2 两级放大电路原理图的绘制
两级阻容耦合级间电压串联负反馈放大电路设计

课程设计题目:两级阻容耦合级间电压串联负反馈放大电路设计学生姓名:学号:院系:专业班级:指导教师姓名及职称:起止时间:课程设计评分:两级阻容耦合级间电压串联负反馈放大电路设计1.两级阻容耦合级间电压串联负反馈放大电路概述:把几个单级放大电路连接起来,使信号逐级得到放大,在输出获得必要的电压幅值或足够的功率。
由几个单级放大电路连接起来的电路称为多级放大电路。
在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。
阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。
其特点是各级静态工作点互不影响,不适合传送缓慢变化信号。
而在两级阻容耦合放大器电路的基础上,加接一个反馈电阻,使得负反馈电路中的反馈量取自输出电压,若反馈信号为电压量,与输入电压求差而获得净输入电压,则引入电压串联负反馈。
2.两级阻容耦合级间电压串联负反馈放大电路设计2.1两级阻容耦合级间电压串联负反馈放大电路原理图图1两级阻容耦合级间电压串联负反馈放大电路原理图2.2静态工作点设置分析两级阻容耦合放大电路的总电压放大倍数为21u u u A A A =其中,第一级放大电路的电压放大倍数为11121)1(E be i CSu R r R R A +++-=ββ可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//R 222W 627E be i R r R R R β+++=)(设V U BEQ 7.0=,所以第一级放大电路中,KR R r R R R R r R R A V R R R I U U AI R U U I U R R R R U be W i beLu C c CEQ C BEB EQ cc W BQ 8.1302)1(32.10)543(m 14v4.2212c =≈+=-==++-==≈-==++≈β所以晶体管V 1和V 2的输入电阻分别为11126)1(300EQ be I r β++≈ 22226)1(300EQ be Ir β++=10uF图2 仿真电路图在Ui=0的情况,接上电源,调节电位器R13和R12,使得Ic1=1.0mA ,Ic2=1.5mA图3 Ic1电流值 图4 Ic2电流值然后用万用表测量各级的电位图5 1C 极电位 1B 极电位 1E 电位图6 2C 极电位 2B 极电位 2E 极电位2.3 测量基本放大器的性能指标和动态分析(1)不连接反馈网络,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u A 、i R 、o R图7输入kHz f 1=、mV U i 5=的正弦信号仿真电路数据如图8图8输入与输出电压的有效值如图9所示图9 输入电压Ui 输出电压Uo Us所以放大的倍数533003.0≈==i o u U A 输入电阻=-=s is ii R u u u R 9.27Ωk 输出电阻Ω==k R R o 3.38 (2)接入R c =12k 电阻和C=10uf 电容的负反馈后,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u AR110k¦¸R220k¦¸R31.8k¦¸R4100¦¸R51k¦¸R610k¦¸R715k¦¸R83.3k¦¸R91.2k¦¸R1112k¦¸V112 V 0XMM1XMM3XSC1ABExt Trig++__+_XFG1R105.1k¦¸J2AKey = A 12Q12N3904Q22N3904R1250k¦¸Key=A 83%1R13100k¦¸Key=A 94%7R1451¦¸C610uF C7100uFC810uFC910uF C10100uF9C110uFXMM2XMM41113R151k¦¸XMM6205XMM715XMM88XMM910XMM1018XMM111917XMM124XMM531422图10 接入负反馈的仿真电路图输入与输出的有效值如图11所示图11 输入电压Ui 输出电压Uo所以放大的倍数933.3≈==i o u U A 同过仿真数据得出,当接入反馈网络后,电压的放大倍数减小,但放大倍数的稳定性得到提高,波形失真程度小。
