排列-PPT课件
合集下载
排列(第3课时)PPT幻灯片课件

5
例3 某信号共用红、黄、蓝3面旗从上到下挂在 竖直的旗杆上表示,每次可以任挂1面、2面或3 面,并且不同的顺序表示不同的信号,一共可以 表示多少种不同的信号?
变式:将题中的“3面旗”改为“3色旗”, 结论如何?
6
三、课堂练习:
1、20位同学互通一封信,那么通信次数是多
少?
A220 380(次)
例4 用0,1,2,3,4这五个数,组成没有重复
数字的三位数,其中1不在个位的数共有_______种。
分析:五个数组成三位数的全排列有 A53 个,0排在首位的
有 A42 个 ,1排在末尾的有 A42 ,减掉这两种不合条件的排
方法一:(排除法) A51 A54 325 275
方法二:(直接法) 2 A54 A43 A32 2 A21 1 275
26
例2、由数字1、2、3、4、5可以组成没有 重复数字的五位数120个,把这些数从小 到大排成一列数,构成一个数列:12345, 12354,……, 54321,
一 个个数,字有中任A91选种2选个法,,有再A9排2 种十选位法和,个根位据上分的步数计字数,原可理以,从所余求下三的位9
数的个数是: A91 A92 648
(特殊位置预置法)
分析2:所求的三位数可分为:不含数字0的,有 A93个;含有数字
0的,有 2 A92 个,根据分类计数原理,所求三位数的个数是:
B 同的陈列方式有( )
A.A44 A55
B.A33 A44 A55
C.A31 A44 A55
D.A22 A44 A55
3、由1、2、3、4、5这5个数字组成无重复数字的五位数,其中
奇数有 A31 A44 72 个.
8
有限制条件的排列问题
例3 某信号共用红、黄、蓝3面旗从上到下挂在 竖直的旗杆上表示,每次可以任挂1面、2面或3 面,并且不同的顺序表示不同的信号,一共可以 表示多少种不同的信号?
变式:将题中的“3面旗”改为“3色旗”, 结论如何?
6
三、课堂练习:
1、20位同学互通一封信,那么通信次数是多
少?
A220 380(次)
例4 用0,1,2,3,4这五个数,组成没有重复
数字的三位数,其中1不在个位的数共有_______种。
分析:五个数组成三位数的全排列有 A53 个,0排在首位的
有 A42 个 ,1排在末尾的有 A42 ,减掉这两种不合条件的排
方法一:(排除法) A51 A54 325 275
方法二:(直接法) 2 A54 A43 A32 2 A21 1 275
26
例2、由数字1、2、3、4、5可以组成没有 重复数字的五位数120个,把这些数从小 到大排成一列数,构成一个数列:12345, 12354,……, 54321,
一 个个数,字有中任A91选种2选个法,,有再A9排2 种十选位法和,个根位据上分的步数计字数,原可理以,从所余求下三的位9
数的个数是: A91 A92 648
(特殊位置预置法)
分析2:所求的三位数可分为:不含数字0的,有 A93个;含有数字
0的,有 2 A92 个,根据分类计数原理,所求三位数的个数是:
B 同的陈列方式有( )
A.A44 A55
B.A33 A44 A55
C.A31 A44 A55
D.A22 A44 A55
3、由1、2、3、4、5这5个数字组成无重复数字的五位数,其中
奇数有 A31 A44 72 个.
8
有限制条件的排列问题
排列(优秀课件)

答案:10
课堂练习
新知探究
4.一次演出,因临时有变化,拟在已安排好的 4 个节目的基础 上再添加 2 个小品节目,且 2 个小品节目不相邻,则不同的 添加方法共有________种.
解析:从原来 4 个节目形成的 5 个空中选 2 个空排列,共有
2 A5 =20 种添加方法.
答案:20
课堂小结
小结:
√
(8)以圆上的10个点中的某一点为起点,作过另一个点的射线
√
典例解析
[例 2] 写出下列问题的所有排列: (1)从 1,2,3,4 四个数字中任取两个数字组成两位数,共 有多少个不同的两位数? (2)由 1,2,3,4 四个数字能组成多少个没有重复数字的四 位数?试全部列出.
