数值分析习题课
数值分析习题课PPT资料43页

历年考题
1、设,取x0=4,x1=9,x2=6.25,则差商 -0.0080808 。 (结果保留5位有效数字)
2、给定如下数据: xi 1 2 3 4
f xi 0 5 6 3
试列出三阶差商表,求出f(x)的三次牛顿插值多项式, 并利用该多项式计算f(0)的值。(保留三位有效数字)
0.9456909
由复合辛卜生公式可得如下计算公式
S4
1f(0)f(1)2(f(0.25 )f(0.5)f(0.75 ))
24
4(f(0.12)5 f(0.37)5 f(0.62)5 f(0.87)5)
0.9460832
(积分准确值I=0.9460831)
这两种方法都需要提供9个点上的函数值,计
将区间逐次分半,令区间长度
hba (k0,1,2, ) 2k
计算
T2n
Tn 2
hn1
2k0
f(xk1 2
)
(n 2k )
③ 按加速公式求加速值
梯形加速公式:
Sn
T2n
T2n Tn 3
辛卜生加速公式:
Cn
S2n
S2n Sn 15
龙贝格求积公式:
Rn
C2n
C2n Cn 63
熟练掌握本课程重点方法计算过程) (注3:考试需携带计算器)
1、引论
误差与有效数字(重)p6:例1,2 数值运算的误差估计 算法稳定性与病态条件数 p11:例6-8
作业 1、课本(清华版)p19,习题3、4. 2、知近似值x1=1.42,x2=-0.0184,x3=184*10-4
历年考题
1、已知 f( 1 )2 , f(1 ) 1 , f(2 ) 1 ,求f(x)的二次拉 格朗日插值多项式,并利用该多项式计算的值 。(保留三位有效数字)
数值分析_期末总复习-习题课.

2 0 2
矩阵A的特征值为 1 0, 2 1, 3 3
所以谱半径 A max0,1,3 3
简述题
1. 叙述在数值运算中,误差分析的方法与原则 是什么?
解:数值运算中常用的误差分析的方法有:概 率分析法、向后误差分析法、区间分析法等。
误差分析的原则有:1)要避免除数绝对值远 远小于被除数绝对值的除法;2)要避免两近数 相减;3)要防止大数吃掉小数:4)注意简化 计算步骤,减少运算次数。
,
(
x( A) 2
0).
1. 下列各数
都是经过四舍
五入得到的近似值,试指出它们有几位有效数字,
并给出其误差限与相对误差限。
解: 有 5 位有效数字,其误差限
,相对
误差限
有 2 位有效数字,
有 5 位有效数字,
例2 设有三个近似数 a 2.31,b 1.93,c 2.24,
它们都有三位有效数字。试计算 p=a+bc 的误差界, 并问 p 的计算结果能有几位有效数字?
n
Ln( x) f (xk) l k( x) k0
Rn(x)
f (x) Ln(x)
f (n1) ( ) (n 1)!
n1(
x),
其中lk(x)
n
j0
x xj xk xj
(k 0,1,...n)
jk
显然,如此构造的L(x) 是不超过n次多项式。当n=1时,称为线性插值。当n=2时,
称为抛物线插值。
解 pA 2.311.93 2.24 6.6332, 于是有误差界
(pA)
(a
A)
(bAc
)
A
(aA) bA (cA) cA (bA)
0.005 0.00( 5 1.93 2.24) 0.02585
数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
数值分析习题课

例1-3 已知f(x) 的五组数据(1,0)、(2,2)、(3,12)、(4,42)、 (5,116),求 N4 (x)。如果再增加一个节点(6,282),求出N5(x), 并计算 N4(1.5)、N5(1.5). 解:先由前五组数据列差商表 1 0 2 2 2 如果,再增加一点(6, 282), 3 12 10 4 就在上表中增加一行计算差商 4 42 30 10 2 5 116 74 22 4 0.5 0.1 6 282 166 46 8 1
结论:通过四舍五入原则求得的近似数,其有效数 字就是从末尾到第一位非零数字之间的所有数字。
1 mn x x 10 2
*
例1-2 下列近似数是通过四舍五入的方法得到的,试 判定它们各有几位有效数字: x1* =87540,x2*=8754×10, x3*=0.00345, x4*= 0.3450 ×10-2 解:我们可以直接根据近似数来判断有效数字的位数, 1 也可以通过绝对误差限来判断。 x x 10
解: 记f(x)以-1,0,1,2为插值节点的三次插值多项式为 L3(x).由插值余项定理有
所以
例4.证明由下列插值条件 所确定的拉格朗日插值多项式 是一个二次多项式. x0 x2 x4
该例说明了什么问题?( t8) 解: 以x0,x2,x4为插值节点作f(x)的2次插值多项式p(x),则
容易验证 因而6个点(xi, yi),i=0 1,…,5均在二次曲线p(x)=x2-1 上. 换句话说,满足所给插值条件的拉格朗日插值多项式 为 p(x)=x2-1.
