傅里叶变换红外光谱仪解析
傅里叶变换红外光谱操作使用说明书解析

Nicolet 670 FTIR傅里叶变换红外光谱操作使用说明书注意事项:1.保持测试环境的干燥和清洁。
2.不可在计算机上进行与实验无关的操作。
3.拷贝数据请使用新软盘。
4.认真填写实验记录、红外光谱基本原理红外光谱(Infrared Spectrometry IR)又称为振动转动光谱,是一种分子吸收光谱。
当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动) 时伴有偶极矩改变者就吸收红外光子,形成红外吸收光谱。
用红外光谱法可进行物质的定性和定量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。
傅里叶变换红外光谱仪(简称FTIR)和其它类型红外光谱仪一样,都是用来获得物质的红外吸收光谱,但测定原理有所不同。
在色散型红外光谱仪中,光源发出的光先照射试样,而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。
但在傅里叶变换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。
红外光谱根据不同的波数范围分为近红外区( 13330-4000 cm-)、中红外区(4000-650 cm-)和远红外区(650-10 cm-)。
Nicolet 670 FTIR光谱仪提供中红外区的分测试。
、试样的制备1.对试样的要求(1)试样应是单一组分的纯物质;(2)试样中不应含有游离水;(3)试样的浓度或测试厚度应合适。
2 •制样方法(1)气态试样使用气体池,先将池内空气抽走,然后吸入待测气体试样。
(2)液体试样常用的方法有液膜法和液体池法。
液膜法:沸点较高的试样,可直接滴在两片KBr盐片之间形成液膜进行测试。
取两片KBr盐片,用丙酮棉花清洗其表面并晾干。
在一盐片上滴1滴试样,另一盐片压于其上,装入到可拆式液体样品测试架中进行测定。
扫描完毕,取出盐片,用丙酮棉花清洁干净后,放回保干器内保存。
傅里叶变换红外光谱仪 介绍

傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer)是一种干涉型红外光谱仪,是红外光谱仪的一种。
傅里叶变换红外光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成。
这种光谱仪的工作原理是,通过迈克尔逊干涉仪使光源发出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率和强度信息。
之后,用计算机将干涉图函数进行傅里叶变换,就可以计算出原来光源的强度按频率的分布。
傅里叶变换红外光谱仪具有以下优点:
1.测量速度快,一般可以在几十平方微米的范围内进行测量。
2.灵敏度高,可以检测到样品中微小的变化。
3.应用范围广,可以测量各种形状和状态的样品,包括气体、固体、液体等。
4.非破坏性测定,不破坏试样。
傅里叶变换红外光谱仪是一种功能强大、应用广泛的分析仪器,在化学、材料科学、生物学等领域都有广泛的应用。
傅里叶变换红外光谱仪解析

傅里叶变换红外光谱仪解析仪器分析综述系别:生物科学与技术系班级:09食品2 姓名:欧阳凡学号:091304251傅里叶变换红外光谱仪前言随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
正文傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。
光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。
自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上后变成两束光。
