傅里叶变换红外光谱仪

合集下载

傅里叶变换红外光谱法

傅里叶变换红外光谱法

傅里叶变换红外光谱法傅里叶变换红外光谱法(Fourier Transform Infrared Spectroscopy,简称FTIR)是一种用于分析和鉴定化合物的重要手段。

它基于傅里叶变换原理,通过将样品吸收或散射的红外光信号转化为频谱图,提供非常详细的化学信息,从而实现对样品的定性和定量分析。

一、傅里叶变换原理傅里叶变换原理是FTIR技术的基础,它描述了信号在频域和时域之间的转换关系。

根据这一原理,任何连续的函数信号都可以通过傅里叶变换转换为频谱形式,而频谱图中的每一个峰对应一个特定的振动模式或结构信息。

二、红外光谱的基本原理红外光谱是利用物质在红外光区(波长范围:2.5-25 μm)的吸收行为,来分析样品的一种方法。

当物质中的化学键发生振动或键角发生变化时,它们会吸收红外光的能量,而产生特定波数的吸收峰。

根据这些吸收峰的位置、强度和形状,可以对物质的结构和组成进行准确的鉴定。

三、傅里叶变换红外光谱仪的结构傅里叶变换红外光谱仪主要由光源、样品室、光谱仪和检测器组成。

光源产生红外辐射,经过样品室时发生与样品的相互作用,然后通过光谱仪进行解析,最后由检测器接收并转化为电信号。

这些信号经过傅里叶变换后,最终得到样品的红外光谱图。

四、傅里叶变换红外光谱法的应用领域傅里叶变换红外光谱法是一种非常广泛应用的分析技术,被广泛应用于化学、材料、生物、制药、食品等领域。

具体应用包括但不限于:1. 化学物质鉴定:通过比较样品与数据库中的标准谱图,可以准确鉴定出物质的化学组成和结构。

2. 反应动力学研究:红外光谱可以实时监测反应物与产物之间的变化,从而研究反应速率、反应机理等。

3. 质量控制与检测:对于药品、食品等生产过程中的原料、中间体和成品进行质量控制和检测,确保产品的安全和合格。

4. 生物医学研究:对于蛋白质、核酸等生物大分子的结构解析、疾病的诊断等方面具有重要意义。

五、傅里叶变换红外光谱法的优势和局限傅里叶变换红外光谱法的优势在于其非破坏性、高分辨率、快速分析的特点,可以对物质进行快速、准确的鉴定和分析。

红外光谱傅里叶变换

红外光谱傅里叶变换

红外光谱傅里叶变换
傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简称FTIR)是一种将傅里叶变换的数学处理与红外光谱相结合的分析鉴定方法。