f ( ) 1 R( x ) ( x x0 )( x x1 )( x x2 ) f ( ) ( x x0 )( x x1 )( x x2 ) 3! 6 1 max f ( ) max ( x x0 )( x x1 )( x x2 ) x0 x x 2 6 x0 x x 2
数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案课后习题一:a) 求解非线性方程f(x) = x^3 - 2x - 5的根。
解答:可使用牛顿迭代法来求解非线性方程的根。
牛顿迭代法的迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n),其中x_n为第n次迭代的近似解。
对于给定的方程f(x) = x^3 - 2x - 5,计算f'(x)的导数为f'(x) = 3x^2 - 2。
选择一个初始近似解x_0,并进行迭代。
迭代的终止条件可以选择两次迭代间的解的差值小于某个预设的精度。
b) 计算矩阵加法和乘法的运算结果。
解答:设A和B为两个矩阵,A = [a_ij],B = [b_ij],则A和B的加法定义为C = A + B,其中C的元素为c_ij = a_ij + b_ij。
矩阵乘法定义为C = A * B,其中C的元素为c_ij = ∑(a_ik * b_kj),k的取值范围为1到矩阵的列数。
c) 使用插值方法求解函数的近似值。
解答:插值方法可用于求解函数在一组给定点处的近似值。
其中,拉格朗日插值法是一种常用的方法。
对于给定的函数f(x)和一组插值节点x_i,i的取值范围为1到n,利用拉格朗日插值多项式可以构建近似函数P(x),P(x) = ∑(f(x_i) * l_i(x)),其中l_i(x)为拉格朗日基函数,具体表达式为l_i(x) = ∏(x - x_j)/(x_i - x_j),j的取值范围为1到n并且j ≠ i。
课后习题二:a) 解决数值积分问题。
解答:数值积分是求解定积分的数值近似值的方法。
常用的数值积分方法包括矩形法、梯形法和辛普森法。
矩形法采用矩形面积的和来近似曲边梯形的面积,梯形法采用等距离子区间上梯形面积的和来近似曲边梯形的面积,而辛普森法则利用等距离子区间上梯形和抛物线面积的加权和来近似曲边梯形的面积。
b) 使用迭代方法求解线性方程组。
解答:线性方程组的求解可以通过迭代方法来进行。
数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是3位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1.给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2.在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3.若,求和.解:由均差与导数关系于是4.若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5.求证.解:解:只要按差分定义直接展开得6.已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23)N3(0.23)=0.23203由余项表达式(5.15)可得由于7.给定f(x)=cosx的函数表用Newton等距插值公式计算cos0.048及cos0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
就在上表中增加一行计算差商
4 42 30 10 2
5 116 74 22 4 0.5
6 282 166 46 8 1 0.1
由Newton公式的递推式得到:
N5( x) N4( x) 0.1( x 1)( x 2)( x 3)( x 4)( x 5) 得到:
f (1.5) N5(1.5)
1 1016 2
e2 只有6位有效数字。
三、算法设计的法: • 2: 不用很小得数做分母(不用很大的数做分子)
练习: 求方程 x2-56x+1=0 的两个根,使它们至少具有四
位有效数字 3132 55.964 .
第二章 插值与拟合
1、Lagrange插值多项式,Newton插值多项式的构造与 插值余项估计,及证明过程。
因为 y’(x)=-e-x,y"(x)= e-x ,所以
例2(t15)证明:对于f ( x)以x0 , x1为节点的一次插值多项式p( x), 插值误差为
f ( x) p( x) ( x1 x0 )2 max f ( x)
8
x0 x x1
证明:根据插值余项定理,对于一次插值多项式
误差余项为
R(x)=f ( x) p( x)
结论:通过四舍五入原则求得的近似数,其有效数 字就是从末尾到第一位非零数字之间的所有数字。
例1-2 下列近似数是通过四舍五入的方法得到的,试 判定它们各有几位有效数字:
x1* =87540,x2*=8754×10, x3*=0.00345, x4*= 0.3450 ×10-2
解:我们可以直接根据近似数来判断有效数字的位数,
x3 x3
1 10-23 2
x4 x4
1 106 2
x4 0.3450 102
x4 x4
1 1024 2
可以得出 x2 , x3 , x4 各具有4、3、4 位有效数字。
例1-3 已知 e =2.718281828……, 试判断下面两个近似 数各有几位有效数字?
