1994考研数三真题与解析

合集下载

数据结构考研真题及其答案

数据结构考研真题及其答案

一、选择题1. 算法的计算量的大小称为计算的(B )。

【北京邮电大学2000 二、3 (20/8分)】A.效率 B. 复杂性 C. 现实性 D. 难度2. 算法的时间复杂度取决于(C )【中科院计算所1998 二、1 (2分)】A.问题的规模 B. 待处理数据的初态 C. A和B3.计算机算法指的是(C),它必须具备(B)这三个特性。

(1) A.计算方法 B. 排序方法 C. 解决问题的步骤序列D. 调度方法(2) A.可执行性、可移植性、可扩充性B. 可执行性、确定性、有穷性C. 确定性、有穷性、稳定性D. 易读性、稳定性、安全性【南京理工大学1999 一、1(2分)【武汉交通科技大学1996 一、1(4分)】4.一个算法应该是(B )。

【中山大学1998 二、1(2分)】A.程序B.问题求解步骤的描述C.要满足五个基本特性D.A和C.5. 下面关于算法说法错误的是( D )【南京理工大学2000 一、1(分)】A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的6. 下面说法错误的是( C )【南京理工大学2000 一、2 (分)】(1)算法原地工作的含义是指不需要任何额外的辅助空间(2)在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度O(2n)的算法(3)所谓时间复杂度是指最坏情况下,估算算法执行时间的一个上界(4)同一个算法,实现语言的级别越高,执行效率就越低4 A.(1) B.(1),(2) C.(1),(4) D.(3)7.从逻辑上可以把数据结构分为( C )两大类。

【武汉交通科技大学1996 一、4(2分)】A.动态结构、静态结构B.顺序结构、链式结构C.线性结构、非线性结构D.初等结构、构造型结构8.以下与数据的存储结构无关的术语是( D )。

【北方交通大学2000 二、1(2分)】A.循环队列 B. 链表 C. 哈希表 D.栈9.以下数据结构中,哪一个是线性结构(D )【北方交通大学2001 一、1(2分)】A.广义表 B. 二叉树 C. 稀疏矩阵 D. 串10.以下那一个术语与数据的存储结构无关( A )【北方交通大学2001 一、2(2分)】A.栈 B. 哈希表 C. 线索树 D. 双向链表11.在下面的程序段中,对x的赋值语句的频度为(C )【北京工商大学2001 一、10(3分)】FOR i:=1 TO n DOFOR j:=1 TO n DOx:=x+1;A.O(2n) B.O(n) C.O(n2) D.O(log2n) 12.程序段FOR i:=n-1 DOWNTO 1 DOFOR j:=1 TO i DOIF A[j]>A[j+1]THEN A[j]与A[j+1]对换;其中n为正整数,则最后一行的语句频度在最坏情况下是( D )A. O(n)B. O(nlogn)C. O(n3)D. O(n2) 【南京理工大学1998一、1(2分)】13.以下哪个数据结构不是多型数据类型( D )【中山大学1999 一、3(1分)】A.栈B.广义表C.有向图D.字符串14.以下数据结构中,( A )是非线性数据结构【中山大学1999 一、4】A.树B.字符串C.队D.栈15. 下列数据中,(C)是非线性数据结构。

数据结构考研真题及其答案

数据结构考研真题及其答案

一、选择题1. 算法的计算量的大小称为计算的( B )。

【北京邮电大学2000 二、3 (20/8分)】A.效率 B. 复杂性 C. 现实性 D. 难度2. 算法的时间复杂度取决于(C )【中科院计算所 1998 二、1 (2分)】A.问题的规模 B. 待处理数据的初态 C. A和B3.计算机算法指的是(C),它必须具备(B)这三个特性。

(1) A.计算方法 B. 排序方法 C. 解决问题的步骤序列D. 调度方法(2) A.可执行性、可移植性、可扩充性 B. 可执行性、确定性、有穷性C. 确定性、有穷性、稳定性D. 易读性、稳定性、安全性【南京理工大学 1999 一、1(2分)【武汉交通科技大学 1996 一、1( 4分)】4.一个算法应该是( B )。

【中山大学 1998 二、1(2分)】A.程序 B.问题求解步骤的描述 C.要满足五个基本特性D.A和C.5. 下面关于算法说法错误的是( D )【南京理工大学 2000 一、1(1.5分)】A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的6. 下面说法错误的是( C )【南京理工大学 2000 一、2 (1.5分)】 (1)算法原地工作的含义是指不需要任何额外的辅助空间(2)在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度O(2n)的算法(3)所谓时间复杂度是指最坏情况下,估算算法执行时间的一个上界(4)同一个算法,实现语言的级别越高,执行效率就越低4A.(1) B.(1),(2) C.(1),(4) D.(3)【武汉交通科技大学 1996 7.从逻辑上可以把数据结构分为( C )两大类。