它主要由光学探测部分和计算机部分组成。

当样品放在干涉仪光路中,由于吸收了某些频率的能量,使所得的干涉图强度曲线相应地产生一些变化。

通过数学的傅立叶变换技术,可将干涉图上每个频率转变为相应的光强,而得到整个红外光谱图。

傅立叶变换红外光谱仪同时收集一个大范围范围内的光谱数据,这给予了在小范围波长内测量强度的色散光谱仪一个显著的优势。

虽然FTIR已经能够做出色散型红外光谱,但使用的并不普遍(除了有时候在近红外),开启了红外光谱新的应用。

傅立叶转换红外光谱仪是源自于傅立叶转换(一种数学过程)需要将原始数据转换成实际的光谱。

基本概念是所有吸收光谱的目的(FTIR、紫外光-可见("UV-Vis")光谱,等等),是要测量样本在每个波长吸收了多少的光。

这是紫外-可见光谱仪作用的方法。

傅里叶转换光谱是一较不直观的方法。

接下来,此束光被修改成另一组的频率,提供第二个数据。

过程重复进行多次。

此光源含所有波长的光谱,傅里叶转换光谱就是利用此光来进行测量。

过程中,所需的转换是一种常见的算法,称为傅立叶转换(因此命名为"傅立叶变换红外光谱"),而原始的数据也被称为"干涉图"。

傅里叶变换红外光谱仪

傅里叶变换红外光谱仪

傅里叶红外光谱仪(FTIR)(仅供参考)一.实验目的:1.了解FTIR的工作原理以及仪器的操作。

2.通过对多孔硅的测试,初步学会分析方法。

二.实验原理:1.傅里叶红外光谱仪的工作原理:FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。

而红外光学台是红外光谱仪的最主要部分。

红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。

下图所示为红外光学台基本光路图。

傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。

动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。

每一个数据点由两个数组成,对应于X轴和Y轴。

对应同一个数据点,X值和Y值决定于光谱图的表示方式。

因此,在采集数据之前,需要设定光谱的横纵坐标单位。

红外光谱图的横坐标单位有两种表示法:波数和波长。

通常以波数为单位。

而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。

透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。

吸光度A是透射率T倒数的对数。

透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。

而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。

本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。

2.傅里叶红外光谱仪的主要特点:⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。

⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。

⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。

傅里叶变换红外光谱仪检测

傅里叶变换红外光谱仪检测

傅里叶变换红外光谱仪检测傅里叶变换红外光谱仪检测已成为化学品分析中一种最常用的仪器方法之一,其检测结果具有非常高的准确性和可靠性。

下面是傅里叶变换红外光谱仪检测的一些相关内容:1. 仪器原理傅里叶变换红外光谱仪检测是通过测量样品中吸收的特定波长的红外光信号来确定化学物质的分子结构和化学键的存在状态。

检测过程中,将一定量的样品加入光学池中,然后将红外光源的光束引导到样品处。

样品吸收特定波长的光线,并且发生光强度的减弱,从而产生吸收光谱。

通过测量吸收光谱可以确定样品的分子组成和结构信息。

2. 检测原理傅里叶变换红外光谱仪检测原理是基于化学品分子中各个原子之间的化学键不同的振动频率不同的特点进行的。

不同化学键振动时,会产生特定的红外光吸收谱,从而识别不同的化学键。

通过对样品中的各种不同化学键进行光谱分析,可以确定样品的含量、组成和结构等信息。

3. 检测范围傅里叶变换红外光谱仪检测范围广泛,可以用于纯物质的鉴定和混合物的质量分析。

同时,该技术也可以用于确定各种化学物质的含量和质量,包括化学药品、食品添加剂、化妆品、植物提取物、动物组织和环境样品等。

4. 应用领域傅里叶变换红外光谱仪检测已成为化学分析领域中一种具有广泛应用的技术。

它被广泛用于食品、制药、化妆品、环境监测、农业、纺织品、塑料、化学工程等领域。

同时,由于其非常高的准确性和可靠性,该技术也被应用于法医学和生命科学研究等领域。

总之,傅里叶变换红外光谱仪检测是一种有效的化学分析技术,可用于确定各种化学物质的分子组成和结构信息,并且被广泛应用于多个领域。

傅里叶变换红外光谱仪详细清单及参数

傅里叶变换红外光谱仪详细清单及参数

傅里叶变换红外光谱仪详细清单及参数一、光学系统光学系统是傅里叶变换红外光谱仪的关键部分之一,它主要包括光源、样品室、干涉仪和探测器等组成。

1.光源:傅里叶变换红外光谱仪一般采用电热源作为光源,通过加热使其产生红外辐射。

常见的电热源包括红外灯、细丝灯等。

2.样品室:样品室是用来放置样品的空间,一般采用密封的、光学透明的材料制成,保证样品在被测量期间不受外界环境污染。

同时,样品室还应具备恒温控制功能,以消除温度对测量结果的影响。

3.干涉仪:干涉仪是红外光谱仪的关键组成部分,它通过将样品产生的红外辐射与参比光通过干涉来获取样品的红外光谱信息。

常见的干涉仪有菲涅尔型、迈克尔逊型等。

4.探测器:探测器是用来接收和转换样品产生的红外辐射信号的元件,常见的探测器有半导体探测器、热电偶探测器等。

探测器的选择应根据测量的要求来确定。

二、主要参数1. 波数范围:红外光谱仪的波数范围指的是仪器可以测量的红外辐射的波数范围,常见的波数范围有4000-400 cm⁻¹,但具体的范围会因不同的仪器而有所不同。

2.分辨率:分辨率是红外光谱仪区分两个波数之间距离的能力,一般用单位波数间隔表示。

分辨率与干涉仪的镜面反射率、光学路径的差异、光源波数稳定性等因素有关。

3.信噪比:信噪比是指仪器输出信号的噪声与仪器输出信号的幅度之比,它反映了仪器探测信号的稳定性和准确性。

信噪比越高,说明仪器的信号检测能力越强。

4.采样速度:采样速度是指样品在红外光谱仪中被扫描所需的时间,它决定了仪器的工作效率。

采样速度越快,样品的扫描时间越短,从而提高了仪器的工作效率。

5.数据处理软件:红外光谱仪通常配备专用的数据处理软件,用于实现对采集到的数据的处理、分析和解释。

数据处理软件的功能和性能直接影响到用户对样品光谱信息的获取和分析。

以上是傅里叶变换红外光谱仪的详细清单及参数。

傅里叶变换红外光谱仪在化学、生物、医药等领域具有广泛的应用价值,通过对样品的红外光谱信息的测定和分析,可以帮助科研人员了解样品的结构和成分,从而为实验研究提供有效支持。

