低瓦斯矿井煤层基本瓦斯参数测定与应用

合集下载

《煤矿瓦斯抽采基本指标》解读

《煤矿瓦斯抽采基本指标》解读

产量(Mt)
> 1.5 1.0-1.5 0.6-1.0 0.4-0.6 <0.4
绝对量( m3/min) 30- 40 25- 30 20- 25 相对量 ( m3/t.d) 10-13 10-14 10-20
这类矿井主要依靠a)的条件予以控制
15- 20 <15
10-24 10-720
c)主要针对含有突出煤层的矿井.
五、必须进行瓦斯抽采的矿井
a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘 进工作面瓦斯涌出量大于3m3/min,用通风方法解决瓦斯 问题不合理时;
b) 矿井绝对瓦斯涌出量达到以下条件的: 大于或等于40m3/min; 年产量1.0-1.5Mt的矿井,大于30m3/min; 年产量0.6-1.0Mt的矿井,大于25m3/min ; 年产量0.4-0.6Mt的矿井,大于20 m3/min ; 年产量等于或小于0.4Mt,大于15 m3/min 。
六、应达到的主要指标
原西德和澳大利亚开采煤层煤质较坚硬,统计资料表 明,煤层可解吸瓦斯含量小于9m3/t时,基本上没有 发生过突出。但这些国家实际执行过程中普遍都将可 解吸瓦斯含量降低到6m3/t左右,换算成原煤瓦斯含 量也与8m3/t 接近。
压力指标确定为0.74MPa,主要依据原有规定以及统 计资料和理论分析的结果。
六、应达到的主要指标
争议较大的是掘进工作面前方10m,不少人建议改为5-8m。 这里有个导向问题。如果掘进工作面采用长钻孔预抽瓦斯, 10m距离是能够做到的;如果继续大量采用原来的超前排 放钻孔,10m有一定难度。本标准的目的就是希望扭转原 来大量执行局部措施、短兵相接的局面;因为这种方式存 在较多血的教训。应该把人们习惯于局部措施扭转到区域 措施的途径上来,否则先抽后采是一句空话;国外是要求 整个工作面都符合条件的前提下才能采掘,而我国目前技 术水平还难以达到这种要求,因此没有照搬国外的经验。 而10m的要求是完全能够达到的。因此,维持10m是合理 的。

煤层瓦斯基本参数_测定与计算ppt课件

煤层瓦斯基本参数_测定与计算ppt课件

精选课件
13
煤层瓦斯抽采基本参数测定与计算
3、煤层瓦斯含量测定与计算 1)定义 在自然条件下,单位质量或体积的煤体中 所含的瓦斯量。m3/t煤或m3/m3煤. 2)重要性: 煤层瓦斯含量是决定煤层瓦斯储量、瓦斯 涌出量和突出危险性大小的主要因素之一, 是进行瓦斯管理等工作的基础参数。
精选课件
14
Prof. Dr. Cheng
• 传统的测定方法是在岩石巷道中向煤层打钻孔,然后用不同 材料封堵孔口,最后安设测压表测压。近年中国研制了新封 孔材料和方法,很好地解决了煤层中的钻孔封孔不严的难题, 因而目前也可在煤层中打钻测压。
• 封孔的方法有人工填料封孔、机械压入填料封孔、胶圈封孔、 胶囊密封液封孔和三相泡沫密封煤层钻孔等。只要封孔严密, 直接测定法能测出准确的瓦斯压力值,应用普遍。
主要内容
1、概述 2、煤层瓦斯压力测定与计算 3、煤层瓦斯含量测定与计算 4、煤层透气性系数测定与计算 5、钻孔流量衰减系数测定与计算 6、矿井瓦斯储量计算 7、可抽瓦斯量计算 8、瓦斯抽采率计算 9、瓦斯抽采量(标量)换算 10、一些单位换算
精选课件
1
煤层瓦斯抽采基本参数测定与计算
1、概述 1)重要性 • 煤层瓦斯基本参数是矿井通风、抽采与利用瓦斯
(1)地勘解吸法
地勘解吸法的基本原理及依据为:
①煤层原始瓦斯含量X0由取芯过程煤样漏失瓦斯量V1、地面 解吸瓦斯测定量V2和残存瓦斯量V3构成,X0= V1+ V2+ V3;
②在一定时间内,煤样在地面的解吸瓦斯量与解吸时间之间 遵循V2——(t0+t)0.5关系;
③煤芯提至钻孔深度的一半时开始解吸瓦斯; ④取芯过程中煤样瓦斯漏失量可按V1—— (t0+t)0.5推算;

