湖北省咸宁市2018中考数学试题图片版.docx
2018年湖北省咸宁市中考数学试卷和答案解析

(第 4 题)
效 数学试卷 第 1 页(共 8 页)
6.已知一元二次方程 2x2 2x 1 0 的两个根为 x1, x2 ,且 x1 x2 ,下列结论正确的是
()
A. x1 x2 1
B. x1 x2 -1
C. x1 x2
7.如图,已知⊙ O 的半径为 5,弦 AB,CD 所对的圆心角分别是
D.1.2351011
题 4.用 4 个完全相同的小正方体搭成如图所示的几何体,该几何体的( )
A.主视图和左视图相同
B.主视图和俯视图相同
C.左视图和俯视图相同
D.三种视图都相同
5.下列计算正确的是( )
无
A. a3 a3 2a3
C. a6 a2 a3
B. a2 a2 a4 D.(- 2a2)3 -8a6
13.如图,航拍无人机从 A 处测得一幢建筑物顶部 B 的仰角为 45 ,测 得底部 C 的俯角力 60 ,此时航拍无人机与该建筑物的水平距离 AD 为110m ,那么该建筑物的高度 BC 约为___________ m .(结
果保留整数, 3 1.73). 14.如图,将正方形 OEFG 放在平而直角坐标系中, O 是坐标原点,点 E
的坐标为( 2,3),则点 F 的坐标为_______________________.
(第 13 题)
1 ,1,1 ,1 ,, 15.按一定顺序排列的一列数叫做数列,如数列: 2 6 12 20 则这个
数列的前 2018 个数列的和为____________________________.
(第 14 题)
16.如图,已知 MON 120 ,点 A, B 分別在 OM,ON 上,且 OA OB a, 将射线 OM
【真题】咸宁市2018年中考数学试题含答案(Word版

湖北省咸宁市2018年初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃〜2 ℃ ,则这一天的温差是( ) A .1℃ B .-1℃ C .5℃ D .-5℃2. 如图,已知l b a ,//与 b a ,相 交 ,若701=∠,则2∠ 的度数等于( )A .120 B .110 C .100 D .703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为( )A .910123.5⨯B .101012.35⨯ C .8101.235⨯ D . 11101.235⨯ 3. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是( )A .3332a a a =⋅ B .422a a a =+ C. 326a a a =÷D .632-82-a a =)( 6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( )A .121=+x xB .-121=⋅x x C. 21x x < D .21221=+x x 7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8 C.25 D .358. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲 、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟;③乙用 16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈).14. 如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________.16.如图,已知120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为 1200(<<αα且)60≠α,作点A 关于直线'OM的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化; ③ 当30=α时,四边形OADC 为荽形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. (1)计算:2-38-123+;(2)化简:()()().123---+a a a a 18. 已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ; (3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ; (4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19. 近年来,共享单车逐渐成为高校学生喜爱的“绿色出行” 方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M(1) 试说明点N 也在函数)0(>=x xky 的图象上; (2) 将直线MN 沿y 轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1) 求证DE 是⊙O 的切线;(2) 若,5,52==BC AB 求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23. 定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可); (2)如图2,在四边形ABCD 中, 140,80=∠=∠ADC ABC ,对角线BD 平分ABC ∠. 求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,30=∠=∠HFG EFH .连接EG ,若 EFG ∆的面积为32,求FH 的长. 24.如图,直线 343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283。
湖北省咸宁市2018年中考数学试题真题含答案Word版.docx