傅立叶变换红外光谱仪的基本原理及其应用

傅立叶变换红外光谱仪的基本原理及其应用

傅立叶变换红外光谱仪的基本原理及其应用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectroscopy,FTIR)是一种重要的分析仪器,其基本原理是利用傅里叶变换的原理进行红外光谱分析。

通过测量样品在不同波数下吸收或发射的红外辐射,可以获得样品的红外光谱图像,进而分析样品的化学成分和结构。

傅里叶变换的基本原理是任何一个周期函数都可以用一组正弦函数的无穷级数来表示,这组正弦函数的频率是原函数频率的整数倍。

对于傅里叶变换红外光谱仪,它将红外光在样品上通过的光强信号转换为频谱信号,再通过傅里叶变换将频谱信号转换为红外光强的波数分布图。

1.光源发出的连续谱光通过准直系统转化为平行光,再将平行光通过光学分束器分为参考光和样品光。

2.参考光和样品光经过光路调节后,分别经过干涉仪的两个通道。

3.干涉仪的两个通道引出的光分别经过两个光学衰减器调节光强,然后进入半导体探测器转换为电信号。

4.半导体探测器的输出信号经过预处理电路放大,再经过模数转换装置转换为数字信号。

5.数字信号经过傅里叶变换计算机利用傅里叶变换算法得到样品的红外光谱图像。

1.制药行业:可以用于药物成分的鉴定、含量的测定以及药物的质量控制。

2.化学行业:可以用于化学反应动力学的研究、有机物的结构表征等。

3.材料科学:可以用于材料的成分分析、物质的变换和反应过程的研究等。

4.聚合物行业:可以用于聚合物分子结构的分析和性能的研究。

5.环境监测:可以用于环境中有害物质的检测和分析,如大气污染物、水质污染物等。

总之,傅立叶变换红外光谱仪通过测量样品在不同波数下的红外光吸收或发射,利用傅里叶变换原理将光谱信号转换为波数分布图,从而实现对样品的结构和成分分析。

其在制药、化学、材料科学、聚合物和环境监测等领域有着广泛的应用。

傅里叶变换红外光谱仪的功能及作用

傅里叶变换红外光谱仪的功能及作用

傅里叶变换红外光谱仪的功能及作用
傅里叶变换红外光谱仪是一种重要的分析仪器,用于研究和识别物质的结构和成分。

下面将介绍FTIR的功能及作用。

光谱测量:FTIR可以对样品进行红外光谱测量,即测量物质在不同波长范围内的吸收、散射或透射特性。

红外光谱提供了关于化学键类型、官能团以及分子结构等信息,因此可以用于物质的鉴定和定性分析。

定量分析:通过FTIR测量样品的吸收强度,可以进行定量分析。

根据不同化学键或官能团的吸收峰强度与物质浓度之间的关系,可以确定样品中某种成分的含量。

物质鉴定:每种物质都有红外光谱指纹,可以看作是物质的"化学身份"。

FTIR可以通过比对待测样品的红外光谱与已知物质库中的光谱数据库,来快速鉴定未知物质的成分和结构。

反应动力学研究:通过FTIR可以实时监测化学反应或过程中的变化。

光谱测量可以提供反应物消耗、产物生成以及中间体形成的信息,从而揭示反应速率、反应机理等动力学参数。

表面分析:FTIR也可用于表面分析。

通过反射红外光谱(ATR-FTIR),可以对固体样品、液体膜、聚合物薄膜等进行非破坏性的表面成分和结构分析。

生物医学应用:FTIR在生物医学领域有广泛应用。

它可以用于研究蛋白质、核酸、多肽等生物大分子的结构和构象变化,用于药物分析与质量控制,以及疾病的诊断与监测。

总结起来,傅里叶变换红外光谱仪具有广泛的功能和作用。

它不仅可以提供物质的结构、成分和浓度信息,还能快速鉴定未知物质、研究化学反应动力学以及进行表面分析和生物医学应用。

因此,FTIR在化学、材料科学、生物医学等领域都发挥着重要的作用。

傅里叶变换红外光谱仪(FT-IR)简介

傅里叶变换红外光谱仪(FT-IR)简介

FT-IR简介
四、实例与图谱分 析-正己烷
谱图的解析一般从高波数开始,因为高波数 谱峰频率与基团一一对应,而且最容易解释 。在3000cm-1以上没有吸收峰,表明没有 不饱和的C-H伸缩振动。在3000cm-1以下