其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。
傅里叶变换红外光谱仪的基本原理

傅里叶变换红外光谱仪的基本原理傅里叶变换红外光谱仪是一种广泛应用于化学、材料科学、生物学等领域的重要分析仪器。
它利用傅里叶变换技术,将红外光通过样品后得到的复杂光谱转化为可以进行分析的谱图,从而实现对样品成分的定性和定量分析。
下面将详细介绍傅里叶变换红外光谱仪的基本原理。
1.光源傅里叶变换红外光谱仪中的光源通常采用稳定、强度可调的红外激光器,发出一定波长的红外光。
不同样品需要使用不同波长的红外光进行检测,因此光源的波长范围和稳定性对分析结果至关重要。
2.样品室样品室是傅里叶变换红外光谱仪的核心部分,用于放置待测样品。
样品可以是固体、液体或气体,但需要保证在测量过程中样品的状态保持不变。
样品室内部通常装有温度和湿度控制装置,以保证样品的稳定性和测试结果的准确性。
3.干涉仪干涉仪是傅里叶变换红外光谱仪的关键部件,它将光源发出的红外光进行干涉,形成干涉图。
干涉图反映了红外光的相位和振幅变化,后续通过傅里叶变换将这些信息转化为可以进行分析的谱图。
常用的干涉仪有Michelson干涉仪和Fabry-Perot干涉仪。
4.采集和调制在傅里叶变换红外光谱仪中,采集和调制系统负责对干涉图进行采集和调制。
干涉图是一个随时间变化的信号,需要通过采集系统将其转换为数字信号,然后进行进一步处理。
调制系统则负责对干涉图进行调制,以增加信号的信噪比和减小误差。
5.傅里叶变换傅里叶变换是傅里叶变换红外光谱仪的核心算法。
它将采集到的干涉图进行数学变换,将时域信号转换为频域信号。
简单来说,傅里叶变换可以将一个随时间变化的信号分解成多个固定频率的成分,从而方便对信号进行分析和解谱。
6.数据处理和谱图显示经过傅里叶变换后,得到的是频域信号,可以将其进行处理并生成谱图。
数据处理部分负责对干扰信号进行过滤和处理,提高谱图的准确性和可靠性。
谱图显示部分则将处理后的数据以图形方式呈现出来,方便用户进行观察和分析。
总之,傅里叶变换红外光谱仪利用光源发出红外光,通过样品室中的样品后得到干涉图,经过采集和调制、傅里叶变换、数据处理和谱图显示等步骤,最终得到可以进行分析的谱图。
傅里叶 变换红外(ftir)光谱

傅里叶变换红外(FTIR)光谱是一种常用的分析技术,它通过分析物质在红外光谱范围内的吸收和散射特性,来研究样品的成分、结构和性质。
本文将从以下几个方面对傅里叶变换红外光谱进行介绍和解析。
一、傅里叶变换红外光谱原理简介傅里叶变换红外光谱是利用物质分子对红外光的吸收和散射特性来研究其结构和成分的一种技术。
当物质分子受到红外光的激发时,会发生特定振动和转动,这些振动和转动对应了物质分子内部的特定结构和键的存在。
傅里叶变换红外光谱仪利用光源产生的连续光通过样品后,得到经过样品吸收、散射后的光信号,并使用傅里叶变换算法将这些信号转换成详细的光谱图像。
通过解析这些光谱图像,可以获得样品中存在的各种成分的信息,包括它们的分子结构、官能团和键的类型、含量等。
二、傅里叶变换红外光谱的应用领域傅里叶变换红外光谱广泛应用于化学、材料、制药、生物、环境和食品等领域。
在化学领域,它常被用来鉴定有机化合物的结构、功能团的存在和含量,以及分子之间的相互作用;在材料领域,它常被用来研究材料的成分、性能和结构变化;在制药领域,它常被用来分析药品的成分和质量;在生物领域,它常被用来研究蛋白质、多糖等生物大分子的结构和功能。
三、傅里叶变换红外光谱的特点和优势傅里叶变换红外光谱具有快速、准确、非破坏性等特点。
相比传统的红外光谱技术,傅里叶变换红外光谱仪具有更高的光谱分辨率和灵敏度,可以检测到更低浓度的样品成分,还能够通过多种光谱技术的组合来获得更多细致的信息。