2018 年中考真题湖北省咸宁市2018 年初中毕业生学业考试数学试卷第Ⅰ卷(共 60 分)一、选择题:本大题共8 个小题 , 每小题 3 分, 共 24 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 咸宁冬季里某一天的气温为 - 3℃ ? 2 ℃,则这一天的温差是()A. 1℃B.-1 ℃C. 5℃D. -5 ℃2. 如图,已知 a // b,l 与 a,b 相交,若 170 ,则 2 的度数等于()A.120B. 110C. 100D. 703.2017年 , 咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元,增速在全省17 个市州中排名第三. 将 123 500 000 000用科学记数法表示为()A.123.5109B.12.351010C.1.235 108D. 1.235 1011 3. 用 4 个完全相同的小正方体搭成如图所示的几何体,该几何体的()A. 主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5. 下列计算正确的是()A.a3a32a3B. a2a2a4 C.a6 a 2a3D. 2 3-8a 6( - 2a)2x22x 10 x, x x x()A.x1x21B. x1 x2 -1 C.x1 x2D.x12x2127. 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是AOB, COD ,若AOB 与 COD 互补,弦 CD6,则弦AB的长为()A. 6B.8 C. 5 2D.5 38.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息 . 已知甲先出发 4 分钟 . 在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间 t (分)之间的关系如图所示,下列结论:①甲步行的速度为 60 米 / 分;②乙走完全程用了 32 分钟;③乙用 16 分钟追上甲;④乙到达终点时,甲离终点还有300 米其中正确的结论有()A. 1 个B.2个 C. 3个D.4个第Ⅱ卷(共 90 分)二、填空题(每题 3 分,满分 24 分,将答案填在答题纸上)1有意义,那么实数x 的取值范围是__________.9. 如果分式x 210.因式分解: ab2 a _____________________.11.写出一个比 2 大比 3 小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有 3 个完全相同的小球,它们的标号分別为1,2,3. 随机摸出一个小球然后放回,再随机摸出一个小球. 两次摸出的小球标号相同的概率是_________________.13. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 45 ,测得底部C 的俯角力60 ,此时航拍无人机与该建筑物的水平距离AD 为 110 m ,那么该建筑物的高度 BC 约为___________ m .( 结果保留整数,3 1.73).14. 如图 , 将正方形 OEFG 放在平而直角坐标系中, O 是坐标原点 , 点 E 的坐标为 ( 2,3 ) , 则点 F 的坐标为 _______________________.15. 按一定顺序排列的一列数叫做数列,如数列:1 11 12 , ,, , ,则这个数列的前 2018 个6 1220数列的和为 ____________________________.16. 如图,已知 MON 120 ,点 A, B 分別在 OM ,ON 上, 且 OA OB a, 将射线 OM 绕点 O 逆时针旋转得到 OM ' ,旋转角为 (0120 且60 ),作点 A 关于直线 OM '的对称点 C ,画直线 BC 交 OM ' 于点 D ,连接 AC , AD .有下列结论:① AD CD ;②ACD 的大小随着的变化而变化;③ 当30 时 , 四边形 OADC 为荽形;④ACD 面积的最大值为3a2.其中正确的是 ________________.( 把你认为正确结论的序号都填上)三、解答题(本大题共 8 小题,共 72 分 . 解答应写出文字说明、证明过程或演算步骤 . )17. ( 1)计算:12 - 3 8 3 - 2 ;(2)化简:a 3 a 2 a a 1 .18.已知: AOB .求作:A'O ' B' , 使A'O ' B'AOB作法:(1)如图 1,以点O为圆心,任意长为半径画弧,分别交OA, OB 于点 C, D ;(2)如图 2,画一条射线O ' A',以点 O '为圆心 OC 长为半径画弧,交于点O ' A'于点 C';(3)以点C'为圆心,C, D长为半径画弧,与第 2 步中所画的弧交于点 D ';(4)过点 D '画射线 OB ',则A'O ' B'AOB .根据以上作图步骤,请你证明A'O ' B'AOB .19.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车. 某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表 .使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是 ____________该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有 1500 名学生出行,请你估计这天使用共享单车次数在 3 次以上(含 3 次)的学生有多少人?20. 如图,在平面直角坐标系中,矩形OABC 的顶点 B 的坐标为 4,2,直线 y1 x 52 2与边 AB, BC 分别相交于点 M , N ,函数 yk(x 0) 的图象过点 M .x(1) 试说明点 N 也在函数 yk(x 0) 的图象上;xk( x 0)(2) 将直线 MN 沿 y 轴的负方向平移得到直线M ' N ' , 当直线 M ' N ' 与函数 yx的图象仅有一个交点时,求直线M ' N ' 的解析式 .21. 如图,以ABC 的边 AC 为直径的⊙ O 恰为 ABC 的外接圆,ABC 的平分线交⊙ O于点 D ,过 点 D 作 DE // AC 交 BC 的延长线于点 E .(1) 求证 DE 是⊙ O 的切线; (2) 若 AB2 5, BC 5, 求 DE 的长 .22. 为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动. 在参加此次活动的师生中,若每位老师带 17 个学生,还剩 12 个学生没人带 ; 若每位老师带 18 个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:甲种客车乙种客车2018 年中考真题载客量(人 / 辆)3042租金(人 / 辆)300400学校计划此次研学旅行活动的租车总费用不超过3100 元,为了安全,每辆客车上至少要有2 名老师 .(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有 2 名老师,可知租用客车总数为 _____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等 ), 我们就把这条对角线叫做这个四边形的“相似对角线”....理解:(1)如图1,已知Rt ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点 D ,......使四边形 ABCD 是以 AC 为“相似对角线”的四边形(保留画图痕迹,找出 3 个即可);(2)如图2,在四边形ABCD中,ABC 80 , ADC 140 ,对角线BD平分ABC.求证 : BD是四边形ABCD的“相似对角线” ;运用:(3)如图3EFGH的“相似对角线” ,EFH HFG30 .连接 EG ,,已知 FH 是四边形若EFG 的面积为 2 3,求FH的长.24.如图,直线y 3x 3 与x轴交于点 A ,与 y 轴交于点 B ,抛物线y 3 x2bx c 。