的四个峰是饱和C-H伸缩振动峰。
21
FT-IR简介
四、实例与图谱分 析-正己烷
在2962cm-1处的峰是CH3基团的 反对称伸缩振动。这种反对称 伸缩振动范围2962±10cm-1,事 实上,存在两个简并的反对称 伸缩振动(显示其中一个)。
120213131傅里叶变换红外傅里叶变换红外光谱仪光谱仪ftirftir简介简介20213132ftir简介简介1仪器构造和原理仪器构造和原理2红外样品常用制备方法红外样品常用制备方法3红外光谱的应用红外光谱的应用4实例与图谱分析实例与图谱分析目目录录20213133ftir简介简介一仪器的构造和原理一仪器的构造和原理11
压片法所用的稀释剂除了KBr外,还有 NaCl、Csl和聚乙烯粉末。
13
FT-IR简介
2.糊状法
由研细的固体样品粉末(10mg)和少量氟化煤油 (在4000-1300/cm区域无红外吸收)或液体石蜡(在 1300-400/cm区域无红外吸收)研磨成糊状物、再涂在 盐片或水不溶性窗片上进行分析。
糊状法可消除水峰(3400/cm、1630/cm)干扰:或 在样品中加几滴重水也可消除水峰对样品信号的干扰。
在2853cm-1处的吸收峰,是CH2 的对称伸缩振动峰,一般这种 振动峰的吸收位置在 :2853±10cm-1。
25
FT-IR简介
四、实例与图谱分 析-正己烷
这是C-H弯曲振动区域,把该区 域放大CH2和CH3的弯曲振动 峰叠加在一起,关于这一点, 我们可以比较环己烷和2,3-二 甲基丁烷在该区间的吸收峰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一.内部因素
• 电子效应
①诱导效应 ②共轭效应
• 空间效应
①空间位阻 ②环张力
• 氢键
• 二.外部因素
• ①物态效应 • ②溶剂效应
❖电子效应
(1)诱导效应 通过静电诱导作用使分子中 电子云分布发生变化引起K的改变,从而影 响振动频率。 如 C=O
吸电子诱导效应使羰基双键性增加,振动频 率增大。
傅里叶变换红外光谱仪
1.2.红外吸收的产生
1
2
3
4
5
6
伸缩振动 变形振动
红外吸收的产生
分子振动的频率
υ 1 Κ σ 1307 K
2π μ
M
分子振动过程中,同一类型的振动频率十分接近,它们 总是出现在某一范围内,但是相互又有区别,即所谓特征 频率或基团频率。
在特征频率区,不同化合物的同一种官能团吸收振动总 是出现在一个窄的波数范围内,但不是一个固定波数,具 体出现在哪里与基团所处的环境有关。
1693cm-1
(2)环的张力:环的大小影响环上有关基 团的频率。
随着环张力增加,环外基团振动频率蓝移 (增大),环内基团振动频率红移(减小)。
❖ 氢键
氢键的形成使原有的化学键O-H或N-H的键长增 大,力常数K 变小,振动频率红移。 氢键的形成对吸收峰的影响: ➢ 吸收峰展宽 氢键形成程度不同,对力常数的影响不同,使得吸收 频率有一定范围。氢键形成程度与测定条件有关。 ➢ 吸收强度增大 形成氢键后,相应基团的振动偶极矩变化增大,因此 吸收强度增大。
• 基频峰
分子吸收一定频率的红外光,若振动能级 由基态(n=0)跃迁到第一振动激发 (n=1)时,所产生的吸收峰称为基频峰。 由于n=1,基频峰的强度一般都较大,因 而基频峰是红外吸收光谱上最主要的一 类吸收峰。
• 泛频峰
包括:倍频峰、合频峰、差频峰,一般都 很弱常观测不到。
影响基团频率位移的因素
溶剂效应,极性基团的伸缩振动频率随溶剂的极性增 大而降低,但其吸收峰强度往往增强,通常是因为极 性基团和极性溶剂之间形成氢键的缘故,形成氢键的 能力越强吸收带的频率就越低。如丙酮在环己烷中νC=O 为1727cm-1 ,在四氯化碳中为1720cm-1 ,在氯仿中为 1705cm-1 。
分子振动的自由度
3.氧化铝棒