一、4(2分)】A.动态结构、静态结构 B.顺序结构、链式结构C.线性结构、非线性结构 D.初等结构、构造型结构8.以下与数据的存储结构无关的术语是( D )。

1994考研数二真题及解析

1994考研数二真题及解析

1994年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) 若2sin 21,0,() , 0ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,则a =______. (2) 设函数()y y x =由参数方程32ln(1),x t t y t t=-+⎧⎨=+⎩所确定,则22d ydx =______. (3)cos30()x d f t dtdx ⎡⎤=⎢⎥⎣⎦⎰______. (4) 23x x e dx =⎰______.(5) 微分方程2(4)0ydx x x dy +-=的通解为______.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设220ln(1)()lim2x x ax bx x →+-+=,则 ( ) (A) 51,2a b ==-(B) 0,2a b ==- (C) 50,2a b ==- (D) 1,2a b ==-(2) 设322,1()3 , 1x x f x x x ⎧≤⎪=⎨⎪>⎩,则()f x 在点1x =处的 ( )(A) 左、右导数都存在 (B) 左导数存在,但右导数不存在 (C) 左导数不存在,但右导数存在 (D) 左、右导数都不存在(3) 设()y f x =是满足微分方程sin 0xy y e'''+-=的解,且0()0f x '=,则()f x 在 ( ) (A) 0x 的某个领域内单调增加 (B) 0x 的某个领域内单调减少 (C) 0x 处取得极小值 (D) 0x 处取得极大值(4) 曲线2121arctan (1)(2)x x x y e x x ++=-+的渐近线有 ( )(A) 1条 (B) 2条 (C) 3条 (D) 4条(5)设43422222sin cos ,(sin cos )1x M xdx N x x dx x ππππ--==++⎰⎰,23422(sin cos )P x x x dx ππ-=-⎰,则有 ( )(A) N P M << (B) M P N << (C) N M P << (D) P M N <<三、(本题共5小题,每小题5分,满分25分.)(1) 设()y f x y =+,其中f 具有二阶导数,且其一阶导数不等于1,求22d ydx.(2) 计算3142(1)x x dx -⎰.(3) 计算2lim tan ()4nn nπ→∞+.(4) 计算sin 22sin dxx x+⎰.(5) 如图,设曲线方程为212y x =+,梯形OABC 的面积为D ,曲边梯形OABC 的面积为1D ,点A 的坐标为(,0)a ,0a >,证明:3D <.四、(本题满分9分)设当0x >时,方程211kx x +=有且仅有一个解,求k 的取值范围.五、(本题满分9分)设324x y x +=,(1) 求函数的增减区间及极值; (2) 求函数图像的凹凸区间及拐点; (3) 求其渐近线; (4) 作出其图形.六、(本题满分9分)求微分方程2sin y a y x ''+=的通解,其中常数0a >.七、(本题满分9分)设()f x 在[0,1]上连续且递减,证明:当01λ<<时,1()()f x dx f x dx λλ≥⎰⎰.八、(本题满分9分)求曲线23|1|y x =--与x 轴围成的封闭图形绕直线3y =旋转所得的旋转体体积.1994年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】2-【解析】2sin 21ax x e x+-在0x ≠时是初等函数,因而连续;要使()f x 在(,)-∞+∞上连续,()f x 在0x =处也连续,这样必有0lim ()(0)x f x f →=.由极限的四则混合运算法则和等价无穷小,0x →时,sin xx ;1x e x -.2200sin 21sin 21lim lim()ax ax x x x e x e x x x→→+--=+ 0022limlim 22x x x axa a x x→→=+=+=,从而有2a =-. (2)【答案】(1)(65)t t t++【解析】 dy dy dt dydx dtdt dx dt dx =⋅=2232352111t t y t t t t x t'+===++'-+, ()65(1)(65)111x txx t y t t t y x t t''+++''==='-+. 【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy dudx du dx=⋅. (3)【答案】3sin3(cos3)xf x -【解析】原式(cos3)(cos3)(cos3)(sin3)33sin3(cos3)f x x f x xxf x '=⋅=⋅-⋅=-. 【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(4)【答案】221(1)2x x e C -+,其中C 为任意常数【解析】本题利用不定积分的分部积分法求解.显然是2x e 先进入积分号,原式22222211()()22x x x x d e x e e d x ⎡⎤==-⎣⎦⎰⎰ 221(1)2x x e C =-+ 其中C 为任意常数. 注:分部积分法的关键是要选好谁先进入积分号的问题,如果选择不当可能引起更繁杂的计算,最后甚至算不出结果来.在做题的时候应该好好总结,积累经验.【相关知识点】分部积分公式:假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰ 或者 .udv uv vdu =-⎰⎰(5)【答案】4(4)x y Cx -⋅=,C 为任意常数 【解析】这是可分离变量的方程. 分离变量得0(4)dx dyx x y+=-,两项分别对x 和对y 积分得到114ln ln ,4x y C x-+= 化简有44x y C x-⋅=,即 4(4)x y Cx -⋅=,C 为任意常数.二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(A)【解析】方法1:将极限中的分子用泰勒—皮亚诺公式展开得2222ln(1)()(())()2x x ax bx x o x ax bx +-+=-+-+221(1)()()2a xb x o x =--++,由假设,应该有101()22a b -=⎧⎪⎨-+=⎪⎩,故由此51,2a b ==-,故应选(A).方法2:用洛必达法则.220ln(1)()lim x x ax bx x →+-+为“0”型的极限未定式,又分子分母在点0处导数都存在,所以,0121lim 2x a bxxx→--+=原式左边 20(1)(2)2lim 2(1)x a a b x bx x x →--+-=+(若10a -≠,则原式极限为∞,必有10a -=)122,2b +=-= 51,2a b ⇒==-. 故应选(A).(2)【答案】(B)【解析】方法1:因32(),(1)()3f x x x f x =≤⇒左可导,312(1)23x f x --='⎛⎫'== ⎪⎝⎭.又211lim ()lim 1(1)()x x f x x f f x ++→→==≠⇒不右连续()f x ⇒在1x =的右导数不存在, 故选(B). 方法2:2(1)3f =,而 211lim ()lim 1(1)x x f x x f ++→→==≠, 所以,()f x 在1x =点不连续,故不可导,但左,右导数可能存在,这只需要用左,右导数定义进行验证.2113112()(1)3(1)lim lim ,1122()(1)33(1)lim lim 2.11x x x x x f x f f x x x f x f f x x ++--+→→-→→--'===+∞----'===--故()f x 在1x =点左导数存在,但右导数不存在,故应选(B). (3)【答案】(C)【解析】由于()f x 满足微分方程sin 0xy y e'''+-=,当0x x =时,有0sin 00()()x f x f x e '''+=.又由0()0f x '=,有0sin 0()0x f x e ''=>,因而点0x 是()f x 的极小值点,应选(C).(4)【答案】(B)【解析】用换元法求极限,令1t x=,则当x →±∞时,0t →,且有 2201lim lim arctan ,(1)(12)4t x t t t y e t t π→±∞→++==-+ 0lim x y →=-∞,所以y 轴和4y π=是曲线的两条渐近线.而1x =和2x =-并非曲线的渐近线,因当1x =和2x =-时,y 分别趋向于2eπ±和142eπ±.故应选(B).