2018年湖北省咸宁市中考数学试卷及答案 精品

湖北省咸宁市2018年初中毕业生学业考试数 学 试 卷考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑) 1.8-的相反数是( ). A .8-B .8C .81-D .812.南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为( ). A .3.6×102 B .360×104 C .3.6×104 D .3.6×106 3学在5间,他们平均每天课外阅读时间x A .甲 B .乙 C .丙 D .丁4.不等式组⎩⎨⎧--.024,01x x 的解集在数轴上表示为( ).5.下列运算正确的是().A BC D≥ >A .623a a a =⋅B .6223)(b a ab =C .222)(b a b a -=-D .235=-a a6.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( ). A .(2,0) B .(23,23) C .(2,2) D .(2,2)7.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2 D .-322π38.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的位置) 9.因式分解:=-a a 22 . 10.在函数31-=x y 中,自变量x 11.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生, 让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图.如果该校有120012为18cm ,深为30cm 阶改为斜坡,设台阶的起点为A ,斜坡的起始点 为C ,现设计斜坡BC 的坡度1:5i =,则AC 的 长度是 cm .AB C DEF(第7题)O(第12题) (第11题)球类跳绳 其它A B DA (第14题)(N ) 13.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需 元.14.如图,量角器的直径与直角三角板ABC 的斜边角器0刻度线的端点N 与点A 重合,射线CP 从 时针方向以每秒2度的速度旋转,CPE ,第35秒时,点E 在量角器上对应的读数是 度.15.如图,在梯形ABCD 中,AD ∥BC ,︒=∠90C ,BE 平分∠ABC且交CD 于E ,E 为CD 的中点,EF ∥BC 交AB 于F ,EG ∥AB 交BC 于G ,当2=AD ,12=BC 时,四边形BGEF 的周长为 . 16.对于二次函数322--=mx x y ,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则1=m ;③如果将它的图象向左平移3个单位后过原点,则1-=m ; ④如果当4=x 时的函数值与2008=x 时的函数值相等, 则当2012=x 时的函数值为3-. 其中正确的说法是 .(把你认为正确说法的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置) 17.(本题满分6分)计算:1821(|322|2+----.18.(本题满分8分)解方程:48122-=--x x x .19.(本题满分8分)如图,一次函数b kx y +=1的图象与反比例函数y 的图象交于A (1,6),B (a ,2)两点. (1)求一次函数与反比例函数的解析式;(第19题)AC DF EG (第15题)(2)直接写出1y ≥2y 时x 的取值范围.20.(本题满分9分)某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是21,你赞成他的观点吗?请用列表法或画树形图法分析说明. 21.(本题满分9分) 如图,AB 是⊙O 的直径,点E 是AB 上的一点,E 点的弦,过点B 的切线交AC 的延长线于点F ,BF ∥CD , 连接BC .(1)已知18=AB ,6=BC ,求弦CD 的长;(2)连接BD ,如果四边形BDCF 为平行四边形,则点E 位于AB 的什么位置?试说明理由.22.(本题满分10分)某景区的旅游线路如图1所示,其中A 为入口,B ,C ,D 为风景点,E 为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km ).甲游客以一定的速度沿线路“A →D →C →E →A ”步行游览,去3h 数图象如图2(1(2)求C ,E (3A 处出发,打算游 完三个景点后回到 A 处,两人相约先 到者在A 处等候, 等候时间不超过10(第21题) (第22题)图2图1分钟.如果乙的步 行速度为3km/h ,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.23.(本题满分10分)如图1,矩形MNPQ 中,点E ,F ,G ,H 分别在NP ,PQ ,QM ,MN 上,若4321∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.图2,图3,图4中,四边形ABCD 为矩形,且4=AB ,8=BC . 理解与作图:(1)在图2,图3中,点E ,F 分别在BC ,CD 边上,试利用正方形网格在图上作出矩形ABCD 的反射四边形EFGH . 计算与猜想:(2)求图2,图3中反射四边形EFGH 的周长,并猜想矩形ABCD的反射四边形的周长是否为定值? 启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF 交BC的延长线于M ,试利用小华同学给我们的启发证明(2)中的猜想.图2F AC D G H EF12 3 4 M E F MN P Q G H E F123 4 图1 图3 (第23题)图424.(本题满分12分)如图,在平面直角坐标系中,点C 的坐标为(0,4),动点A 以每秒1个单位长的速度,从点O 出发沿x 轴的正方向运动,M 是线段AC 的中点.将线段AM 以点A 为中心,沿顺时针方向旋转︒90,得到线段AB .过点B 作x轴的垂线,交直线BE 于点D (1)当点B 与点D (2)设△BCD 的面积为S ,当时,425=S ?(3)连接MB ,当MB ∥OA 时,如果抛物线ax ax y 102-=的顶点在△ABM 内部(不包括边),求a 的取值范围.备用图(第24题)湖北省咸宁市2018年初中毕业生学业考试数学试题参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.5.每题评分时只给整数分数.一.精心选一选(每小题3分,本大题满分24分)二.细心填一填(每小题3分,本大题满分24分)9.)2(-a a 10.3≠x 11.360 12.210 13.1100 14.140 15.28 16.