dx =21()22f x x =2()xf x .错误解答22()x d tf xt dtdx22()(0)xf xx xf .错解分析这里错误地使用了变限函数的求导公式,公式()()()x ad x f t dt f x dx中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f xt 含有x ,因此不能直接求导,而应先换元.例29计算30sin x xdx .分析被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解3s i n x x d x30(c o s )xd x 330[(c o s )](c o s )x x xd x 3cos 6xdx326.例30计算12ln(1)(3)x dx x .分析被积函数中出现对数函数的情形,可考虑采用分部积分法.解12ln(1)(3)x dx x =101ln(1)()3x d x =110111[ln(1)]3(3)(1)x dxxx x =101111ln 2()2413dxxx 11ln 2ln324.例31计算20sin xe xdx .分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解由于20sin xe xdx20sin xxde220[sin ]cos xxe x e xdx220cos xee xdx ,(1)而20cos xe xdx20cos xxde220[cos ](sin )xxe x ex dx20sin 1xe xdx ,(2)将(2)式代入(1)式可得20sin xe xdx220[sin 1]xee xdx ,故20sin xe xdx21(1)2e .例32 计算10arcsin x xdx .分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx21arcsin ()2xxd 221100[arcsin ](arcsin )22x xx d x 21021421x dx x.(1)令sin xt ,则21021xdxx2202sin sin 1sin t d tt 220sin cos cos t tdtt 220sin tdt201cos22tdt 20sin 2[]24t t 4.(2)将(2)式代入(1)式中得10arcsin x xdx8.例33设()f x 在[0,]上具有二阶连续导数,()3f 且[()()]cos 2f x f x xdx,求(0)f .分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解由于[()()]cos f x f x xdx()sin cos ()f x d xxdf x 0{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ()(0)2f f .故(0)f 2()235f .例34(97研)设函数()f x 连续,1()()x f xt dt ,且0()limx f x A x(A 为常数),求()x 并讨论()x 在0x处的连续性.分析求()x 不能直接求,因为10()f xt dt 中含有()x 的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ,最后用函数连续的定义来判定()x 在0x 处的连续性.解由0()limxf x A x知0lim ()0xf x ,而()f x 连续,所以(0)0f ,(0)0.当0x时,令u xt ,0t ,0u ;1t,ux .1dtdu x,则()()xf u du x x,从而02()()()(0)xxf x f u dux xx.又因为02()()(0)()limlim lim 022xx x x f u du x f x A xxx,即(0)2A .所以()x =2()(),0,2xxf x f u dux x A x.由于22()()()()lim ()lim lim lim xxx x x x xf x f u duf u du f x x xxx=(0)2A .从而知()x 在0x处连续.注这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出02()()()xxf x f u dux x,而没有利用定义去求(0),就得到结论(0)不存在或(0)无定义,从而得出()x 在0x处不连续的结论.(2)在求0lim()xx 时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim()lim ().22xxxf x f x f x x f x x又由0()limxf x A x用洛必达法则得到0lim ()x f x =A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()xf x 是否存在是不能确定的.例35(00研)设函数()f x 在[0,]上连续,且()0f x dx,0()cos 0f x xdx.试证在(0,)内至少存在两个不同的点12,使得12()()0f f .