用硅酸锆加氧化铝粉调成糊状后,加到氧化铝 烧结管中,用铹丝做电极,功率一般30W,波 长2-50μm,寿命长,用电省。
检测装置
1.真空热电偶;不同导体构成回路时 的温差电现象,由涂黑金箔接受红外 辐射,响应时间长(0.05s),波长 (2.5-15μm);
2.傅立叶变换红外光谱仪采用热释电 (TGS)/氘代硫三甘肽(DTGS)和碲镉 汞(MCT)检测器;
• 另一个主要的影响因素是分子跃迁几率, 处于激发态的分子占分子总数的百分数 越高,产生的红外吸收峰强度越大。
产品名称 型号名称 制造商
2.仪器简介
傅里叶变换红外光谱仪 IRAffinity-1 岛津公司
傅里叶变换红外吸收仪
Fourier变换红外光谱仪主要由光源、 Michelson 干涉仪、检测器、计算机和记 录仪组成。
1.3.红外光谱的解析
分区依据:由于有机物数目庞大,而组成有
机物的基团有限;基团的振动频率取决于K 和
m,同种基团的频率相近。
划分方法
氢键区 ❖基团特征频率区 叁键区和累积双键区
双键区
❖指纹区
单键区
区域名称 频率范围
基团及振动形式
氢键区 4000~2500cm-1 O-H、C-H、N-H
等的伸缩振动
产生红外吸收的条件
• 红外光谱产生的条件
• E红外光=ΔE分子振动或υ红外光=υ分子振动
• 红外光与分子之间有偶合作用:分子振 动时其偶极矩(μ)必须发生变化,即Δμ≠0。
• 能级跃迁规律:振动量子数(ΔV)变化为 ±1时,跃迁几率最大。从基态(V=0)到 第一振动激发态(V=1)的跃迁最重要,产 生的吸收频率称为基频。
傅里叶变换红外光谱仪的工作原理图
迈克尔逊红外干涉仪原理图
光源
1.能斯特灯
由粉末状氧化锆、氧化钇、氧化钍等稀土氧化 物加压成型,并在高温下烧结成的空心或实心 细棒,功率为50-200W,波长2-25μm寿命1000h。 Nhomakorabea2.硅碳棒
由硅砂加压成型,并在高温下烧结成的两端粗 中间细的实心棒,功率200-400W,波长230μm,寿命大于1000h。
叁键和
CC、CN、NN和
累积双键区 2500~2000cm-1 C=C=C、N=C=O
等的伸缩振动
双键区 单键区
2000~1500cm-1 C=O、C=C、C=N、 NO2、苯环等的伸缩振动
1500~400cm-1 C-C、C-O、C-N、 C-X等的伸缩振动及含
氢基团的弯曲振动。
红外吸收峰的类型
• 不同振动方式的频率相同,发生简并;
• 一些振动的频率十分接近,仪器无法分 辨;
• 一些振动的频率超出了仪器可检测的范 围。
影响吸收峰强度的因素
• 红外吸收谱带的强度取决于分子振动时 偶极矩的变化,而偶极矩与分子结构的 对称性有关。
• 极性较强的基团(如C=O,C-X等)振动, 吸收强度较大;极性较弱的基团(如 C=C、C-C、N=N等)振动,吸收较弱。
癸酸的红外光谱图
游离羧酸的C=O约为1760cm-1,而缔合状态(如固、 液体时),因氢键作用C=O移到1700 cm-1附近。
• 外部因素
物态效应,物质处于气态时,分子间作用力小,吸收
频率就高,处于液态时,分子间作用力增大,吸收频 率就低。如丙酮的νC=O气态时为1738cm-1,在液态时为 1715cm-1.
(2)共轭效应 共轭效应使共轭体系中
的电子云密度平均化,即双键键强减小, 振动频率红移 (减小)。也以C=O为例:
空间效应
(1)空间位阻 破坏共轭体系的共平面性,使 共轭效应减弱,双键的振动频率蓝移(增大)。
CH(CH3)2
O
O
O
CH3
1663cm-1
CH3 CH3
1686cm-1
CH3 CH(CH3)2
• 简正振动的数目称为振动自由度,每个 振动自由度相当于红外光谱图上一个基 频吸收带。
• 非直线型分子振动形式应有(3n-6)种。 直线型分子,直线性分子的振动形式为 (3n-5)种。
• 但是实际上,绝大多数化合物在红外光 谱图上出现的峰数远小于理论上计算的 振动数。
吸收峰减少的原因
• 分子的一些振动没有偶极矩变化,是红 外非活性的;
相关文档
最新文档