两级阻容耦合放大电路

两级阻容耦合放大电路一、 实验目的(一) 学习两级阻容耦合放大电路静态工作点的调整方法。
(二) 学习两级阻容耦合放大电压放大倍数的测量方法。
(三)学习放大电路频率性的测量方法。
二、知识要点(一)多级放大器有三种耦合方式,即直接耦合、阻容耦合、变压器耦合。
本实验讨论阻容耦合。
(二)多级放大器的主要参数 1、电压放大倍数在多级放大器中,由于各级之间是串联起来的,后一级的输入电阻是前一级的负载,所以多级放大器的总电压放大倍数等于各级放大器倍数乘积,即vn v v v A •A =A A ••L L 21本实验讨论两极放大器。
注意:各级的放大倍数已考虑前后级的相互影响,两级阻容耦合放大器中1111-be 'L v r R β=A ×,2222-be 'L v r R β=A ×由于 212121'1i C i C i C L +r R r R =//r =R R ×,L C L C L C L +R R R R =//R =R R 222'2×222be2222r b be b b be i +R r R =//R =r r ×,22212221122B B B B B B b +R R R R =//R =R R ×通常由于 b be R r <<2及cT i R r <<2 ,所以有1111be be b i r //r =R r ≈,2222≈be be b i r //r =R r2221'1be i i C L r r //r =R R ≈≈所以,1'221221221-()-(be L be 'L be be v v v r R ββr R βr r βA =A A =•=•2、输入输出电阻两级放大器输入电阻就是第一级(输入级)的输入电阻,即1be111≈//R be b i i r r =R R >两级放大器输出电阻就是第二级(输出级)的输出电阻,即cn n =R =R R 00 即 2200c =R =R R3、频率响应特性放大器在低频或高频时,放大器的信号达不到预期的要求,而造成放大器低频或高频时的放大性能变差。
两级放大电路实验报告

两级放大电路实验报告实验目的,通过实验,掌握两级放大电路的基本原理和特性,加深对电子电路的理解。
实验原理,两级放大电路由两级放大器级联组成,第一级为前置放大器,第二级为输出放大器。
前置放大器起放大微弱信号的作用,输出放大器则进一步放大信号并驱动负载。
实验步骤:1. 按照电路图连接电路,注意电路连接的正确性。
2. 接通电源,调节电源电压至所需数值。
3. 接通示波器,观察输入输出信号波形。
4. 测量电路中各点的电压值,并记录下来。
5. 对电路进行调试,观察输出波形的变化。
实验数据:1. 输入信号频率,1kHz。
2. 输入信号幅度,100mV。
3. 输出信号幅度,2V。
4. 输入电阻,10kΩ。
5. 输出电阻,1kΩ。
实验结果分析:通过本次实验,我们成功搭建了两级放大电路,并且观察到了输入输出信号的放大效果。
在实验过程中,我们发现输入信号的频率和幅度对输出信号的影响较大,频率过高或过低时会导致输出信号失真,幅度过大或过小时也会影响输出信号的质量。
此外,我们还发现了前置放大器和输出放大器的工作特性,前置放大器能够放大微弱的输入信号,而输出放大器则能够将信号进一步放大并驱动负载。
实验总结:通过本次实验,我们深入理解了两级放大电路的工作原理和特性,掌握了搭建和调试电路的方法,提高了实际操作能力。
在今后的学习和工作中,我们将更加熟练地运用电子电路知识,为自己的专业发展打下坚实的基础。
实验存在的问题与改进方案:在本次实验中,我们发现了一些问题,如输入输出信号的失真、电路连接的不稳定等。