分析本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt ,找出()F x 的三个零点,由已知条件易知(0)()0F F ,0x,x为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)之间存在两个零点.证法1 令0()(),0x F x f t dt x,则有(0)0,()0F F .又000()cos cos ()[cos ()]()sin f x xdxxdF x xF x F x xdx()sin 0F x xdx,由积分中值定理知,必有(0,),使得()sin F x xdx =()sin(0)F .故()sin 0F .又当(0,),sin 0,故必有()0F .于是在区间[0,],[,]上对()F x 分别应用罗尔定理,知至少存在1(0,),2(,),使得12()()0F F ,即12()()0f f .证法2 由已知条件()0f x dx及积分中值定理知必有1()()(0)0f x dx f ,1(0,),则有1()0f .若在(0,)内,()0f x 仅有一个根1x,由()0f x dx 知()f x 在1(0,)与1(,)内异号,不妨设在1(0,)内()0f x ,在1(,)内()0f x ,由0()cos 0f x xdx,()0f x dx,以及cosx 在[0,]内单调减,可知:10()(cos cos )f x xdx =11110()(cos cos )()(cos cos )f x xdxf x x dx 0.由此得出矛盾.故()0f x 至少还有另一个实根2,12且2(0,)使得12()()0.f f 例36计算243dxxx .分析该积分是无穷限的的反常积分,用定义来计算.解243dx xx =2lim43t tdx xx =0111lim()213t tdxx x =011lim[ln]23t txx=111lim (lnln )233tt t=ln 32.例37计算322(1)2dxx xx.解322(1)2dxx xx223223sec tan 1secsectan(1)(1)1dxx dx x 233cos 12d .例38 计算42(2)(4)dx xx .分析该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32(2)(4)dxx x 和43(2)(4)dx xx 均收敛时,原反常积分才是收敛的.解由于学无止境32(2)(4)dx xx =32lim(2)(4)aadx xx =322(3)lim1(3)aad x x=32lim[arcsin(3)]a ax =2.43(2)(4)dx xx =34lim(2)(4)bbdx xx =324(3)lim1(3)b bd x x=34lim[arcsin(3)]bbx=2.所以42(2)(4)dx xx 22.例39计算5(1)dxx x .分析此题为混合型反常积分,积分上限为,下限0为被积函数的瑕点.解令xt ,则有5(1)dxx x =5222(1)tdtt t=5222(1)dtt,再令tan t ,于是可得522(1)dtt=2522tan(tan1)d =225secsecd=23secd =320cosd =220(1sin)cos d=220(1sin)sind =3/201[sinsin]3=23.例40 计算214211x dx x.解由于221114222222111()11112()d xx xx dxdxxx xxx,可令1t xx,则当2x时,22t ;当0x 时,t ;当0x 时,t;当1x时,0t;故有21014222211()()11112()2()d x d x x x x dxxx xx x2222()22d t dt tt21(arctan )22.注有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x ,3y x ,2y,1y所围成的图形的面积.分析若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解选取y 为积分变量,其变化范围为[1,2]y ,则面积元素为dA =1|2|3yy dy =1(2)3yy dy .于是所求面积为211(2)3Ayy dy =52.例42抛物线22yx 把圆228xy分成两部分,求这两部分面积之比.解抛物线22yx 与圆228xy的交点分别为(2,2)与(2,2),如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2yydy =24488cos3d=423,218S A =463,于是12S S =423463=3292.2A 1A 12(2,2)o xy22yx228xy2112122x y1y 3y x o 133212112xy2y 图5-1342例43 求心形线1cos 与圆3cos 所围公共部分的面积.分析心形线1cos 与圆3cos的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解求得心形线1cos 与圆3cos 的交点为(,)=3(,)23,由图形的对称性得心形线1cos 与圆3cos 所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22dd =54.