瓦斯基础参数测定相关制度

瓦斯基础参数测定相关制度

瓦斯基础参数测定相关制度为了规范矿井瓦斯基础参数测定作业流程,确保瓦斯基础参数测定的准确性及测点的布置合理性,特制定本制度。

一、防突实验室建设**煤矿防突实验室为矿井瓦斯基础参数测定的主体单位,隶属矿通防办,在矿总工程师领导下开展瓦斯参数的试验、测定工作。

仪器装备。

防突实验室必须配备以下试验设备。

同时各矿可根据实际情况增加试验设备,鼓励新装备、新工艺的引进、应用:DGC型瓦斯含量直接测定装置一台;HCA型高压容量法瓦斯吸附装置一台;MJC煤的坚固性系数f(值)测定装置两台;WFC-2瓦斯放散初速度自动测定装仪两台;MAC-2000全自动工业分析仪。

人员配备。

防突实验室至少配备两名实验员,具体负责地面实验仪器的操作、管理。

井下采样及其他测定工作由现场防突工负责。

业务培训。

防突实验室操作员、防突工必须进行培训,全面掌握设备操作规程和井下采样、测定工作的操作技能,经考核合格后方可上岗。

瓦斯基础参数测定规程中,必须严格执行操作规程,保证试验室工作的有序开展。

二、防突实验室业务职责(-)煤层基础瓦斯参数的测定。

负责矿井煤层瓦斯原始含量、可解析瓦斯含量、残余(残存)瓦斯含量、吸附等温曲线、吸附常数a、b值、原始瓦斯压力等相关瓦斯基础参数的试验测定。

(二)煤层区域突出危险性预测及区域防突措施效果检验指标煤层瓦斯放散初速度、坚固性系数的测定。

(三)负责对矿井突出测定仪器进行日常维护与保养。

实验室仪器由厂家定期保养、标校。

三、防突实验室业务流程(一)测定计划的制定:每月底由矿总工程师组织通防办、地测科等相关职能部门制定下月度瓦斯基础参数测定计划。

同时将月度计划下发防突实验室,并报送公司一通三防部备案。

(二)数据的测定:防突实验室根据月度计划实施测定工作,测定结果必须经通防办主任审核后报通风副总、总工程师签字确认,并形成试验报告及时报送相关领导及业务部门。

(三)数据的分析与采用通防办要安排专人负责防突实验室的管理,审查实验室测定分析结果,指导防突实验室的业务。

大磨岭煤矿煤层瓦斯基础参数测定报告(非常详细的报告)

大磨岭煤矿煤层瓦斯基础参数测定报告(非常详细的报告)
新密市超化煤矿有限责任公司定与分析
报告书
河南理工大学 二〇一二年元月十二日
项目参加人员
项目负责人: 报告编写人: 报告审核人: 测定工作人员:
目 录
前 言.................................................................................................................................................... 1 1 矿井概况 ........................................................................................................................................... 3 1.1 位置与交通 ............................................................................................................................ 3 1.2 地形与河流 ............................................................................................................................. 3 1.3 地质特征 .............................................................................................................................