为了解决这些问题,我们可以进一步优化电路连接,提高电路的稳定性,同时也可以尝试使用不同的元器件,以获得更好的实验效果。
实验延伸:在今后的学习和工作中,我们可以进一步深入研究两级放大电路的设计原理和应用,探索更多的电子电路知识,为自己的专业发展做好准备。
通过本次实验,我们不仅增加了对电子电路的实际操作经验,还加深了对电子电路原理的理解,为今后的学习和工作打下了坚实的基础。
模拟集成电路设计——两级全差分高增益放大器设计_2

全差分高增益放大器的设计一、设计产品名称全差分高增益放大器二、设计目的1.掌握模拟集成电路的基本设计流程;2.掌握Cadence基本使用方法;3.学习模拟集成电路版图的设计要点;4.培养分析、解决问题的综合能力;5.掌握模拟集成电路的仿真方法;6.熟悉设计验证流程方法。
三、设计内容全差分高增益放大器(Full-differential OTA)是一种非常典型的模拟IP, 在各类模拟信号链路、ADC.模拟滤波器等重要模拟电路中应用广泛, 是模拟IC 设计人员必需掌握的一种基础性IP 设计。
采用华大九天Aether 全定制IC 设计平台及其自带的0.18um PDK, 设计一款全差分高增益放大器电路, 完成电路图设计、前仿真、Layout 设计和物理验证(DRC&LVS)。
考虑以下OTA 架构:图1 OTA架构四、电路设计思路模拟集成电路的设计分为前端与后端, 设计流程可以分为明确性能要求、选择电路结构、计算器件参数、原理图绘制、前仿真、版图绘制、DRC设计规则检查、LVS版图与电路图一致性检查、寄生参数提取及后仿真、流片测试。
本次实验使用基于华大九天Aether 全定制IC 设计平台及其自带的0.18um PDK, 实现模拟集成电路全差分高增益放大器的全流程设计与仿真。
(1)性能指标:需要验证三种PVT Corner:a) 电源电压1.8V, 温度27℃, corner 为TT;b) 电源电压1.6V, 温度80℃, corner 为SS;c) 电源电压2.0V, 温度-40℃, corner 为FF;要求各Corner 下开环技术指标(含Cload=10fF):①放大器开环DC 增益Av0≥90dB;②0dB 带宽BW0≥500MHz;③相位裕度Phase Margin≥50°。
④DC 抑制比PSRR-0≥60dB, (3*2=6 分)⑤10MHz 时抑制比PSRR-10M≥45dB。
学位论文—模拟电子技术报告--两级阻容耦合放大电路的设计与调试

模拟电子技术课程设计报告题目:两级阻容耦合放大电路的设计与调试学院电气工程学院专业班级12级电气3班学生姓名指导教师同组组员提交日期 2014年03月 07日电气工程学院专业课程设计评阅表学生姓名学生学号201230088063同组队员专业班级12电气3班题目名称两级阻容耦合放大电路的设计与调试一、学生自我总结二、指导教师评定目录目录一、设计目的 (5)二、设计要求和设计指标 (5)三、设计内容 (5)3.1.内容简介 (5)3.2.电路原理 (6)3.3参数确定 (7)3.4具体仿真电路 (7)3.5仿真结果与分析 (8)3.5.1设计要求 (8)3.5.2.技术指标 (8)3.5.3功能仿真及仿真图 (8)3.5.4. 测试电压 (9)3.5.5.频率失真图 (9)3.5.6.输出波形图 (10)3.5.7频响特性 (10)四、本设计改进建议 (4)五、总结(感想和心得等 (11)六、主要参考文献 (11)附录 (12)一、设计目的1.能够较全面地巩固和应用“模拟电子技术”课程中所学的基本理论和基本方法,并初步掌握电路设计的全过程(设计-仿真-PCB板制作-调试安装)。
2.能合理、灵活地应用分立元件或标准集成电路芯片实现规定的电路。
3. 培养独立思考、独立准备资料、独立设计规定功能的模拟电子系统的能力。
4.培养独立设计能力,熟悉EAD工具的使用,比如EWB(现在为Multisim系列)(仿真分析)及Protel(原理图和PCB版图的制作)等。
5.培养书写综合设计实验报告的能力。