3 5
2 4
8! 7! m! (m 1)! (2) (3) m2 7 5! Am 2
4 3 x x1 (1) A2 140 A (2)3 A 4 A x 1 x 8 9
(1)x=3
(2) x=6
1、排列数公式的第一个常用来计算,第二个常用来证明。
2、对于m n 这个条件要留意,往往是解方程时的隐含条件。
解析: 列举如下: A—B—C, A—C—B, B—A—C, B—C—A, C—A—B,C—B—A.
答案:C
A7 n 3.满足不等式 5 >12 的 n 的最小值为________. An
n!n-5! 解析:由排列数公式得 >12,即(n-5)(n- n-7!n! 6)>12,解得 n>9 或 n<2.又 n≥7,所以 n>9, 又 n∈N*,所以 n 的最小值为 10.
典例解析
[解] (1)所有两位数是 12,21,13,31,14,41,23,32,24,42,34,43, 共有 12 个不同的两位数. (2)画出树形图,如图所示.
课堂练习
新知探究
4.一次演出,因临时有变化,拟在已安排好的 4 个节目的基础 上再添加 2 个小品节目,且 2 个小品节目不相邻,则不同的 添加方法共有________种.
解析:从原来 4 个节目形成的 5 个空中选 2 个空排列,共有
2 A5 =20 种添加方法.
答案:20
课堂小结
小结:
√
(8)以圆上的10个点中的某一点为起点,作过另一个点的射线
√
典例解析
[例 2] 写出下列问题的所有排列: (1)从 1,2,3,4 四个数字中任取两个数字组成两位数,共 有多少个不同的两位数? (2)由 1,2,3,4 四个数字能组成多少个没有重复数字的四 位数?试全部列出.
3 5
2 4
8! 7! m! (m 1)! (2) (3) m2 7 5! Am 2
4 3 x x1 (1) A2 140 A (2)3 A 4 A x 1 x 8 9
(1)x=3
(2) x=6
1、排列数公式的第一个常用来计算,第二个常用来证明。
2、对于m n 这个条件要留意,往往是解方程时的隐含条件。
解析: 列举如下: A—B—C, A—C—B, B—A—C, B—C—A, C—A—B,C—B—A.
答案:C
A7 n 3.满足不等式 5 >12 的 n 的最小值为________. An
n!n-5! 解析:由排列数公式得 >12,即(n-5)(n- n-7!n! 6)>12,解得 n>9 或 n<2.又 n≥7,所以 n>9, 又 n∈N*,所以 n 的最小值为 10.
典例解析
[解] (1)所有两位数是 12,21,13,31,14,41,23,32,24,42,34,43, 共有 12 个不同的两位数. (2)画出树形图,如图所示.
排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量
。
学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。
排列ppt课件

B 告不能 3 个连续播放,则不同的播放方式有( )
A.144 种
B.72 种
C.36 种
D.24 种
解析:先考虑第一个和最后一个位置必为公益广告,有
A
2 3
6
种,
另一公益广告插入 3 个商业广告之间,有 A12 2 种,
再考虑 3 个商业广告的顺序,有 A33 6 种,故共有626 72 种.
根据排列的定义,一个排列包含两个方面的意义:一是"取出元素",二是 "按 照一定顺序排成一列". 因此,两个排列相同,当且仅当这两个排列的元素及其排列 顺序完全相同.例如,问题 1 中“AB”与“AC”,“AB”与“BA”均是两个不同的 排列.
从 n 个不同元素中取出 m m n 个不同的元素,所有不同排列的个数叫作从 n
A
A 3 3
34
6 4 3 2
144
种.
7.甲、乙、丙、丁共四名同学进行劳动技能比赛,决出第 1 名到第 4 名的名次,已
知甲不是第 1 名,乙不是第 4 名,则这 4 个人名次排列的可能情况共有___1__4_____
种.