傅里叶变换红外光谱技术还可以与其他分析技术相结合,如拉曼光谱、质谱等,扩大了其应用范围和分析能力。
四、结语傅里叶变换红外光谱技术作为一种强大的分析工具,为科学研究和工程实践提供了重要的支持。
随着技术的不断发展,傅里叶变换红外光谱将在更多领域发挥其作用,为人们的生活和工作带来更多便利和科学发现。
傅里叶变换红外光谱(FTIR)技术是一种非常重要的分析技术,在许多领域都有着广泛的应用。
傅里叶变换红外光谱仪的功能及作用

傅里叶变换红外光谱仪的功能及作用
傅里叶变换红外光谱仪是一种重要的分析仪器,用于研究和识别物质的结构和成分。
下面将介绍FTIR的功能及作用。
光谱测量:FTIR可以对样品进行红外光谱测量,即测量物质在不同波长范围内的吸收、散射或透射特性。
红外光谱提供了关于化学键类型、官能团以及分子结构等信息,因此可以用于物质的鉴定和定性分析。
定量分析:通过FTIR测量样品的吸收强度,可以进行定量分析。
根据不同化学键或官能团的吸收峰强度与物质浓度之间的关系,可以确定样品中某种成分的含量。
物质鉴定:每种物质都有红外光谱指纹,可以看作是物质的"化学身份"。
FTIR可以通过比对待测样品的红外光谱与已知物质库中的光谱数据库,来快速鉴定未知物质的成分和结构。
反应动力学研究:通过FTIR可以实时监测化学反应或过程中的变化。
光谱测量可以提供反应物消耗、产物生成以及中间体形成的信息,从而揭示反应速率、反应机理等动力学参数。
表面分析:FTIR也可用于表面分析。
通过反射红外光谱(ATR-FTIR),可以对固体样品、液体膜、聚合物薄膜等进行非破坏性的表面成分和结构分析。
生物医学应用:FTIR在生物医学领域有广泛应用。
它可以用于研究蛋白质、核酸、多肽等生物大分子的结构和构象变化,用于药物分析与质量控制,以及疾病的诊断与监测。
总结起来,傅里叶变换红外光谱仪具有广泛的功能和作用。
它不仅可以提供物质的结构、成分和浓度信息,还能快速鉴定未知物质、研究化学反应动力学以及进行表面分析和生物医学应用。
因此,FTIR在化学、材料科学、生物医学等领域都发挥着重要的作用。
傅里叶变换红外光谱仪干涉仪原理及样品制备

傅里叶变换红外光谱仪干涉仪原理及样品制备傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer, FTIR)是一种常用的红外光谱分析仪器,它通过傅里叶变换的原理将样品的红外光谱信号转换为频谱信号,从而实现对样品的分析和鉴定。
FTIR的干涉仪原理是基于干涉现象,光束从光源经过分束器分成两束,一束经过样品后,另一束经过一个参考物质后,两束光在干涉仪中再次交叠。
由于光源的光波长是连续变化的,这两束光在干涉仪中的干涉现象会形成一个连续的干涉图样。
干涉图样过程中,通过调整其中一个光束的光程差,可以得到一系列不同的干涉图样。
然后,通过对这些干涉图样进行傅里叶变换,就可以得到样品的红外光谱信号。
这样的变换过程可以大大提高红外光谱检测的灵敏度和准确性。
样品制备在FTIR分析中非常重要,正确的样品制备可以确保红外光谱信号的准确性和可靠性。
首先,样品制备要保证样品的纯度和无杂质。
样品的处理步骤可能会包括样品的收集、研磨、纯化、溶解等。
对于固体样品,通常将其研磨成细粉,并通过筛网去除粗大颗粒。
对于液体样品,可能需要用溶剂溶解或稀释。
其次,样品制备要考虑样品的状态。
对于固体样品,可以将其直接放置在红外透明的基片上进行测量。
对于液体样品,可以将其放置在透明的液槽中测量。
还有一些样品可能需要凝固或固定在基片上,以确保得到准确的测量结果。
此外,对于需要测量气体样品的情况,可以使用气体细胞进行测量。
气体细胞可以容纳气体样品,并通过紧闭腔体来确保气体不外漏。
在气体细胞中,样品的压力和温度也需要控制好,以保证测量的准确性和一致性。
总之,傅里叶变换红外光谱仪是一种非常重要的红外光谱分析仪器,它的干涉仪原理和样品制备对于获得准确可靠的红外光谱结果至关重要。