①④(多填、少填或错填均不给分) 三.专心解一解(本大题满分72分)17.解:原式234223+--= ············· 4分12-=. ···················· 6分 (说明:第一步中写对223-得1分,写对4-得2分,写对23+得1分,共4分) 18.解:原方程即:)2)(2(812-+=--x x x x . ········ 1分方程两边同时乘以)2)(2(-+x x ,得8)2)(2()2(=-+-+x x x x . (4)分化简,得 842=+x .解得 2=x . ·················· 7分 检验:2=x 时0)2)(2(=-+x x ,2=x 不是原分式方程的解,原分式方程无解.·········· 8分19.解:(1)∵点A (1,6),B (a ,2)在xm y =2的图象上,∴61=m ,6=m . ················· 1分2=a m ,32==ma .················ 2分∵点A (1,6),B (3,2)在函数b kx y +=1的图象上,∴⎩⎨⎧=+=+.23,6b k b k·················· 4分解这个方程组,得⎩⎨⎧=-=.8,2b k∴一次函数的解析式为821+-=x y ,反比例函数的解析式为xy 62=. ······················ 6分(2)1≤x ≤3. (8)分20.解:不赞成小蒙同学的观点. ··········· 1分记七、八年级两名同学为A ,B ,九年级两名同学为C ,D . 画树形图分析如下:·········· 5分由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为61122=.·················· 9分21.(1)解:∵BF 与⊙O 相切,∴AB BF ⊥. ········ 1分 而BF ∥CD ,∴AB CD ⊥.又∵AB 是直径,∴ED CE =. · 2分连接CO ,设x OE =,则x BE -=9. 由勾股定理可知:22222CE BE BC OE CO =-=-,即2222)9(69x x --=-,7=x . ·· 4分 因此2879222222=-=-=OE CO CD .5分(2)∵四边形BDCF 为平行四边形, ∴CD BF =.而CD ED CE 21==, ∴BF CE 21=. ········· 7分∵BF ∥CD , ∴△AEC ∽△ABF . ·········· 8分 ∴21==BFEC ABAE . ∴点E 是AB 的中点. ······· 9分第一名: BC A B CD C D BD AC BA CD C D AD ABC A BD AD AB D A BC B C AC 第二名: 第三名: (第21题)22.(1)解法一:由图2可知甲步行的速度为28.06.1=(km/h )1分因此甲在每个景点逗留的时间为5.026.16.28.08.1=---(h )·············· 3分解法二:甲沿A →D 步行时s 与t 的函数关系式为t s 2=. 1分 设甲沿D →C 步行时s 与t 的函数关系式为b t s +=2. 则6.28.12=+⨯b . ∴1-=b .∴12-=t s . ··················· 2分 当6.1=s 时,6.112=-t ,3.1=t .因此甲在每个景点逗留的时间为5.08.03.1=-(h ). ··· 3分 补全图象如下: ················· 5分(2)解法一:甲步行的总时∴甲的总行程为422=⨯(km ).7分 ∴C ,E 两点间的路程为6.08.016.14=---(km ).··· 8分解法二:设甲沿C →E →A 步行(第22题)时s 与t 的函数关系式为m t s +=2.则6.23.22=+⨯m .∴2-=m .∴22-=t s . ··················· 6分 当3=t 时,4232=-⨯=s . ·············· 7分 ∴C ,E 两点间的路程为6.08.016.14=---(km ). ···· 8分(3)他们的约定能实现.乙游览的最短线路为:A →D →C →E →B →E →A (或A →E →B →E →C →D →A ),总行程为8.48.024.06.016.1=+⨯+++(km ). ·· 9分 ∴乙游完三个景点后回到A 处的总时间为1.335.038.4=⨯+(h ). ∴乙比甲晚6分钟到A 处. ··········· 10分 (说明:图象的第四段由第二段平移得到,第五段与第一、三段平行,且右端点的横坐标为3,如果学生补全的图象可看出这些,但未标出2.3也可得2分.第3问学生只说能实现约定,但未说理由不给分.)23.(1)作图如下: ················· 2分t /(h) 图2FE F图3(2)解:在图2中,52204222==+====HE GH FG EF , ∴四边形EFGH 的周长为58. ··········· 3分 在图3中,51222=+==GH EF ,53456322==+==HE FG . ∴四边形EFGH 的周长为5853252=⨯+⨯. ····· 4分 猜想:矩形ABCD 的反射四边形的周长为定值. ···· 5分(3)证法一:延长GH 交CB 的延长线于点N .∵21∠=∠,51∠=∠, ∴52∠=∠. 而FC FC =, ∴Rt △FCE ≌Rt △FCM .∴M F EF =,MC EC =.6分同理:EH NH =,EB NB =.∴162==BC MN . ················· 7分 ∵190590∠-︒=∠-︒=∠M ,390∠-︒=∠N ,∴N M ∠=∠. ∴GN GM =. ··········· 8分 过点G 作GK ⊥BC 于K ,则821==MN KM . ······· 9分 ∴54842222=+=+=KM GK GM .∴四边形EFGH 的周长为582=GM . ········ 10分 证法二:∵21∠=∠,51∠=∠, ∴52∠=∠.而FC FC =, ∴Rt △FCE ≌Rt △FCM .∴M F EF =,MC EC =. ··············· 6分 AB C D G HE F1 2 3 4 M 图4N K 5∵190590∠-︒=∠-︒=∠M ,490∠-︒=∠HEB ,而41∠=∠, ∴HEB M ∠=∠.∴HE ∥GF . 同理:GH ∥EF .∴四边形EFGH 是平行四边形. ··········· 7分 ∴HE FG =. 而41∠=∠,∴Rt △FDG ≌Rt △HBE . ∴BE DG =. ······· 8分 过点G 作GK ⊥BC 于K ,则8=+=+=+=EC BE CM GD CM KC KM .9分 ∴54842222=+=+=KM GK GM .∴四边形EFGH 的周长为582=GM . ········ 10分24.解:(1)∵︒=∠+∠90BAE CAO ,︒=∠+∠90BAE ABE ,∴ABE CAO ∠=∠.∴Rt △CAO ∽Rt △ABE . ·············· 2分 ∴BEAO AB CA =. ∴42t AB AB =.