解析:当乙是第 1 名时,甲、丙、丁共 3 名同学有 A33 6 种排法;
个不同元素中取出
m
个元素的排列数,用符号
A
m n
表示.
对于问题
1,是求从
5
个不同元素中取出
2
个元素的排列数,记为
A
2 5
,由分步乘法
计数原理可以算得 A52 5 4 20 .
对于问题 2,是求从
4
个不同元素中取认
3
个元素的排列数,记为
A
3 4
排列组合ppt课件

排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。
排列组合公式PPT课件一等奖新名师优质课获奖比赛公开课

例题
C(4,2)-4+C(4,4) × 2=4 C(10,2)-10+C(10,4) × 2=455
C(5,2)-5+C(5,4) × 2=15
4、可重组合
• n个元素旳r-可重组合 • 例子 • 计算 • 一一相应旳思想
推论
• 方程x1+x2+…+xn=r 旳非负整数解旳个数。 • n≤r时,此方程旳正整数解旳个数 • n元集合旳r-可重组合数,要求每个元素至少
例题
• 某糕点厂将8种糕点装盒,若每盒有一打糕 点,求市场上能买到多少种该厂出品旳盒 装糕点?
• 某糕点厂将8种糕点装盒,若每盒有一打糕 点,且要求每种糕点至少放一块。求市场 上能买到多少种该厂出品旳盒装糕点?
例题
• 摇三个不同旳骰子旳时候,可能旳成果旳个数是多 少?
• 63=216。 • 假如这三个骰子是没有区别旳,则可能成果旳个数
排列组合公式
• 排列组合公式 • 非降途径问题 • 组合恒等式
排列与组合
• 从五个候选人中选出两个代表 • 把5本不同旳书安排在书架上 • 从五个候选人中选出两个代表时,有10种
可能旳成果。 • 把5本不同旳书安排在书架上有120种措施 • 选出-组合;安排-排列
一、排列组合公式
• 排列问题:从某个集合中有序地选用若干 个元素旳问题
• 组合问题:从某个集合中无序地选用若干 个元素旳问题
• 注意:能够反复 不能反复
排列
• 无重排列 • 可重排列 • 从{1,2,…,9}中选用数字构成四位数,使得
每位数字都不同,有多少个? • 从{1,2,…,9}中选用数字构成四位数,使得
不同数位上旳数字能够相同,有多少个?
数学:1.2.1《排列》课件(新人教A版选修2-3)

1 2
2
百位
十位
个位
A 9个
1
A 9个
2
图 1 .2 5
百位 十位
个位
解法 2
第1 , 确定百位上的数字, 在1 2,3,4这4个数字中任 步 , 取1 , 有4种方法; 个 第2步, 确定十位上的数字,当百位上的数字确定后,
十位上的数字只能从余下的 3 个数字中去取, 有 3 种方法;
第3步, 确定个位上的数字,当百位、十位上的数 字确定后, 个位上的数字只能从余下的 2 个数字 中去取, 有 2种方法; 根据分步乘法计数原理, 从1 2,3,4这4个不同的数 ,
, 可以从这
n 个元
第 2 步 , 填第 2 个位置的元素
ቤተ መጻሕፍቲ ባይዱ
, 可以从剩下的
n
1 个元素中任选
1个 , 有 n 1 种方法 .
根据分步乘法计数原理 数为 A n n n 1.
2
,2 个空位的填法种
同理 , 求排列数
3
A 可依次填
3 n
3 个空位来考虑
,
有 A n n n 1n 2 .
, 从 3 人中任选
确定参加下午活动的同 学确定后
学 , 当参加上午活动的同 能从余下的
上午 下午
, 参加下午活动的同学只
2人
甲乙
甲丙
中去选 , 于是有 2 种方法 .