煤层瓦斯含量的测定依据

煤层瓦斯含量的测定依据

煤层瓦斯含量的测定依据1矿井概况唐口矿井位于山东省济宁市西郊 , 济宁地堑西侧北部。

东界为济宁断层 , 西界为嘉祥断层, 由此构成本区的地堑构造。

区内次级构造以南北向、北向断层为主 , 局部因受南北二侧东西向构造带控制, 也存有少量东西向断层。

区内则以北东向断层居多。

本井田含煤地层为二迭系山西组和上石炭统太原组, 主要可采煤层 3 (3 上 , 3 下 ), 16, 17, 平均总厚 9.76m。

目前开采 3 上煤层 , 位于山西组中部 ,属低灰、特低硫、特低磷、高熔~难熔融灰, 结焦性能好的气煤。

2煤层瓦斯参数测定2.1 3 上煤层瓦斯含量测定根据唐口煤矿现有条件, 采用直接法对煤层的原始瓦斯含量进行测定。

分别在西部胶带运输巷迎头、北部胶带运输大巷迎头、 2303轨道巷迎头、2301外切眼迎头 4个地点 , 共采集 4个煤样进行瓦斯含量测定。

通过现场煤样瓦斯解吸的测定和图解法对煤样损失量的计算, 得出煤样解吸瓦斯,煤样残存瓦斯含量测定在实验室进行 , 包括煤样粉碎前常温脱气、煤样粉碎前加热脱气和煤样粉碎后加热脱气 3个过程, 三者之和为煤样残存瓦斯量。

斯量与残存瓦斯量之和 , 如表 3。

平均为 2.12m3/t。

2.2 3 上煤层瓦斯压力测定及透气性系数计算 2.2.1 3 上煤层瓦斯压力测定煤层瓦斯压力测定与煤层透气性系数测定计算, 在西部风大巷和辅助运输石门 (2)内各选择 1个测点。

2.2.2透气性系数计算煤层透气性系数是衡量煤层中瓦斯流动难易程度的重要指标, 是评价煤层瓦斯能否实行预抽的基本参数。

通过测定煤层瓦斯径向不稳定流量来计算煤层透气性系数。

将有关数据代入径向不稳定流量计算煤层透气性系数公式 , 算得 3 上煤层透气性系数为0.1675(MPa)。

2.2.3 3 上煤层钻孔瓦斯流量衰减系数测定根据煤层瓦斯流动理论分析, 煤层钻孔的瓦斯涌出量随着时间的延长呈衰减变化。

钻孔瓦斯流量衰减系数是评价煤层瓦斯预抽难易程度的一个重要指标。

浅析煤层瓦斯参数测定的必要性和重要性

浅析煤层瓦斯参数测定的必要性和重要性

于对井下煤层瓦斯赋存分布规律不明,瓦斯 防范措施针对性不 知》(安监总煤装 ̄2010 370号 )中要求 :“对煤与瓦斯突出矿 区的
强 。因此 ,对煤层瓦斯参数进行测定 ,了解并掌握一定区域范围 所 有高 瓦斯 、低 瓦斯 矿井 全 面排 查 ,督促 煤 矿企 业按 规定 测定 瓦
瓦斯 的 赋存 、分布 规 律 ,是 有效 防 范 瓦斯 事 故 发 生 的 基 础性 工 斯 压力 、瓦斯 含量 等基 础参 数 ”。《关 于进 一 步加 强煤 与瓦 斯 突 出
瓦斯 是煤 矿 安全 生产 的 主要 自然灾 害之 一 ,长 期 以来严 重 结果表的综合数据 ,我们 清楚 的看 出 ,该矿 的煤体坚 固性 系数
威胁着煤矿的安全生产和经济效益。2013年 ,全 国煤矿发生瓦 f、瓦斯放散初速度 ap、煤 的破坏类型等数据 已接近《防治煤与
斯 事故 33起 ,死亡 人数 331人 ,死 亡人 数 l0人 及 以上 的事故 瓦 斯 突出 规定 》的基 本 临 界值 ,为 此 ,该 矿 需要 加 强 煤矿 瓦 斯 防
包括 煤层 瓦 斯压 力 、瓦斯 含 量 、煤 层 透气 性 系数 、钻 孔 流量 衰 减 库 ;并 在 采掘 非 突出煤 层 过程 中收集 煤 层瓦 斯压 力 、煤 的破 坏类
系数 、瓦斯放散初速度、煤的坚固性系数 、破坏类型等参数 。 型、瓦斯放散初速度和坚固性系数等“四项指标”资料 ,以便更好
水平及以上范 围的 四项指标 ”数据与评估煤层 突出危险性单 3.4为突 出矿 井 开展 区域危 险性 预测提 供依 据
项指标临界值对 比:云南省师宗县 白马田煤矿 M 、M M ,煤层 开采 突出煤层必须严格按照两个“四位一体 ”管理 ,而 区域