∴8=t . ··············· 3分(2)由Rt △CAO ∽Rt △ABE 可知:t BE 21=,2=AE . ·· 4分当0<t <8时,425)24)(2(2121=-+=⋅=t t BD CD S . ∴321==t t . ··················· 6分 当t >8时,425)42)(2(2121=-+=⋅=tt BD CD S . ∴2531+=t ,2532-=t (为负数,舍去). 当3=t 或253+时,425=S . ············ 8分 (3)过M 作MN ⊥x 轴于N ,则221==CO MN .当MB ∥OA 时,2==MN BE ,42==BE OA .························ 9分抛物线ax ax y 102-=的顶点坐标为(5,a 25-). ···················· 10分 它的顶点在直线5=x 上移动. 直线5=x 交MB 于点(5,2),交AB 于点(5,1). ···················11分∴1<a 25-<2. ∴252-<a <251-. ····· 12分。
2018年湖北咸宁市中考数学试卷(含解析)

2018年湖北省咸宁市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ℃,则这一天的温差是( ) A.1℃B.-1℃C.5℃D.-5℃【答案】C【解析】解:根据“温差=最高气温 最低气温”,2℃-(-3℃)=2℃+3℃=5℃,故选C.【知识点】有理数的减法运算2.(湖北省咸宁市,2,3)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于( ) A.120°B.110°C.100°D.70°【答案】B【解析】解:如图所示,∠3=∠1=70°.∵a∥b,∴∠2+∠3=180°,∴∠2=180°-70°=110°,故选择B.【知识点】平行线的性质;对顶角3.(湖北省咸宁市,3,3)2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123 500 000 000元,增速在全省17个市州中排名第三.将.123 500 000 000用科学记数法表示为( )A.123.5×109B.12.35×1010C.1.235×108D.1.235×1011【答案】D【解析】123 500 000 000的整数数位有12位,所以a×10n中,a的值为1.235,n的值为12-1=11,即123 500 000000=1.235×1011,故选D.【知识点】科学记数法4.(湖北省咸宁市,4,3)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.各种视图都相同【答案】A【解析】从正面看,其主视图有两层小正方体,其中底下一层有2个小正方体,上面一层左侧部分有1个小正方体;从左面看,其左视图两层小正方体,其中底下一层有2个小正方体,上面一层左侧部分有1个小正方体;从上面看,其俯视图两层小正方体,其中底下一层有1个小正方体,上面一层有2个小正方体,所以主视图和左视图相同,故选A . 【知识点】三视图 5.(湖北省咸宁市,5,3)下列计算正确的是( )A .3332a a a =gB .224a a a += C .623a a a ÷= D .236(2)8a a -=-【答案】D【解析】根据“同底数幂相乘,底数不变,指数相加”可得336a a a =g ,故A 错误;“合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变”可得2222a a a +=,故B 错误;根据“同底数幂相除,底数不变,指数相减”可得624a a a ÷=,故C 错误;根据积的乘方运算法则可得D 正确 【知识点】合并同类项;同底数幂的除法;幂的乘方;积的乘方运算6.(湖北省咸宁市,6,3)已知一元二次方程22210x x +-=的两个根为12x x ,且12x x <,下列结论正确的是( )A .121x x +=B .121x x =-gC .12x x <D .21112x x +=【答案】D【解析】由根与系数的关系可得x 1+x 2=212-=-,121122x x -==-g ,故A 、B 错误;由x 1+x 2<0,120x x <g 可得120,0x x <<,∵12x x <,∴12x x >,故C 错误;∵1x 是一元二次方程22210x x +-=的一个根,∴2112210x x +-=,∴21112x x +=,故D 正确 【知识点】一元二次方程根与系数的关系;一元二次方程的解 7.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( ) A .6 B .8 C .52 D .53【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD ,∴»»AE DC , ∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, ∴OF=12AE=3. 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质 8.(湖北省咸宁市,8,3)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分; ③乙用16分钟追上甲;②乙走完全程用了32分钟; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( )A .1个B .2个C .3个D .4个t /分y /米O2404 16EF【答案】A【思路分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【解题过程】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16-4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故选A . 【知识点】一次函数的应用二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.(湖北省咸宁市,9,3)如果分式12x -有意义,那么实数x 的取值范围是__________. 【答案】x≠2 【解析】因为分式12x -有意义,所以分母x -2≠0,解得x≠2,故答案为x≠2. 【知识点】分式的有意义的条件10.(湖北省咸宁市,10,3)因式分解:2ab a -=__________. 【答案】(1)(1)a b b +-【解析】先提公因式,再运用平方差公式分解22(1)(1)(1)ab a a b a b b -=-=+-,故答案为(1)(1)a b b +- 【知识点】分解因式 11.(湖北省咸宁市,11,3)写出一个比2 大比3 小的无理数(用含根号的式子表示) __________. 