研究人员在使用FTIR时需要了解其工作原理以及适当的样品制备技术,以确保测试结果的准确性和可靠性。
傅里叶红外光谱仪的原理及特征

傅里叶红外光谱仪的原理及特征一、样品采样方式多样化傅里叶红外光谱仪的样品采样方式十分丰富,既可以进行固体、液体的直接采样,也可以采用气体样品经过液化或冷凝,再进行红外光谱的测试。
还可以对样品进行热处理、压缩、反应等加工处理,扩大了测试的适用范围。
二、灵敏度高,分辨率高傅里叶红外光谱仪的灵敏度高于其他类型的红外光谱仪,能够对含量很低的样品进行测试。
其分辨率也非常高,能够对微小的结构差异进行区分,为确定结构提供了重要参考。
三、数据处理及分析能力强傅里叶红外光谱仪能够获取的数据非常多样,包括原始光谱、转换后的光谱、谱图、差谱、谱图拟合等。
这些数据的获取和处理需要进行计算机分析处理,因此傅里叶红外光谱仪具备高效的数据处理功能,能够进行快速而准确的分析。
四、应用领域广泛傅里叶红外光谱仪的应用领域非常广泛。
它被广泛应用于化学、化工、医药、生物、食品、环境等领域的物质分析和结构确定。
可以用于有机物的鉴定、聚合物材料的分析、药品的检测等。
傅里叶红外光谱仪由于其高灵敏度、高分辨率、多样的数据处理能力和广泛的应用领域,成为了化学、化工、医药、生物、食品、环境等领域的必备测试设备,极大地推动了这些领域的发展。
傅里叶变换红外光谱仪(FTIR)是一种非常流行的光谱学测试技术。
它能够针对不同类型的样品进行检测,如固体、液体、气体和膜、片等。
使用FTIR技术能够确定样品的化学成分和结构。
这种技术使用红外(IR)辐射,可以探测样品中的不同化学官能团,而它们每种化学官能团都能够表现出独特的红外光谱特征。
FTIR的工作原理傅里叶变换红外光谱仪通过将光分成单色波,以便测量每个波的一小部分所具有的强度,然后将这些强度值进行存储和处理,最后可以重构得到完整的光谱。
该仪器系统包括光源、分光仪、干涉仪和检测器。
样品位于光线进入干涉仪的光束路径中,并对光子进行吸收,这发生在样品分子中的振动和转动上。
分光仪将光分成不同波长的单色光束,然后从样品光门口处通过并进入干涉仪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器分析综述系别:生物科学与技术系班级:09食品2 姓名:欧阳凡学号:091304251傅里叶变换红外光谱仪前言随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
正文傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。
光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。
自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上后变成两束光。
其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。
因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。
在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。
如果在复合的相干光路中放有样品,就得到样品的干涉图。
需要通过计算机进行傅里叶变换后才能得到红外光谱图。
主要特点1、信噪比高傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。
2、重现性好傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。
3、扫描速度快傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。