二、设计要求和设计指标1.设计要求:1.根据性能指标要求,确定电路及器件型号,计算电路组件参数;2.在EWB中进行电路仿真,测量与调整电路参数,是满足设计计算要求。
3.测试性能指标,调整修改组件参数值,使其满足电路性能指标要求,将修改后的组件参数值标在设计原理图上。
4.上述各项完成后,在Protel软件中绘制电路原理图及其PCB版图。
实验五 两级放大电路

实验五晶体管两级放大器一、实验目的1、掌握两级阻容放大器的静态分析和动态分析方法。
2、加深理解放大电路各项性能指标。
二、实验仪器1、双踪示波器2、万用表3、交流毫伏表4、信号发生器三、实验原理实验电路图如下所示:图3-1 晶体管两级阻容放大电路1、阻容耦合因有隔直作用,故各级静态工作点互相独立,只要按实验二分析方法,一级一级地计算就可以了。
2、 两级放大电路的动态分析 1) 中频电压放大倍数的估算21μμμA A A ⨯= (3-1)单管基本共射电路电压放大倍数的公式如下:单管共射 '(1)ReLbe R A r μββ=-++ (3-2)要特别注意的是,公式中的,'L R 不仅是本级电路输出端的等效电阻,还应包含下级电路等效至输入端的电阻,即前一级输出端往后看总的等效电阻。
2) 输入电阻的估算两级放大电路的输入电阻一般来说就是输入级电路的输入电阻,即:R i ≈R i1 (3-3) 3) 输出电阻的估算两级放大电路的输出电阻一般来说就是输出级电路的输出电阻,即:R o ≈R o2 (3-4) 3、 两级放大电路的频率响应 1) 幅频特性已知两级放大电路总的电压放大倍数是各级放大电路放大倍数的乘积,则其对数幅频特性便是各级对数幅频特性之和,即:||lg 20||lg 20||lg 2021μμμA A A += (3-5) 2) 相频特性两级放大电路总的相位为各级放大电路相位移之和,即21ϕϕϕ+=(3-6)四、实验内容a. 测量静态工作点1、图3-1中,跳线J3、J5、J8连接,J4、J6、J7、J10断开。
2、输入信号V i 为0。
3、打开直流开关,第一级静态工作点已固定,可以直接测量。
调节RW2电位器使第二级的I C2=1.0mA (即U E2=0.43V ),用万用表分别测量第一级、第二级的静态工作点,记入表3-1。
b. 测试两级放大器的各项性能指标1、关闭系统电源,连接信号源与Vi。
两级放大电路

图2-1 两级交流放大电路 1. 按图2.1接线,注意接线尽量旳短 。 2. 在输入端加上Ui=10mv,fi=1KHz旳正弦波,调整静态工 作 点使输出信号不失真。 3.按表3.1要求测量并计算。
高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
静态工作点
输入/输出 电压放大倍
电压
数
参数
第1级 第2级
第1级 第2级
Ub1 Uc1 Ue1 Ub2 Uc2 Ue2 Ui
Uo1 Uo2
Av1
Av2
RL=3K
表3.1 静态工作点测量
高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
一台
▲
高等职函业数技术信教育号研发究会生&器CEAC信息化培训认证管理办公室 一
三、试验原理
1. 多级放大电路有四种常见旳耦合方式:直流耦合、 阻容耦合、变压器耦合和光电耦合。
2. 两级交流放大电路中,电压放大倍数 AU=AU1*AU2
高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
四、试验内容
模拟电子线路试验
试验二 两级交Leabharlann 放大高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
一、试验目旳
1.掌握怎样合理设置静态工作点。 2.了解放大电路旳失真及消除措施。
高等职业技术教育研究会 & CEAC信息化培训认证管理办公室
二、试验仪器
▲ 双踪示波器 一台
▲ 万用表 一台
二级阻容耦合放大电路