【答案】5(答案不唯一)【解析】无理数是无限不循环小数,在初中阶段常见的无理数包括三种情况:①含有根号,被开方数不是完全平方数;②含有π的式子;③人为构造的且有一定规律的数,且后面要加上省略号,如1.010010001…(后面每2个1之间多一个0),故答案为5等【知识点】无理数 12.(湖北省咸宁市,12,3)—个不透明的口袋中有3 个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放冋,再随机摸出一个小球.两次摸出的小球标号相同的概率是__________. 【答案】【解析】列表分析所有可能的结果如下:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2) 3(1,3)(2,3)(3,3)第 一 次结果第 二次从表中可以看出共有9种等可能的结果,两次摸出的小球标号相同的结果有3种,其概率3193P==,,故答案为1 3【知识点】概率13.(湖北省咸宁市,13,3)如图,航拍无人机从A处测得一幢建筑物顶部的仰角为45 °,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_________m.( 结果保留整数,3 1.73≈)【答案】300【解析】在Rt△ABD中,∠BAD=45°,∴BD=AD=110 m,在Rt△ACD中,∠CAD=60°,AD=110 m∴CD=AD tan601103⋅︒=,∴BC=BD +CD=110+1103≈300 m【知识点】解直角三角形的应用14.(湖北省咸宁市,14,3)如图,将正方形OEFG放在平面直角坐标系中,0是坐标原点,点E的坐标为(2,3),则点F的坐标为__________.【答案】(-1,5)【解析】如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(-3,2).∴O′(12-,52).∵点F与点O关于点O′对称,∴点F的坐标为(-1,5).故答案是:(-1,5).【知识点】15.(湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220g g g则这个数列的前2018个数的和为__________.【答案】2018 2019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯g g g则第2018个数为120182019⨯则这个数列的前2018个数的和为11111 1223344520182019 +++++⨯⨯⨯⨯⨯g g g=111111111 1223344520182019 -+-+-+-++-g g g=1 12019 -=2018 2019【知识点】探究规律16.(湖北省咸宁市,16,3)如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA OB a==,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD。
湖北省中考真题--咸宁市2018年中考数学真题试题(含答案)

湖北省咸宁市2018年初中毕业生学业考试数学试卷I ?考生注意:1.本试卷分试题卷和答题卷;全卷24小题,满分丨20分;考试时间120分钟。
2,考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项。
3丨考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效。
试题卷―、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)丨.咸宁冬季里某一天的气温为-31〜21,则这一天的温差是〈 〉八.113.-1^0.5X10.-5^:1如图,已知以///,7与相交,若乙1=70。
,则乙2的度数等于〔八.120。
13.110。
0.10000.70。
3.2017年,咸宁市经济运行总体保持平稳较快增长,全年0丨川约123 500 000 000元,增速在 全竹17个市州中排名第三.将丨23 500 000 000爪科学丨己数法表示为〔〉1123.5x109匕 1235幻010V 235x10^1用4个完全相同的小正方体搭成如阁所示的几何体,该几何体的^八.主视图和左视图相同 ⑴主视图和俯视图相同左视图和俯视阁相同 丨).:种视图都相同5丨下列计笕正确的是〈〉八.“3 # “3 ^ 2^3 3^ 01 ^ 01 ~ “4(二 “6 ^ “2 ^1乂〈 一 2(1^^38“66丨已知一元二次方程2?十2;^1 二0的两个根为^ 1# ^:2 ^ ~ 1主视方向(第4题)I 〈丨文2 I乙000,若乙4洲与乙000互补,弦00 = 6,则弦48的於为〈八上匕80.572丨)^屮、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步 行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整 个步行过程屮,屮、乙两人的距离V 米)与屮出发的时间“分〕 之间的关系如阁所示,下列结论:①甲步行的速度为60米乂分;②乙走完全程用丫 32分钟;其中正确的结论有〖 〉八.1个8.2个③乙用16分钟追上甲;④乙到达终点时,屮离终点还杏300米(第8题)0.3个0.4个中考真题、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的 横线上〉有意义,那么实数^的取值范丨韦I 是丨1如果分式一^X―10.丨叫式分解:(“)2 - 0 ―^11.写出一个比2大比3小的无理数〈用含根号的式子表示〉^12.—个不透明的门袋中有3个完全相同的小球,它们的标号分別为1,2,3‘ 随机摸出一个小球然后放冋,再随机摸出一个小球.两次摸出的小球标 号相同的概率是丨13.如图,航拍尤人机从/1处测得一幢建筑物顶部8的仰角为45。
湖北省咸宁市2018年中考数学试题(含答案)-精品

湖北省咸宁市2018年初中毕业生学业考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.咸宁冬季里某一天的气温为- 3 ℃? 2 ℃,则这一天的温差是()A .1℃B .-1℃ C.5℃ D.-5℃2.如图,已知l b a ,//与b a,相交,若701,则2的度数等于()A .120B .110C .100D .703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示为()A .910123.5 B.101012.35 C .8101.235 D .11101.2353.用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视阁相同D.三种视图都相同5.下列计算正确的是()A .3332a aaB.422a aaC.326a aaD.632-82-aa )(6.已知一元二次方程01222x x的两个根为21,x x ,且21x x ,下列结论正确的是()A .121x x B.