FTIR 的吸收强度和表示方法红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。
例如C =C 双键在下述三种结构中,吸收强度的差别就非常明显(1)R —CH =CH2 摩尔吸光系数 = 40 (2)R —CH =CH —R ′ 顺式摩尔吸光系数 = 10 (3)R —CH =CH —R ′ 反式摩尔吸光系数 = 2 这是由于对于C =C 双键来说,结构(1)的对称性最差,因此吸收较强,而结构(3)的对称性相对最高,故吸收最弱。
红外光谱的吸收强度和表示方法此外,对于同—试样,在不同的溶剂中,或在同一溶剂中不同浓度的试样中,由于氢键的影响以及氢键强弱的不同,使原子间的距离增大,偶极矩变化增大,吸收增强。
例如,醇类的羟基在四氯化碳溶剂中伸缩振动的强度就比在乙醚溶剂中弱得多。
而在不同浓度的四氯化碳溶液中,由于缔合状态的不同,强度也有很大的差别。
红外光谱的吸收强度和表示方法红外光谱的吸收强度常定性的用 s (强)、 m (中等)、 w (弱)、vw (极弱)。
傅里叶变换红外光谱仪功能(1制样方法与手段齐全:包括KBr 压片法、石蜡糊、薄膜法及各种各样的气体池和液体池。
用于薄膜法的晶片有氯化钠晶片(5000化钠晶片(5000-625 cm-1、溴化钾晶片(5000—400 cmcm-1 、氟化钙晶片(5000-1110 cm-1以及硒化锌晶片(5000-500 cm-1)。
(2配备了衰减全反射光谱[Attenuated Total Reflection 简称A TR 又叫内反射光谱(Internal Reflection Spectra。
A TR 技术在红外研究中特别是在界面固体薄膜领域的IR 研究中得到了广泛运用。
A TR 研究的体系涉及有机组装膜、金属表面吸附层及液体等。
(3 配备了6微米Mylar 膜(500~50cm-1远红外分束器:波数范围500~50cm-1。
远红外光谱是研究无机化合物,金属有机化合物,尤其是研究金属配位化合物性质的一种非常重要的手段。
在无机化合物中,许多金属的氧化物、硫化物、卤化物、非金属的卤化物在远红外区都有伸缩振动和弯曲振动吸收。
在远红外区可能会观察到环的面外弯曲或折叠(变形振动吸收。
远红外区会观察到氢键振动吸收谱带。
品格振动吸收只有在晶体的远红外光谱中才会出现,对于非结晶态固体不存在品格振动吸收。
气体分子的全部或部分纯转动光谱都位于远红外区。
(4气相色谱-红外光谱联用:wb050MCT 检测器 (10000~450cm-1。
光管传输线温度50~350度。
红外光谱法原则上只能用于纯化合物,对于混合物的定性分析常常是无能为力的。
色谱法长于分离混合物的优点正是红外光谱法的弱点,红外光谱法长于定性和结构分析的优点又正是色谱法的弱点,联合这两种方法,把色谱仪作为红外光谱仪的前置分离工具,或者说,把红外光谱仪作为色谱仪的检测器,就组成了一种理想的分析工具。
(5热重-红外光谱联用:只要在TGA 分析中被分析物所释放的挥发组分有红外吸收,而且能被载气带入红外光谱仪的气体池中,就能用红外光谱法对气样进行定性分析。
(6配备了高温高压原位池。
(7大型Sadtler 标准谱库(商品名HaveItAll :该谱库是迄今为止最全面最权威的纯化合物的红外标准谱库。
对红外光数据库进行联机检索和利用软件进行计算机辅助谱图解析,解决研究与生产工作中遇到的结构分析难题已经成为化学工作者的常规性操作。
傅里叶变换红外光谱仪的进展1.仪器日益智能化,实际上是光谱仪的高度自动化由于计算机技术和自动化技术在仪器中的广泛使用,使得红外光谱仪的调整、控制、测试及结果的分析大部分由计算机程序控制和完成,如显微红外光谱中的图像技术。
各公司的显微红外光谱仪均能对样品的某一区域进行扫描,并最后给出该区域化学成分的分布图,如AIM8800(Shimadzu、Continuum(Nicolet、EquinoxTM 55 (Brucker、Spectrum 2000(Perkin Elmer 和Stingray lmaging (Bio-Rad等显微红外光谱仪均有此功能。