e1 2.718282 , e2 2.718281
解:由于
e
e1
0.0000001
0.0000005
1 2
106
而 e1 2.718282 0.2718282101
所以
e e1
0.0000001
0.0000005
1 106 2
1 1017 2
e1有7位有效数字。同理:
e e2
0.0000008
0.000005
1 105 2
N4(1.5) 0.1(1.5 1)(1.5 2)(1.5 3)(1.5 4)(1.5 5) 0.28125 0.328125 0.609375
1. 高次插值的Runge 现象,应如何避免? 2.分段性插值有何优缺点?误差估计?(插值节点的选择) 3. Hermite插值的构造, 误差估计
相对误差限为
0.005 0.23%
x* 2.18
二、有效数字
定义 设数 x 的近似值可以表示为
x* 0.12 n 10m
其中 m 是整数,αi (i=1,2, …, n) 是0到9 中的一个数字, 而α1 ≠ 0. 如果其绝对误差限为
x x* 1 10mn 2
则称近似数 x* 具有 n 位有效数字。
也可以通过绝对误差限来判断。
x x* 1 10mn
已 知
x1 x1
1 2
而
x 1
0.87540 105
有5位有效数字。同理可以写出
2
所以 x1 x1
1 1055 2
x2 x2
1 101 2
x3 x3
1 105 2
x2 0.8754105 x3 0.345102
x2 x2
1 1054 2
关于离散数据:
xi x0 x1 xn yi y0 y1 yn
构造了lagrange插值多项式:
Ln( x)
n
j0
n
i0 i j
x xi x j xi
yj
Rn( x)
f (
(n1) ( )
n 1)!
n1
(
x
),
(a,b)
得N到ew:tNo4n(插x) 值 0多 2项( x式 1:) 4( x 1)( x 2)
4.三次样条函数的定义、构造过程
5.数据拟合的最小二乘法(可化为直线拟合的非线性 拟合的处理方法)
二、典型例题分析
例1. 令x0=0, x1=1,写出y(x)=e-x的一次插值多项式
L1(x) ,并估计插值误差.(P55,t14题)
解: 记x0=0, x1=1 , y0=e-0=1,y1=e-1; 则函数y=e-x以x0、 x1为节点的一次插值多项式为
2、 Hermite插值多项式的构造与插值余项估计, 带导数条件的插值多项式的构造方法,基于承袭性的
算法,基函数法, 重节点差商表的构造; 3、分段插值及三次样条插值的构造
4、最小二乘拟合
• 掌握Lagrange 插值多项式的构造方法及具体结构 • 掌握Lagrange插值多项式误差分析方法和证明方法 • 掌握Newton插值多项式的形式及误差 • 掌握差商表的构造过程
例1-3 已知f(x) 的五组数据(1,0)、(2,2)、(3,12)、(4,42)、 (5,116),求 N4 (x)。如果再增加一个节点(6,282),求出N5(x),
并计算 N4(1.5)、N5(1.5).
解:先由前五组数据列差商表
10
22 2
如果,再增加一点(6, 282),
3 12 10 4
数值分析 复习
第一章 绪论
§1 绪论:数值分析的研究内容 §2 误差的来源和分类 §3 误差的表示 §4 误差的传播 §5 算法设计的若干原则
一、误差的分类(绝对误差,相对误差)
例1-1 设 x*=2.18是由精确值x 经过四舍五入得到的 近似值。问 x的绝对误差限ε和相对误差限η各是 多少?
解:因为 x=x * ±0.005 , 所以绝对误差限为ε=0.005
N n (x2)(x f1()x( 0x)92()(xxx30) )f0[.5x(0x, x11])( x 2)( x 3)( x 4) f (1.5) N(4(x1.5)x0 )3(2x0.x218)1f25[ x0 , x1 , x2 ]
( x x0 )( x x1 ) ( x xn1 ) f [ x0 , x1 , , xn ]