【相关知识点】渐近线的相关知识:水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.(5)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D).三、(本题共5小题,每小题5分,满分25分.)(1)【解析】方程两边对x 求导,得(1)y f y '''=⋅+,两边再求导,得2(1)y f y f y ''''''''=⋅++⋅,由于一阶导数不等于1,所以10f '-≠. 以1f y f ''='-代入并解出y '',得 3(1)f y f ''''='-. 【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy dudx du dx=⋅. (2)【解析】用换元积分法.观察被积函数的特点,可考虑引入三角函数化简.令2sin x t =,则2cos xdx tdt =.当0x =时,0t =;当1x =时,2t π=,故原式4201cos 2tdt π=⎰1313()242232ππ=⋅⋅⋅=.【相关知识点】定积分关于单三角函数的积分公式:2200(1)!!, !!2sin cos (1)!!, !!n n n n n n I xdx xdx n n n πππ-⎧⎪⎪===⎨-⎪⎪⎩⎰⎰为偶数为奇数,.注:对于双阶乘!!n 的定义如下:当n 为奇数时,!!13n n =⨯⨯⨯;当n 为偶数时,!!24n n =⨯⨯⨯.(3)【解析】方法1:用三角函数公式将2tan()4n π+展开,再化为重要极限1lim(1)x x e x→∞+=的形式,利用等价无穷小因子替换,即0x →时,tan x x ,从而求出极限.221tan 2tan 2lim tan ()lim lim 12241tan 1tan nnn n n n n n n n n π→∞→∞→∞⎡⎤⎡⎤+⎢⎥⎢⎥+==+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 221tan 4tan 124tan22212tan 1tanlim221tan422tan lim 121tan n n n n n n nnnn n ee n →∞-⋅⋅-⋅-→∞⎡⎤⎢⎥=+==⎢⎥⎢⎥-⎣⎦.方法2:先取自然对数,求出极限后再用恒等式 lim ln ()lim ()x f x x e f x →∞→∞=.因为221tan2tan2lim ln tan ()lim ln lim ln 12241tan1tan n n n n n n n n n n n π→∞→∞→∞⎡⎤+⎢⎥+==+⎢⎥⎢⎥--⎣⎦ 222tan tan 4lim lim 42221tan 1tann n n n n n n n →∞→∞⎡⎤⎢⎥===⎢⎥⎢⎥--⎣⎦, 于是 2ln tan ()442lim tan ()lim 4n nn n n e e n ππ+→∞→∞+==.(4)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰(22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+,1120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦. (5)【解析】对梯形OABC 的面积为D ,可用梯形面积公式()2ha b +,其中h 为梯形的高,a 、b 分别为上底和下底长度.对于曲边梯形OABC 的面积则用积分式求解.222231011()(1)22,22111(32)().2326a a a a D a a a D x dx a a +++==+=+=+=⎰ 由于 22312a a +<+,所以221132a a +<+,由此, 2222221(1)3(1)31323(32)322226a a D a a a a D a a +++===<+++.四、(本题满分9分)【解析】方程211kx x +=的解即为32()1x kx x ϕ=-+的零点. 要证明方程211kx x+=有且仅有一个解,只需要证明()x ϕ是单调函数,且它的函数图像仅穿过x 轴一次就可以了.以下是证明过程.对()x ϕ求一阶导数,有2()32(32)x kx x x kx ϕ'=-=-.当0k ≤时,()0x ϕ'<,()x ϕ单调减少,(0)10,lim (),x x ϕϕ→+∞=>=-∞()x ϕ在0x >有唯一的零点;当0k >时,()x ϕ在2(0,)3k 单调减少,在2(,)3k +∞单调增加,224()1327k k ϕ=-,而(0)10,lim (),x x ϕϕ→+∞=>=+∞当且仅当最小值2()03k ϕ=时,()x ϕ才在0x >有唯一零点,这时应该有k =总之,当0k ≤或k =,原方程有唯一实根.五、(本题满分9分)【解析】求函数的增减区间一般先求出函数的不连续点和驻点,根据这些点将函数的定义域分成不同区间,然后根据y '在此区间上的正负来判断该区间上函数的增减性以及极值点;根据y ''的正负判定区间的凹凸性;求渐近线时除判定是否存在水平或垂直渐近线外,还要注意有没有斜渐近线.作函数图形时要能综合(1)、(2)、(3)所给出的函数属性,尤其注意渐近线、拐点、极值点和零点.2344824,1,0y x y y x x x '''=+=-=>. 无定义点:0x =,驻点:2x =.函数在(,0)(2,)-∞+∞单调增加,在(0,2)单调减少,在(,0)(0,)-∞+∞凹,在2x =取极小值23x y ==;由于 0lim ,x y →=∞所以0x =为垂直渐近线.由于 24lim1,lim()lim 0,x x x y y x xx →∞→∞→∞=-==所以y x =是斜渐近线.粗略草图如下:【相关知识点】渐近线的相关知识:水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线; 铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.六、(本题满分9分)【解析】所给方程为常系数的二阶线性非齐次方程,对应的齐次方程的特征方程220r a +=有两个根为12,r r ai =±.当1a ≠时,非齐次方程的特解应设为 sin cos Y A x B x =+.代入方程可以确定 221sin ,0,11xA B Y a a ===--. 当1a =时,应设 sin cos Y xA x xB x =+,代入方程可以确定 10,,cos 22xA B Y x ==-=-.由此,所求的通解为当1a ≠时,122sin cos sin 1xy c ax c ax a =++-; 当1a =时,12cos sin cos 2xy c x c x x =+-. 【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.七、(本题满分9分)【解析】方法一:用积分比较定理.首先需要统一积分区间:换元,令x t λ=,则 1()()f x dx f t dt λλλ=⎰⎰,由此[]11()()()()f x dx f x dx f x f x dx λλλλ-=-⎰⎰⎰.因为()f x 递减而x x λ<,所以()()f x f x λ≥,上式的右端大于零,问题得证. 方法二:用积分中值定理.为分清两中值的大小,需要分别在(0,),(,1)λλ两区间内用积分中值定理:11()()()f x dx f x dx f x dx λλ=+⎰⎰⎰,由此,11()()(1)()()f x dx f x dx f x dx f x dx λλλλλλ-=--⎰⎰⎰⎰12(1)()(1)()f f λλξλλξ=-⋅-⋅-[]12(1)()()f f λλξξ=-⋅-,其中,1201ξλξ<<<<;又因()f x 递减,12()()f f ξξ≥.上式的右端大于零,问题得证. 方法三:作为函数不等式来证明.令1()()()f x dx f x dx λϕλλ=-⎰⎰, [0,1]λ∈.则 1()()()f f x dx ϕλλ'=-⎰.由积分中值定理,有()()()f f ϕλλξ'=-,其中(0,1)ξ∈为常数.由()f λ递减,λξ=为唯一驻点,且()ϕλ'在λξ=由正变负,λξ=是()ϕλ的极大值点也是最大值点;由此,最小点必为端点0λ=或1.从而有()(0)(1)0,0 1.ϕλϕϕλ≥==<<命题得证.【相关知识点】积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.八、(本题满分9分)【解析】如右图所示,曲线左右对称, 与x 轴的交点是(2,0),(2,0)-. 只计算右半部分即可.作垂直分割, 相应于[],x x dx +的小竖条的体积微元:222223(3)3(1)dV y dx x dx π⎡⎤⎡⎤=--=--⎣⎦⎣⎦24(82),02x x dx x π=+-≤≤,于是 22404482(82)15V x x dx ππ=+-=⎰.y =。