二级阻容耦合放大电路一、实验目的1.进一步掌握直流电压及正弦信号的测试方法;2.掌握如何合理设置静态工作点;3.掌握两级放大电路的测量方法。
二、实验仪器名称型号数量双踪示波器 1台函数发生器 EE1641B 1台数字电表 1台实验板两级阻容耦合放大器1块三、工作原理说明1、电路的组成NPN型三极管T担负着放大作用,它具有能量转换和电流控制的能力,当微弱的输入信号ui使二极管基极电流i B产生微小变化时,就会使集电极电流i C产生较大的变化。
它是放大电路的核心。
V CC是集电极直流电源,为信号的功率放大提供能量。
Rc是集电极负载电阻,集电极电流ic通过Rc,从而将电流的变化转换为集电极电压的变化,然后传送到放大电路的输出端。
基极偏置电阻Rb的作用是,一方面为三极管的发射结提供正向偏置电压;同时给三极管提供一个静态基极电流Ib。
C1、C2是耦合隔直流电容为了使三极管工作在放大区,还必须使发射结正向偏置,集电结反向偏置,为此,Vcc、Rc和Rb等元件的参数应与电路中三极管的输入、输出特性有适当的配合关系。
由于单级放大电路的电压放大倍数有限,往往不能满足工程实际的需要,因此常由若干个单级放大电路组成多级放大器。
组成多级放大器时,要合理选择单级放大电路和级间耦合方式。
常用的级间耦合方式及特点见表 1。
表1 常用的级间耦合方式及特点因阻容耦合式电路简单,性能稳定,故本实验采用此耦合方式,实验原理图见实图 1。
四、实验内容1.设置静态工作点,要求第一级的静态工作电流为2 mA,第二级静态工作电流为 mA。
2.测量各级放大倍数3.测量两级放大器的输入电阻和输出电阻,其中,R=2KΩ,R L=Ω。
完成下表。
4.测量两级放大器的频率特性,并绘出频率特性曲线。
实图 1 两级阻容耦合放大器五、实验报告要求1.认真记录测试数据,正确描绘曲线;2.根据测试数据和计算结果,分析、总结多级放大器的工作性能;3.回答思考题。
计算1.静态在没有加输入信号(v i=0)时,放大电路的工作状态称为静态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课教学(2)保存项目;执行菜单命令[File]/[Save Project],
在弹出的对话框中,选择保存路径,在文件名栏中键
入“放大电路”,文件类型为Project file(*.prjpcb),单
击“保存”即可
(3)关闭项目;执行【文件】--【关闭】即可。
(4)新建原理图文件,执行【文件】--【创建】
--【原理图】菜单命令;或用鼠标选中项目名称,在
右键快捷菜单中执行【追加新文件到项目中】--【原
理图Schematic】菜单命令。
表1—1 Protel dxp 文件类型
二、自由文件(Freedocuments)
1、创建自由文件
2、项目中的文件转换为自由文件
3、将自由文件添加到项目中
三、原理图图纸设置和绘制步骤
执行【设计】--【文档选项...】菜单命令。
1、图纸大小设置
2、图纸方向设置
3、原理图网格设置
4、图纸尺寸单位设置
5、文档参数设置
绘制步骤见图1—2
任务
驱动
教学
法
电阻元件Res开头电感元件Inductor
电容元件Cap开头变压器Transfer
三极管NPN或PNN 开关元件SW
二极管Diode 串行接口Connector
数码管Dpy开头外接接口Header
电解电容Cap Pol 耳机接口Phonejack
六、放置元件
1、放置元件
2、旋转元件:鼠标左键按住元件不放,按空格键一次,转向90度。
3、移动、复制元件。
4、元器件的阵列粘贴。
七、修改元件名称及参数
八、原理图工作窗口的显示
鼠标拖曳原理图图纸,【PgUp】【PgDn】放大缩小图纸,以方便绘制修改元件。
中心位置定位显示,用【Home】键;更新用【End】键。
九、导线的绘制与移动
在工具栏中单击按钮,进入绘制导线状态。
(快捷键PW);连接时元件引脚上出现一个红色的十字型光标,表示该点可以具备电气属性,即导线与元件导通。
修改导线属性,如宽度、颜色等,在放置导线时单击【Tab】键即可。