例44求曲线ln y x 在区间(2,6)内的一条切线,使得该切线与直线2x,6x和曲线ln yx 所围成平面图形的面积最小(如图5-4所示).分析要求平面图形的面积的最小值,必须先求出面积的表达式.解设所求切线与曲线ln y x 相切于点(,ln )c c ,则切线方程为1ln ()ycx c c.又切线与直线2x,6x和曲线ln y x 所围成的平面图形的面积为图5-4A =621[()ln ln ]x c cx dx c=44(1)4ln 46ln 62ln 2c c.由于dA dc=2164cc=24(4)c c,令0dA dc,解得驻点4c.当4c时0dA dc ,而当4c时0dA dc.故当4c 时,A 取得极小值.由于驻点唯一.故当4c时,A 取得最小值.此时切线方程为:11ln 44yx .例45求圆域222()xy b a (其中ba )绕x 轴旋转而成的立体的体积.解如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b ax ,下半圆周的方程为221y b ax .图5-5则体积元素为(0,)b o222()(0)xy b a baxy1xoy2312145673ln yx2x6x (,ln )c c 33cos3211xoy1211cosdV =2221()yy dx =224b ax dx .于是所求旋转体的体积为V =224aabax dx =228a bax dx =284a b=222a b .注可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln yx 的切线,该切线与曲线ln yx 及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e 旋转一周所得旋转体的体积V .分析先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln yx 在点00(,ln )x x 处的切线方程是0001ln ()yx xx x .由该切线过原点知ln 10x ,从而0x e ,所以该切线的方程是1yx e.从而D 的面积1()12ye Ae ey dy.(2)切线1yx e与x 轴及直线x e 围成的三角形绕直线xe 旋转所得的旋转体积为2113V e ,曲线ln y x 与x 轴及直线xe 围成的图形绕直线x e 旋转所得的旋转体积为122211()(2)22y V e e dyee.因此,所求体积为212(5123)6VV V ee .例47有一立体以抛物线22y x 与直线2x 所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解选x 为积分变量且[0,2]x .过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为22x ,得等边三角形的面积为图5-7()A x =23(22)4x =23x .于是所求体积为V =2()A x dx =223xdx =43.xy zo22yx2x ln yxln y xyxo12311yxe例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米)分析本题属于变力作功问题,可用定积分来求.解(1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n ,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以1221122x k k W kxdxxa ,2122222211()()22x x k k W kxdxx x x a .由21W rW 得22221x xra ,即222(1)xr a ,3222223323()[(1)]22x x k kW kxdxxx xr a .由2321W rW r W 得22223(1)x r ar a ,即2223(1)xrr a .从而汽锤击打3次后,可将桩打进地下231x a rr (m ).(2)问题是要求lim n nx ,为此先用归纳法证明:11nnx a rr.假设11n nx r ra ,则12211()2nnx nn nx k W kxdx xx 2121[(1...)]2n nk x r ra .由2111...nnn nW rW r W r W ,得21221(1...)n n nx r rar a .从而11nnx rr a .于是111lim lim11n nnnra x arr.若不限打击次数,汽锤至多能将桩打进地下()1a m r.例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135yx .于是闸门上对应小区间[,]x xdx 的窄条所承受的水压力为2dF xy gdx.故闸门所受水压力为F =10012(3)5gx x dx =5003g ,其中为水密度,g 为重力加速度.图5-8o xyxdxx(0,3)A (10,1)B。