[VIP专享]1994年全国硕士研究生入学统一考试数学三试题

[VIP专享]1994年全国硕士研究生入学统一考试数学三试题

的渐近线有
(x 1)(x 2)
()
(A) 1 条
(B) 2 条
(C) 3 条
(D) 4 条
(2) 设常数 0 ,而级数 an2 收敛,则级数 (1)n
n1
n1
an n2
(A) 发散
(B) 条件收敛
(C) 绝对收敛
()
(D) 收敛性与 有关
(3) 设 A 是 m n 矩阵, C 是 n 阶可逆矩阵,矩阵 A 的秩为 r ,矩阵 B AC 的秩为 r1 ,则
1994 年全国硕士研究生入学统一考试数学三试题
一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上.)
2 x x
(1)
dx _____________.
2 2 x2
(2) 已知 f (x)__.
x0 f (x0 2x) f (x0 x)
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
(D) t X S4 n
(C) t X S3 n
(B) t X S2 n 1
(A) t X S1 n 1
()
则服从自由度为 n 1的 t 分布的随机变量是
(A) r r1
(B) r r1
()
(C) r r1
(D) r 与 r1 的关系由 C 而定
七、(本题满分 8 分)
已知曲线 y a x (a 0) 与曲线 y ln x 在点 (x0 , y0 ) 处有公共切线,求: (1) 常数 a 及切点 (x0 , y0 ) ;