-121x x C.21x x D.21221x x7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB COD ,若AOB 与COD 互补,弦6CD ,则弦AB 的长为()A .6B .8 C.25 D .358.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4 分钟.在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用 16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A .1个B .2个 C. 3个 D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分24分,将答案填在答题纸上)9.如果分式21x 有意义,那么实数x 的取值范围是__________.10.因式分解:aab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为45,测得底部C 的俯角力60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数,1.733).14.如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E 的坐标为(3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,,2011216121则这个数列的前2018个数列的和为____________________________. 16.如图,已知120MON,点B A,分別在ON OM ,上,且,a OBOA 将射线OM 绕点O 逆时针旋转得到'OM ,旋转角为1200(且)60,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD ②ACD 的大小随着的变化而变化;③当30时,四边形OADC 为荽形;④ACD 面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上)三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:2-38-123;(2)化简:.123a a a a 18.已知:AOB .求作:,'''B O A 使'''BO A AOB作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA,于点D C,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C,长为半径画弧,与第 2 步中所画的弧交于点'D ;(4)过点'D 画射线'OB ,则AOB B O A '''. 根据以上作图步骤,请你证明AOB BO A '''.19.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表. 使用次数0 1 2 3 4 5 人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是____________,众数是____________ 该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含 3 次)的学生有多少人?20.如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为2,4,直线2521xy与边BC AB,分别相交于点N M ,,函数)0(xxk y的图象过点.M(1)试说明点N 也在函数)0(x xk y的图象上;(2)将直线MN 沿y轴的负方向平移得到直线''N M ,当直线''N M 与函数)0(x xk y的图象仅有一个交点时,求直线''N M 的解析式.21.如图,以ABC 的边AC 为直径的⊙O 恰为ABC 的外接圆,ABC 的平分线交⊙O 于点D ,过点D 作AC DE //交BC 的延长线于点E .(1)求证DE 是⊙O 的切线;(2)若,5,52BCAB求DE 的长.22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带 4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:甲种客车乙种客车载客量(人/辆)30 42 租金(人/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有 2 名老师,可知租用客车总数为_____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全..等.),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知ABC Rt 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中,140,80ADCABC ,对角线BD 平分ABC .求证:BD 是四边形ABCD 的“相似对角线”;运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,30HFGEFH.连接EG ,若E FG 的面积为32,求FH 的长.24.如图,直线343xy 与x 轴交于点A ,与y 轴交于点B ,抛物线c bxxy283。
2018年湖北省咸宁市中考数学试卷

数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前湖北省咸宁市2018年初中毕业会考、高级中等学校招生考试数 学 试 卷考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑)1.咸宁冬季里某一天的气温为-3℃〜2℃ ,则这一天的温差是( ) A .1℃ B.-1℃ C.5℃ D.-5℃2.如图,已知l b a ,//与b a ,相交,若 701=∠,则2∠ 的度数等于( ) A . 120B . 110C . 100D . 703.2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000000元 ,增速在全省17个市州中排名第三.将123 500 000 000用科学记数法表示( ) A .910123.5⨯B.101012.35⨯C .8101.235⨯D .11101.235⨯4.用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( ) A .主视图和左视图相同 B .主视图和俯视图相同 C .左视图和俯视图相同 D .三种视图都相同5.下列计算正确的是( ) A .3332a a a =⋅ B .422a a a =+C .326a a a =÷D .632-82-a a =)(6.