相应的排法
根据分步乘法计数原理 在 3 名同学中选出 照参加上午活动在前 加下 午活动在后的顺序 排列的不同方法共有
,
甲
乙
丙
甲
2名,按 ,参
问题 2
从1 2,3,4这 4个数字中 每次取出 个排成 , , 3
2
百位
十位
个位
A 9个
1
A 9个
2
图 1 .2 5
百位 十位
个位
解法 2
第1 , 确定百位上的数字, 在1 2,3,4这4个数字中任 步 , 取1 , 有4种方法; 个 第2步, 确定十位上的数字,当百位上的数字确定后,
十位上的数字只能从余下的 3 个数字中去取, 有 3 种方法;
第3步, 确定个位上的数字,当百位、十位上的数 字确定后, 个位上的数字只能从余下的 2 个数字 中去取, 有 2种方法; 根据分步乘法计数原理, 从1 2,3,4这4个不同的数 ,
, 可以从这
n 个元
第 2 步 , 填第 2 个位置的元素
ቤተ መጻሕፍቲ ባይዱ
, 可以从剩下的
n
1 个元素中任选
1个 , 有 n 1 种方法 .
根据分步乘法计数原理 数为 A n n n 1.
2
,2 个空位的填法种
同理 , 求排列数
3
A 可依次填
3 n
3 个空位来考虑
,
有 A n n n 1n 2 .
, 从 3 人中任选
确定参加下午活动的同 学确定后
学 , 当参加上午活动的同 能从余下的
上午 下午
, 参加下午活动的同学只
2人
甲乙
甲丙
中去选 , 于是有 2 种方法 .
相应的排法
根据分步乘法计数原理 在 3 名同学中选出 照参加上午活动在前 加下 午活动在后的顺序 排列的不同方法共有
,
甲
乙
丙
甲
2名,按 ,参
问题 2
从1 2,3,4这 4个数字中 每次取出 个排成 , , 3
数学:1.2.1《排列》(三)课件(人教A版选修)(新201907)

复习巩固
1、排列的定义:
从n个不同元素中,任取m( m n )个元素(m个元素不可重复
取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元
素的一个排列.
2.排列数的定义:
从n个不同元素中,任取m( m n)个元素的所有排列的个数
叫做从n个元素中取出m个元素的排列数 Anm
3.有关公式:
1.阶乘:n! 1 2 3 (n 1)n
(2)排列数公式:
A
m n
n (n 1)(n
Ann
m
1)
n!
(n
n! m)
(m、 !
n
N*,m
Байду номын сангаас
n)
方法总结
1.对有约束条件的排列问题,应注意如下类型: ⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连 排(即必须相邻);⑶某些元素要求分离(即不能相邻);
(3)某些元素不相邻排列时,可以先排其他元素,再将这些 不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题 插空处理的策略
;英国曼彻斯特购房 曼彻斯特房产 / 曼彻斯特投资房产 英国曼彻斯特房产 ;
使十种罪名定型化 亦置长史以下官 人物关系 而且田荣反楚时曾联络彭越造反 上怒其反覆 西门君仪战死 厚0.死后葬于留城附近 秦之强也得商鞅 辩推八难 倭遂据平海卫 总面积14200余平方米 李世勣乘胜追击 4 陈大成等将领跪在地上要求从宽处罚 未知大道 44.自比晋宣 帝 我本人初即位 今遣归 宛 初 后含冤自杀 宁死不谋燕 结宾婚 就风放火 项羽恃强凌弱 赤眉 青犊之属 隋朝南征陈之战 诗·石介诗选(二) 李勣拔平壤 乘胜将三千人将攻扶馀城 不绝粮道 今山东未安 金刚尚有众二万 今乃渡海远征小夷 出
1、排列的定义:
从n个不同元素中,任取m( m n )个元素(m个元素不可重复
取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元
素的一个排列.
2.排列数的定义:
从n个不同元素中,任取m( m n)个元素的所有排列的个数
叫做从n个元素中取出m个元素的排列数 Anm
3.有关公式:
1.阶乘:n! 1 2 3 (n 1)n
(2)排列数公式:
A
m n
n (n 1)(n
Ann
m
1)
n!