武忠祥教授高等数学考研第二三章

武忠祥教授高等数学考研第二三章

dy Fx dx Fy
若 x ( y) 可导,且 ( y) 0, 则其反函数 y f ( x)
也可导,且
f
(
x)
1 ( y)
(5)参数方程求导法:
dy dx
1 dx
dy

y
y( x)
是由
x y
(t) ,
(t)
(
t ) 确定的函数,则
1) 若 (t ) 和 (t ) 都可导,且 (t) 0 ,则 dy (t) dx (t)
f (n)( x0 ) ( x n!
x0 )n
Rn ( x)
其中
Rn ( x)
f (n1) ( )
(x (n 1)!
x0
)n1 ,
在 x0 与 x 之间.
(二)导数应用
1.洛必达法则
若 1) lim f ( x) lim g( x) 0();
x x0
x x0
2)f ( x) 和 g( x)在 x0的某去心邻域内可导,且 g( x) 0;
1)导数的几何意义:导数 f ( x0 )
在几何上表示曲线 y f ( x) y
T
在点 ( x0, f ( x0 )) 处切线的斜率。
N
切线方程
P
o(x)
M
dy y
y f ( x0 ) f ( x0 )( x x0 ).
y f (x)
x
法线方程

y
f ( x0 )
1 (x f ( x0 )
11) (sec x) sec x tan x 12)(csc x) csc x cot x
13) (arcsin x) 1 1 x2
15)
(arctan

1994考研数学一真题及答案解析

1994考研数学一真题及答案解析

x0 x sin2 x
x0
x x0
3
lim 1 cos x lim sin x 1 .
x0 3x2
x0 6x 6
(由重要极限 lim sin x 1 ) x0 x
(2)【答案】 2x y 4 0
【解析】所求平面的法向量 n 为平行于所给曲面在点 (1,2,0) 处法线方向的方向向量 l ,
(4)【答案】
R4(
1
1)
4 a2 b2
【解析】很显然,根据此题的特征用极坐标变换来计算:
原式
2 d
0
R r2
0
cos2 a2
sin2 b2
rdr
2
0
cos2 a2
sin2 b2
d
R r3dr .
0
注意:
2 cos2 d 2 sin2 d ,
0
0

原式
(3) 设 u ex sin x ,则 2u 在点 (2, 1 ) 处的值为_____________.
y xy
(4)
设区域 D 为 x2
y2
R2 ,则
D
x2 (a2
y2 b2 )dxdy
_____________.
(5) 已知 (1, 2, 3), (1, 1 , 1) ,设 A T ,其中 T 是 的转置,则 An _________. 23
1994 年全国硕士研究生入学统一考试数学一试题解析
一、填空题(本题共 5 个小题,每小题 3 分,满分 15 分.)
1
(1)【答案】
6
【解析】原式变形后为“ 0 ”型的极限未定式,又分子分母在点 0 处导数都存在,所以连 0
续应用两次洛必达法则,有

武忠祥教授高等数学考研第二三章

武忠祥教授高等数学考研第二三章

x
lim
______.
x0 f ( x02x) f ( x0 x)
【1】
【例 2】(2011年2,3)已知 f ( x) 在 x 0 处可导,且 f (0) 0,

lim
x0
x2
f
(
x) 2 x3
f
(
x3
)
(A) 2 f (0).
(B) f (0).
(C) f (0).
(D) 0.
【例3】(2013年,1)设函数 y f ( x) 由方程 y x e x(1 y)
2) ( x ) x 1
3) (a x ) a x ln a
5) (loga
x)
1 x lna
7) (sin x) cos x
4) (e x ) e x 6) (ln x ) 1
x 8) (cos x) sin x
9) (tan x) sec2 x
10) (cot x) csc2 x
第二章 导 数 与 微 分
2023最新整理收集 do
something
考试内容概要
(一)导数与微分的概念
1. 导数的概念
定义1(导数)
f ( x0 )
lim y lim x0 x x0
f ( x0 x) x
f ( x0 )
f ( x0 )
lim
x x0
f (x) x
f ( x0 ) x0
f ( x0 ) 0 定理9(极值的第一充分条件)
设 f ( x) 在 U( x0 , ) 内可导,且 f ( x0 ) 0(或 f ( x) 在 x0 处连续)
(1)若 x x0 时, f ( x) 0; x x0 时, f ( x) 0, 则 f 在 x0 处取极大值.

94年数三微分方程

94年数三微分方程

94年数三微分方程
(最新版)
目录
1.94 年数三微分方程的背景和意义
2.数三微分方程的定义和特点
3.数三微分方程的解法和应用
4.我国在数三微分方程领域的研究进展
正文
【1.94 年数三微分方程的背景和意义】
94 年数三微分方程,是指在 1994 年由中国数学家陈景润提出的一类特殊的微分方程。