Continuum 和EquimoxTM 55在对某一点样品进行测量时,可同时观察样品状况。
AIM8800可自动记录样品检测点及北京的位置。
红外显微镜可在测量时自动寻找设定的位置并调整到最佳状态进行测量。
Stingray lmaging将步进扫描功能与焦平面阵列式检测器结合起来,可在短时间内测定红外化学图像。
2. 随着仪器精密度的提高,部分公司在分辨率,扫描速度等方面达到了很高的指标如Bruker IFS120H 最佳分辨率为0.0008 cmˉ1,Bomen 公司DA 系列可达0.0026 cmˉ1。
而扫描速度Bruker 可达117张谱图/秒,利用步进扫描技术可达到250皮纳秒时间分辨光谱。
Nicolet Nexus 可达70次扫描/秒,利用步进扫描技术可达优于10纳秒的时间分辨光谱。
使用多种分束器后光谱范围Bruker 为50000-4c mˉ1,Bomen 为50000-4 cmˉ1,Nicolet 为25000-20 cmˉ1。
这些很高的技术指标,标志材料、光路设计、加工技术和软件都达到了很高的水平。
但这不是傅里叶变换红外光谱仪水平的唯一标志,其他如仪器的稳定性,抗震性,光源的稳定和使用寿命,监测器的灵敏度和稳定性等均反映仪器的水平(如AIM8800选用玻璃密封的MCT 检测器,密封效果好,无需定期抽真空)。
用户必须根据自己的测试要求及性能价格比来选择适当的仪器。
3. 不同类型的专用仪器及多功能联用技术的发展各公司为适应不同用途的需要,设计了各种不同类型的仪器。
如Bruker 公司不同类型的傅里叶变换红外仪器达17种之多,他们与制造热重分析仪的Netisch 公司共同设计了光谱仪与热重分析仪的接口,使联用测试的灵敏度大大提高,并可同时采集热重和红外数据。
Nicolet 公司又研究型、分析型和普及型等不同类型的仪器,他们的Nexus 光谱仪,除了它的高度自动化外,还配上不同类型的附件,用于不同的测量要求。
BIO-Rad 公司为适应学校教学需要,仪器窗盖用透明材料制成。
有些公司将同一仪器增加外光路出口,增加联用功能。
如Bruker 的EquinoxTM 55多达6个外光路,可与拉曼附件、GC 、TC 和红外显微镜四机联用。
Nicolet 的Nexus 有5个外光路,可提供多机联用及发射光谱的分析。
Perkin Elmer 公司的Programm 2000 有4个外光路接口,用于不同类型的联机。
目前许多公司又专用的仪器,如近红外光谱仪,红外气体分析仪,红外油品分析仪,红外半导体分析仪,遥感红外光谱仪(如用于气象),各种工业在线红外光谱分析仪,专用红外显微镜(干涉仪与显微镜一体化,JASCO )等。
对于特定目的的用户,不必购置通用红外光谱。
4各种实用附件的发展岛津红外显微镜AIM8800样品处理器MMS-77D ,它安装在红外显微镜上,可对各种微量样品进行处理。
能切割出胶片中几μ到几百μ的异物,用微量点滴器将某些器件上的杂物溶解并吸出后进行红外显微测定,此附件很大提高了显微红外光谱仪测定的样品种类和测定的效率。
Bruker 为V ector22/N近红外光谱仪专门设计的近红外积分球,光斑为10~20mn ,并配有样品旋转器,它对大颗粒的样品(如玉米)仍能进行较好的定量分析。
Perkin Elmer公司红外光谱仪采用A VI 技术,在仪器中置一标准甲烷气,对测定的光谱波数进行校正,提高了测定光谱吸收峰位置波数的准确度;该仪器还以水汽和二氧化碳的高分辨光谱为基础建立相关软件,自动模拟各种测量条件下的水汽和二氧化碳的光谱,对光谱进行水汽和二氧化碳的校正;在进行A TR 等测量中,能自动显示样品与A TR 晶体之间的压力情况,保持两者的最佳接触面又不会损坏晶体。