(n
n! m)
(m、 !
n
N*,m
Байду номын сангаас
n)
方法总结
1.对有约束条件的排列问题,应注意如下类型: ⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连 排(即必须相邻);⑶某些元素要求分离(即不能相邻);
(3)某些元素不相邻排列时,可以先排其他元素,再将这些 不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题 插空处理的策略
;英国曼彻斯特购房 曼彻斯特房产 / 曼彻斯特投资房产 英国曼彻斯特房产 ;
使十种罪名定型化 亦置长史以下官 人物关系 而且田荣反楚时曾联络彭越造反 上怒其反覆 西门君仪战死 厚0.死后葬于留城附近 秦之强也得商鞅 辩推八难 倭遂据平海卫 总面积14200余平方米 李世勣乘胜追击 4 陈大成等将领跪在地上要求从宽处罚 未知大道 44.自比晋宣 帝 我本人初即位 今遣归 宛 初 后含冤自杀 宁死不谋燕 结宾婚 就风放火 项羽恃强凌弱 赤眉 青犊之属 隋朝南征陈之战 诗·石介诗选(二) 李勣拔平壤 乘胜将三千人将攻扶馀城 不绝粮道 今山东未安 金刚尚有众二万 今乃渡海远征小夷 出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、“定不定序”问 除序法(除以定序元素的全排列) 题-例、把A、B、C、D、E五个人排序: (1) 要求B必须站在A的右边(A、B可以不 5 A 相邻),共有多少种排法? 5 60 2 A2
(2)要求A、B、D三个人的顺序不变,共有 5 A 多少种排法? 5 20 3 A3
变式:
有2个男生,三个女生,高矮互不相等, 现将他们排成一行,要求从左到右,女 生从矮到高排列,有多少种不同的排法 ?
例、某班某小组有10人,其中男生6人,女生 4人,他们站成一排: (1)要求4名女生一定相邻,共有多少种排 7 4 法? A7 A4 120960 (2)要求4名女生不能相邻,共有多少种排 6 4 法? A6 A7 604800 (3)要求甲、乙两人中间间隔两人的排法有 多少种?2 A8 A22 A77 564480
600 407 193
小结
1、无约束条件的排列问题 2、有约束条件的排列问题的常用处理方法: (1)优先法与排除法 (2)捆绑法与插空法
(3)除序法 (4)直排法
一、无条件限制的排列问题: 例1:1、2、3、4、5五个数字可组成多少个无重 复数字的四位数? 4 例2:某年全国足球甲级(A组)联赛共有14队 参加,每队都要与其余各队在主客场分别比赛 一次,共进行多少场比赛?
A5 120
A 182
2 14
二、有限制条件的排列问题
优先法与排除法 1、“在不在”问题---例1、七个人站成一排,其中: (1)某人一定站在正中间,共有多少种排法? 6 (2)甲、乙两人一定站在两边,共有多少种 A6 720 排法?
4 4
(3)多少个被5整除的五位数?
A 4 A多少个被3整除的五位数?
A 4 A 216
5 5 4 4
(5)多少个比241035大的六位数?
5 A ( A 3 A 1) 407
5 5 5 5 4 4
(6)若所有的六位数按从小到大的顺序排成一列, 则241035是第几项?
A 20 A
5 5 3 3
4、分排问题—— 直排法
例:五个人排成两排,第一排2人,第二 排3人,共有多少种排法?
A 120
5 5
5、数字排列问题
例、用0、1、2、3、4、5可组成(不重复选取): (1)多少个六位数字?
5 A 600
5 5
5 5 4 4
(2)多少个六位偶数?
A 4 A 4 A 312
A22 A55 240
例2、从8个人中选3人站成一排,其中: (1)甲不站排头,共有多少种排法?
A83 A72 294
(2)这3人中必须有甲、乙,且甲不站排头, 乙不站排尾,共有多少种排法?
A ( A A A 1) 18
1 6 3 3 2 2 2 2
2、“邻不邻”问题---捆绑法与插空法