这一方程在数学领域具有重要的地位,它的提出和研究不仅丰富了微分方程的理论体系,还为我国数学家在国际数学领域赢得了声誉。

【2.数三微分方程的定义和特点】
数三微分方程是一种特殊的微分方程,其特点是方程中包含三个以上的未知函数,并且这些函数的次数是不同的。

这种方程的求解过程较为复杂,需要运用到多种数学方法和技巧。

【3.数三微分方程的解法和应用】
数三微分方程的解法主要包括数值解法和解析解法。

数值解法是利用计算机进行数值模拟求解,而解析解法则是通过数学推导得到解析解。

数三微分方程在实际应用中具有广泛的应用,例如在物理、生物、经济等领域都有重要的应用价值。

【4.我国在数三微分方程领域的研究进展】
我国在数三微分方程领域的研究一直处于世界前列。

陈景润教授提出
的 94 年数三微分方程,是我国在这个领域的重要研究成果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1994年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)2222x xdx x -+=+⎰_____________.(2) 已知()1f x '=-,则000lim(2)()x xf x x f x x →=---_____________.(3) 设方程2cos xy e y x +=确定y 为x 的函数,则dydx=_____________. (4) 设121000000,000000n n a a A a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L M M MM L L 其中0,1,2,,,i a i n ≠=L 则1A -=_____________. (5) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其他, 以Y 表示对X 的三次独立重复观察中事件12X ⎧⎫≤⎨⎬⎩⎭出现的次数,则{}2P Y == _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线2121arctan (1)(2)x x x y e x x ++=+-的渐近线有 ( )(A) 1条 (B) 2条 (C) 3条 (D) 4条 (2) 设常数0λ>,而级数21nn a∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (3) 设A 是m n ⨯矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( )(A) 1r r > (B) 1r r <(C) 1r r = (D) r 与1r 的关系由C 而定(4) 设0()1,0()1,()()1P A P B P A B P A B <<<<+=,则 ( )(A) 事件A 和B 互不相容 (B) 事件A 和B 相互对立(C) 事件A 和B 互不独立 (D) 事件A 和B 相互独立(5) 设12,,,n X X X L 是来自正态总体2(,)N μσ的简单随机样本,X 是样本均值,记222212112222341111(),(),111(),(),1n n i i i i n n i i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑则服从自由度为1n -的t 分布的随机变量是 ( )(A) X t S μ-=(B) X t S μ-=(C) X t μ-=(D) X t μ-=三、(本题满分6分)计算二重积分(),Dx y dxdy +⎰⎰其中{}22(,)1D x y x y x y =+≤++.四、(本题满分5分)设函数()y y x =满足条件440,(0)2,(0)4,y y y y y '''++=⎧⎨'==-⎩求广义积分0()y x dx +∞⎰.五、(本题满分5分)已知22(,)arctan arctan y x f x y x y x y =-,求2f x y∂∂∂.六、(本题满分5分)设函数()f x 可导,且10(0)0,()()xn n n f F x t f x t dt -==-⎰,求20()limnx F x x→.七、(本题满分8分)已知曲线0)y a =>与曲线y =00(,)x y 处有公共切线,求: (1) 常数a 及切点00(,)x y ;(2) 两曲线与x 轴围成的平面图形绕x 轴旋转所得旋转体的体积x V .八、(本题满分6分)假设()f x 在[,)a +∞上连续,()f x ''在(),a +∞内存在且大于零,记()()()()f x f a F x x a x a-=>-,证明()F x 在(),a +∞内单调增加.九、(本题满分11分) 设线性方程组23112131231222322313233323142434,,,.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1) 证明:若1234,,,a a a a 两两不相等,则此线性方程组无解;(2) 设1324,(0)a a k a a k k ====-≠,且已知12,ββ是该方程组的两个解,其中12111,1,11ββ-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦写出此方程组的通解.十、(本题满分8分)设0011100A x y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦有三个线性无关的特征向量,求x 和y 应满足的条件.十一、(本题满分8分)假设随机变量1234,,,X X X X 相互独立,且同分布{}{}00.6,10.4(1,2,3,4)i i P X P X i =====,求行列式1234X X X X X =的概率分布.十二、(本题满分8分)假设由自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T (单位:元)与销售零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X -<⎧⎪=≤≤⎨⎪->⎩问平均内径μ取何值时,销售一个零件的平均利润最大?1994年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】ln 3 【解析】利用被积函数的奇偶性,当积分区间关于原点对称,被积函数为奇函数时,积分为 0;被积函数为偶函数时,可以化为二倍的半区间上的积分.所以知原式2222222202222x x x dx dx dx x x x --=+=+++⎰⎰⎰ 22212dx x=+⎰220ln (2)ln 6ln 2ln 3.x =+=-=(2)【答案】1【解析】根据导数的定义,有0000()()()limx f x x f x f x x∆→+∆-'=∆.所以由此题极限的形式可构造导数定义的形式,从而求得极限值.由于000(2)()limx f x x f x x x→---00000(2)()()()lim x f x x f x f x x f x x→----+= 00000000(2)()()()(2)lim lim 2()() 1.2x x f x x f x f x x f x f x f x x x →→----''=-+=-+=--所以 原式0001lim1(2)()1x x f x x f x x →===---.(3)【答案】sin 2xy xy ye xy xe y+'=-+【解析】将方程2cos xye y x +=看成关于x 的恒等式,即y 看作x 的函数. 方程两边对x 求导,得sin ()2sin 2xy xyxy ye xe y xy yy x y xe y+'''++=-⇒=-+. 【相关知识点】两函数乘积的求导公式:[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅.(4)【答案】121100010001001000n n a a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由分块矩阵求逆的运算性质,有公式11100A B B A---⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 且 11122111n n a a a a a a -⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦所以,本题对A 分块后可得11211000100011000n n a a A a a --⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. (5)【答案】964【解析】已知随机变量X 的概率密度,所以概率12011224P X xdx ⎧⎫≤==⎨⎬⎩⎭⎰,求得二项分布的概率参数后,故1~(3,)4Y B .由二项分布的概率计算公式,所求概率为{}22313924464P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 【相关知识点】二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)k kn k n P Y k C p p -==-, 0,1,,k n =,二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(B)【解析】本题是关于求渐近线的问题.由于 2121lim arctan (1)(2)4x x x x e x x π→∞++=+-,故4y π=为该曲线的一条水平渐近线.又 21201lim arctan (1)(2)x x x x e x x →++=∞+-.故0x =为该曲线的一条垂直渐近线,所以该曲线的渐近线有两条.故本题应选(B).【相关知识点】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.(2)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n ∞=∑当1p >时收敛;当1p ≤时发散.) 所以2211122n n a n ∞=+∑收敛,由比较判别法,得n ∞=收敛. 故原级数绝对收敛,因此选(C). (3)【答案】(C)【解析】由公式()min((),())r AB r A r B ≤,若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩,所以选(C).(4)【答案】(D)【解析】事实上,当0()1P B <<时,(|)(|)P A B P A B =是事件A 与B 独立的充分必要条件,证明如下:若(|)(|)P A B P A B =,则()()()1()P AB P AB P B P B =-, ()()()()()P AB P B P AB P B P AB -=, ()()[()()]()()P AB P B P AB P AB P B P A =⋅+=,由独立的定义,即得A 与B 相互独立.若A 与B 相互独立,直接应用乘法公式可以证明(|)(|)P A B P A B = .(|)1(|)(|)P A B P A B P A B =-=.由于事件B 的发生与否不影响事件A 发生的概率,直观上可以判断A 和B 相互独立. 所以本题选(D). (5)【答案】(B) 【解析】由于12,,,n X X X 均服从正态分布2(,)N μσ,根据抽样分布知识与t 分布的应用模式可知(0,1)N , 其中11ni i X X n ==∑,2212()(1)nii XX n χσ=--∑(1).X t n μ--即(1)X t n μ-=-.因为t 分布的典型模式是:设(0,1)X N ,2()Ynχ,且,X Y 相互独立,则随机变量T =n 的t 分布,记作()T t n .因此应选(B).三、(本题满分6分)【解析】方法1:由221x y x y +≤++,配完全方得22113222x y ⎛⎫⎛⎫-+-≤ ⎪ ⎪⎝⎭⎝⎭.令11cos ,sin 22x r y r θθ-=-=,引入极坐标系(,)r θ,则区域为(,)02,0D r r θθπ⎧⎪=≤≤≤≤⎨⎪⎩. 故20()cos sin )Dx y dxdy d r r rdr πθθθ+=++⋅⎰⎰⎰22003(cos sin )4d d ππθθθθ=++⎰)220033sin cos 42d ππθθθπ=-=⎰. 方法2:由221x y x y +≤++,配完全方得22113222x y ⎛⎫⎛⎫-+-≤ ⎪ ⎪⎝⎭⎝⎭.引入坐标轴平移变换:11,,22u x v y =-=-则在新的直角坐标系中区域D 变为圆域 2213(,)|2D u v u v ⎧⎫=+≤⎨⎬⎩⎭.而1x y u v +=++,则有dxdy dudv =,代入即得1111()(1)DD D D D x y dxdy u v dudv ududv vdudv dudv +=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.由于区域1D 关于v 轴对称,被积函数u 是奇函数,从而10D ududv =⎰⎰.同理可得10D vdudv =⎰⎰, 又 1132D dudv D π==⎰⎰, 故3()2Dx y dxdy π+=⎰⎰.四、(本题满分5分)【解析】先解出()y x ,此方程为常系数二阶线性齐次方程,用特征方程法求解.方程440y y y '''++=的特征方程为2440λλ++=,解得122λλ==-. 故原方程的通解为212()x y C C x e -=+.由初始条件(0)2,(0)4y y '==-得122,0,C C ==因此,微分方程的特解为22x y e -=.再求积分即得20()2x y x dx e dx +∞+∞-=⎰⎰()220lim 2lim 1b bx x b b e d x e --→+∞→+∞==-=⎰.【相关知识点】用特征方程法求解常系数二阶线性齐次方程0y py qy '''++=:首先写出方程0y py qy '''++=的特征方程:20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1)两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2)两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3)一对共轭复根1,2r i αβ=±,则通解为()12cos sin .x y e C x C x αββ=+其中12,C C 为常数.五、(本题满分5分)【解析】由复合函数求导法,首先求fx∂∂,由题设可得 2222212arctan 11f y x y y x x xx y y x x y ∂⎛⎫=+-- ⎪∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2322222arctan 2arctan y x y y yx x y x x y x y x=--=-++. 再对y 求偏导数即得222222222212111f xx x y x yxx y x y y x ∂-=-=-=∂∂++⎛⎫+ ⎪⎝⎭. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂.六、(本题满分5分)【解析】运用换元法,令nnx t u -=,则1101()()()()().nxx n nnn n F x tf x t dt f u du F x x f x n --'=-=⇒=⎰⎰由于20()limn x F x x →为“0”型的极限未定式,又分子分母在点0处导数都存在,运用洛必达法则,可得122121000()()()lim lim lim 22n n n n n x x x F x F x x f x x nx nx ---→→→'==001()1()(0)lim lim 220n n n n x x f x f x f n x n x →→-==-, 由导数的定义,有 原式1(0)2f n'=. 