已知一元二次方程01222=-+x x 的两个根为21,x x ,且21x x <,下列结论正确的是( ) A.121=+x xB.-121=⋅x xC.21x x < D.21221=+x x7.如图,已知⊙O 的半径为5,弦CD AB ,所对的圆心角分别是,AOB ∠COD ∠,若AOB ∠与COD ∠互补,弦6=CD ,则弦AB 的长为( )A .6B .8C .25D .358.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终 点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y (米) 与甲出发的时间t (分)之间的关系如图所示,下列结论: ①甲步行的速度为60米/分; ②乙走完全程用了32分钟; ③乙用16分钟追上甲; ④乙到达终点时,甲离终点还有300米 其中正确的结论有( ) A .1个B .2个C .3个D .4个二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.如果分式21-x 有意义,那么实数x 的取值范围是__________. 10.因式分解:=-a ab 2_____________________.11.写出一个比2大比3小的无理数(用含根号的式子表示)________________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------(第7题)(第2题)(第4题)数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.—个不透明的口袋中有3个完全相同的小球,它们的标号分別为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球.两次摸出的小球标号相同的概率是_________________.13.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为 45,测得底部C 的俯角力 60,此时航拍无人机与该建筑物的水平距离AD 为m 110,那么该建筑物的高度BC 约为___________m .(结果保留整数, 1.733≈). (第13题) 14.如图,将正方形OEFG 放在平而直角坐标系中,O 是坐标原点,点E的坐标为(()3,2),则点F 的坐标为_______________________.15.按一定顺序排列的一列数叫做数列,如数列:,,,,, 2011216121则这个数列的前2018个数列的和为____________________________. (第14题) 16.如图,已知120=∠MON ,点B A ,分別在ON OM ,上,且,a OB OA ==将射线OM绕点O 逆时针旋转得到'OM ,旋转角为1200(<<αα且)60≠α,作点A 关于直线'OM 的对称点C ,画直线BC 交'OM 于点D ,连接.,AD AC 有下列结论:①;CD AD =②ACD ∠的大小随着α的变化而变化; ③ 当30=α时,四边形OADC 为菱形; ④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上) (第16题)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置)17.(本小题满分8分,每小题4分) (1)计算:2-38-123+;(2)化简:()()().123---+a a a a18.(本小题满分7分) 已知:AOB ∠.求作:,'''B O A ∠使=∠'''B O A AOB ∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OB OA ,于点D C ,;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 AOB B O A ∠=∠'''. (第18题)根据以上作图步骤,请你证明AOB B O A ∠=∠'''.19.(本小题满分8分)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.该中位数的意义是____________;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?数学试卷 第5页(共8页) 数学试卷 第6页(共8页)20.(本小题满分8分)如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()2,4,直线2521+-=x y 与边BC AB ,分别相交于点N M ,,函数)0(>=x xky 的图象过点.M (1)试说明点N 也在函数)0(>=x xky 的图象上; (2)将直线MN 沿y 轴的负方向平移得到直线''N M ,当 直线''N M 与函数)0(>=x xky 的图象仅有一个交点时,求直线''N M 的解析式. (第20题)21.(本小题满分6分)如图,以ABC ∆的边AC 为直径的⊙O 恰为ABC ∆的外接圆,ABC ∠的平分线交⊙O 于点D ,过 点D 作AC DE // 交BC 的延长线于点E .(1)求证DE 是⊙O 的切线;(2)若,5,52==BC AB 求DE 的长.(第21题)22.(本小题满分10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我 市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为_____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)23.(本小题满分10分) 定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.(第23题)理解:(1)如图1,已知ABC Rt ∆在正方形网格中,请你只用无刻度的直尺......在网格中找到一点D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD 中, 140,80=∠=∠ADC ABC ,对角线BD 平ABC ∠.求证:BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”, 30=∠=∠HFG EFH .连接EG ,若EFG ∆的面积为32,求FH 的长.24.(本小题满分12分) 如图,直线343+-=x y 与x 轴交于点A ,与y 轴交于点B ,抛物线c bx x y ++-=283.经过B A 、两点,与x 轴的另一个交点为C .(1)求抛物线的解析式;(2)点P 是第一象限抛物线上的点,连接OP 交直线AB 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求出PQ 与OQ 的比值的最大值;(3)点D 是抛物线对称轴上的一动点,连接CD OD 、.设ODC ∆外接圆的圆心为M ,当ODC ∠sin 的值最大时,求点M 的坐标.(第24题)。