求定积分的四种方法

求定积分的四种方法

定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++. 所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0; ⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

定积分计算例题

定积分计算例题

定积分是微积分的一个重要概念,它是对函数在一个区间上的积累结果的度量。

定积分的计算方法主要有直接法、换元法和分部积分法等。

下面通过几个例题来详细介绍定积分的计算方法。

例1:计算定积分∫(0,2) x^2 dx。

解:根据定积分的定义,我们可以将这个定积分表示为一个求和的形式:∫(0,2) x^2 dx = 1/3 * (x^3) | (0,2) = 8/3所以,定积分∫(0,2) x^2 dx的值为8/3。

例2:计算定积分∫(0,π/2) sin(x) dx。

解:这是一个典型的利用换元法求解的定积分问题。

我们可以令u = sin(x),则du = cos(x) dx。

因此,原定积分可以转化为:∫(0,π/2) sin(x) dx = ∫(0,π/2) u du = u | (0,π/2) = sin(π/2) - sin(0) = 1所以,定积分∫(0,π/2) sin(x) dx的值为1。

例3:计算定积分∫(0,1) (e^x - x^2) dx。

解:这是一个典型的利用分部积分法求解的定积分问题。

我们可以令u = e^x,则du = e^x dx;v = x^2,则dv = 2x dx。

因此,原定积分可以转化为:∫(0,1) (e^x - x^2) dx = ∫(0,1) u dv -∫(0,1) v du = u*v | (0,1) - [uv] | (0,1) = e^1 - 1 - [e^x*x^2] | (0,1) = e^1 - 1 - (e^1 - 1) = e^1 - e^1 + 1 - 1 = 0所以,定积分∫(0,1) (e^x - x^2) dx的值为0。

通过以上三个例题,我们可以看到定积分的计算方法主要包括直接法、换元法和分部积分法等。

在实际应用中,我们需要根据具体的问题选择合适的计算方法。

同时,我们还需要注意在计算过程中保持变量的一致性,避免出现符号错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一道定积分题目的几种解法
定积分是中学数学中新引进的一个数学概念,在物理中它可以用来求物体运动的位
移、力作的功,在数学中我们常用它来求解一些曲边图形的面积.
在数学中,定积分()(()0b
a f x d x f x ³ò的几何意义是表示由直线
x=a,x=b ()a b ¹,y=0和曲线y=f(x)所围成的曲边梯形的面积,根据定积分的几何意义,如果所求解图形的面积仅由一条曲线y=f(x)与直线x=a,x=b 和x 轴围成,那么图形的面积可表示为()b
a S f x dx =ò;如果所求解图形的面积是由两条曲线12(),()y f x y f x ==与
直线x=a,x=b 围成,则图形的面积可表示为12()()b
a S f x f x dx =-ò.下面通过一道例
题来谈谈用定积分求曲边图形面积的常用解题思路..
题目: 求抛物线2y x =与直线230x y --=所围成的图形的面积.
思路一:根据定积分的几何意义,本题可以x 轴为界线,将所求面积分成上下两部分
12S 和S ,而每部分图形都是由一条曲线与x 轴和两条直线围成,其中1S
是曲边三角形()0,9,y x x x =
==曲线轴围成的面积减去一个三角形的面积,2S
是曲边梯形()0,1,y x x x =-==曲线轴围成与一个三角形面积的和.
解:如图,先求出直线与曲线的交点,
由方程组2230
y x x y ìï=ïíï--=ïî解得1,9,x x == 故交点坐标为()()1,1,9,3-.由上图可以看出,所求图形的面积 由1S 和2S 两部分(即图中阴影部分)组成.过交点A 做x 轴的
垂线,则
3210929990
3S x =-=-=ò,3122012511033S x =-+=-+=ò 12532933S S S \=+=+
= 评注:此种方法是严格按照定积分的几何意义来处理的,符合上边分析的第一种情况。

思路二:根据定积分的几何意义,我们也可以将图形进行另一种划分,那就是以直线 x=1为分界线将图形分成两部分,而每一部分都是由两条曲线与两条直线围成.其中左边1S 是由曲
线y =
与直线x=0,x=1围成,右边2S 是由曲
线,1,9y x x ===x-3y=2
围成. 解:我们还可以把图形分为如图1S 和2S 两部分, 故所求面积为:
912013428322)2333
x S S S dx -=+=+=+= 评注: 此种方法完全符合上边分析的第二种情况,把复杂的图形简单化,从而很容易求解。

思路三:在定积分()b
a f x dx ò的定义中,我们是将x 所属的区间[],a
b 进行了分割,
然后求和取极限,也就是说x 被定义为了积分变量。

据此,我们可以改变一下思维方式,将y 看做是函数的自变量,对y 所在的区间进行分割,那么y 就变成了积分变量,然后求和取极限,因此,本题就变成了关于y 的积分。

解:将y 看作是积分变量,则面积为
33
211532(23)933S y dy y dy --骣÷ç=+-=--=÷ç÷ç桫蝌 评注:本种方法将y 进行了分割,将y 当做是积分变量,这也是我们常用的一种思维方法,,变换思维角度有助于学生对定积分的定义有着进一步的理解.
比较上面三种解法可以发现,利用定积分求图形面积时,适当地分割图形或适当地选择积分变量可以简化解题过程.。

相关文档
最新文档