【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.七、(本题满分8分)【解析】利用00(,)x y 在两条曲线上及两曲线在00(,)x y 处切线斜率相等列出三个方程,由此,可求出00,,a x y ,然后利用旋转体体积公式2()baf x dx π⎰求出x V .(1) 过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,其中,当0()y x '存在时,0()k y x '=.由y =y '=.由y =12y x'=. 由于两曲线在00(,)x y 处有公共切线,12x =,得021x a =.将021x a =分别代入两曲线方程,有001y y ==⇒==. 于是 20211,a x e e a===, 从而切点为2(,1)e .(2) 将曲线表成y 是x 的函数,V 是两个旋转体的体积之差,套用旋转体体积公式,可得 旋转体体积为2222222011ln 24e e e x V dx dx e xdx ππππ=-=-⎰⎰⎰222222111ln 2ln 24222e e e e x x xdx e x πππππ⎡⎤=--=-=⎢⎥⎣⎦⎰.【相关知识点】由连续曲线()y f x =、直线,x a x b ==及x 轴所围成的曲边梯形绕x 轴旋转一周所得的旋转体体积为:2()baV f x dx π=⎰.八、(本题满分6分) 【解析】方法1:()()22()()()()1()[()()()()]f x x a f x f a F x f x x a f x f a x a x a '--+''==--+--,令 ()()()()()(),x f x x a f x f a x a ϕ'=--+>由 ()()()()()()()0(),x f x x a f x f x x a f x x a ϕ'''''''=-+-=->> 知 ()x ϕ在(),a +∞上单调上升,于是()()0x a ϕϕ>=. 故 ()2()()0x F x x a ϕ'=>-.所以()F x 在(),a +∞内单调增加. 方法2: []()2()()()()1()()()()f x x a f x f a f x f a F x f x x a x a x a '----⎡⎤''==-⎢⎥--⎣⎦-. 由拉格朗日中值定理知()()()f x f a f x aξ-'=-,()a x ξ<<.于是有 1()[()()]F x f x f x aξ'''=--. 由()0f x ''>知()f x '在(),a +∞上单调增,从而()()f x f ξ''>,故()0F x '>.于是()F x 在(),a +∞内单调增加.【相关知识点】1.分式求导数公式:2u u v uv v v '''-⎛⎫= ⎪⎝⎭2.拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续;在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立.九、(本题满分11分)【解析】(1)因为增广矩阵A 的行列式是范德蒙行列式,1234,,,a a a a 两两不相等, 则有213141324243()()()()()()0A a a a a a a a a a a a a =------≠,故 ()4r A =.而系数矩阵A 的秩()3r A =,所以方程组无解.(2)当 1324,(0)a a k a a k k ====-≠时,方程组同解于2312323123,.x kx k x k x kx k x k ⎧++=⎪⎨-+=-⎪⎩ 因为1201kk k=-≠-,知()()2r A r A ==.由()321n r A -=-=,知导出组0Ax =的基础解系含有1个解向量,即解空间的维数为1.由解的结构和解的性质,12112110112ηββ--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦是0Ax =的基础解系.于是方程组的通解为1121012k k βη--⎡⎤⎡⎤⎢⎥⎢⎥+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,其中k 为任意常数. 【相关知识点】1.非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即()()r A r A =.(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组)设A 是m n ⨯矩阵,线性方程组Ax b =,则(1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =< (3) 无解 ⇔ ()1().r A r A +=⇔ b 不能由A 的列向量12,,,n ααα线表出.2.解的结构:若1α、2α是对应齐次线性方程组0Ax =的基础解系,知Ax b =的通解形式为1122,k k ηηξ++其中12,ηη是0Ax =的基础解系,ξ是Ax b =的一个特解.3.解的性质:如果12,ηη是0Ax =的两个解,则其线性组合1122k k ηη+仍是0Ax =的解;如果ξ是Ax b =的一个解,η是0Ax =的一个解,则ξη+仍是Ax b =的解.十、(本题满分8分)【解析】由A 的特征方程,按照第二列展开,有20111(1)(1)(1)0110E A x y λλλλλλλλλ---=---=-=-+=--,得到A 的特征值为1231,1λλλ===-.由题设有三个线性无关的特征向量,因此,1λ=必有两个线性无关的特征向量,从而()1r E A -=.这样才能保证方程组()0E A X -=解空间的维数是2,即有两个线性无关的解向量.由初等行变换,将E A -第一行加到第三行上,第一行乘以x 后加到第二行上有101101000101000E A x y x y --⎡⎤⎡⎤⎢⎥⎢⎥-=--→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,由()1r E A -=,得 x 和y 必须满足条件0x y +=.十一、(本题满分8分)【解析】记114223,,Y X X Y X X ==则12,X Y Y =-随机变量1Y 和2Y 相互独立且同分布, 由A 与B 独立可得出()()()P AB P A P B =,故{}{}{}{}{}1141414111,1110.16,P Y P X X P X X P X P X ========⋅=={}{}110110.84P Y P Y ==-==.由行列式的计算公式,随机变量12,X Y Y =-有三个可能取值:1,0,1.-{}{}{}{}121210,1010.840.160.1344,P X P Y Y P Y P Y =-=====⋅==⨯= {}{}{}{}121211,0100.1344,P X P Y Y P Y P Y ======⋅== {}{}{}01110.7312.P X P X P X ==-=--==所求的行列式的概率分布列于下表:十二、(本题满分8分)【解析】依据数学期望的计算公式及一般正态分布的标准化方法,有{}{}{}()10201012512E T P X P X P X =-<+≤≤->(10)20[(12)(10)]5[1(12)]μμμμ=-Φ-+Φ--Φ---Φ- 25(12)21(10) 5.μμ=Φ--Φ--此时数学期望依赖于参数μ,为使其达到最大值,令其一阶导数为0,有22(10)(12)22()25(12)21(10)25],dE T e e d μμϕμϕμμ----=--+-=- 令 ()0dE Td μ=,22(10)(12)220μμ----=, 即22(10)(12)22μμ----=.解上面的方程得 012511ln 10.9.221μμ==-≈ 得到唯一驻点010.9μμ=≈,因为此问题是实际问题,所以平均利润函数必然有最大值,而且这个最大值是唯一的.由题意知,当010.9μμ=≈毫米时,平均利润最大.。

相关文档
最新文档