低瓦斯矿井高瓦斯区的瓦斯防治及管理

低瓦斯矿井高瓦斯区的瓦斯防治及管理

低瓦斯矿井高瓦斯区的瓦斯防治及管理一、概况冯家塔煤矿属低瓦斯矿井,煤尘具有爆炸危险性,属不易自燃易自燃煤层。

矿井投产后,形成主斜井、副斜井进风,一号回风斜井回风的中央并列式通风系统。

井田内各煤层瓦斯含量低,变化在0・020・18ml/gr之间。

其中各煤层沼气(CH 4 )含量为0.02〜0.18ml/gr,均属于低沼气等级;CO2含量变化在0.01〜0.12 ml/gr。

瓦斯自然成分主要为N2,占总量的89.93 - 99.35% ;次为CO 2,占总量的0.65〜10.07%,且随深度加大而增高的趋势较明显;CH4占总量的0.〜1.41 %, 一般为0. %.各煤层N2含量〉89%,CO 2含量一般<6 %,故井田内各煤层均处于氮气带。

按用风地点确定矿井一期风量为127 m 3/s, 二期风量为164m 3/s。

一号回风斜井选用FBCDZ-8-No28 型防爆轴流式通风机2台,1台工作,1台备用.初期每台通风机配2台YBF450S 1 8 型隔爆电动机(160kW、10kV、750r/min );后期更换电动机,每台通风机配2台YBF560S 2-8型隔爆电动机(280kW、10kV、750r/min)。

二、瓦斯防治及管理通过对本区域瓦斯的赋存状况分析,瓦斯涌出量若有所增大,即使增大幅度较小,但在采取常规瓦斯防治和管理的同时,采取煤层工作面瓦斯提前释放的瓦斯防治措施。

(一)常规措施1)加强通风系统管理,建立稳定可靠的通风系统。

不能靠无限地增加风量来解决瓦斯问题:一是风量过大将使煤尘飞扬;二是随着风量的增大,流经采空区的风量、风速加大、瓦斯流线延深、变密,强化了风流和采空区的瓦斯交换,风流携带出的采空区瓦斯量也相应增加。

故掘进巷道使用双风机、双电源、自动分风和三专两闭锁"装置,并有专人检查试验其性能,保证完好。

2)加强瓦斯检查与监测.严格落实先抽后采、监测监控、以风定产”瓦斯综合治理12字方针.虽然冯家塔煤矿是低瓦斯矿井,但按照高瓦斯矿井管理,每一个采掘工作面均有瓦斯检查人员,一人一面,坚持一炮三检"和三人连锁放炮"制度。

瓦斯参数的测定方法

瓦斯参数的测定方法

abP (1 − W − A) d 1 + bP
Wm = k p +
abP (1 − W − A) d 1 + bP
式中,Wm——每 1m3 煤的总瓦斯含量,m3/m3; kp——煤的孔隙率, %, 煤的孔隙率是指单位体积煤中所含有的孔隙体积, 一般在 8~ 12%左右。 图 4-6 反映了吸附瓦斯量和游离瓦斯量以及总瓦斯量的关系。从图中可以看出,在瓦斯 压力比较低时,吸附瓦斯量占绝大部分,随着瓦斯压力的增加,吸附瓦斯量渐趋饱和,而游 离瓦斯量所占的比例则逐渐提高。因此,在深部地层中,煤层和岩层中所含的游离瓦斯量往 往可以达到相当大的数值。 如果将每 m3 煤的瓦斯含量变为每 1t 煤的瓦斯含量,则
将上述测定结果,按要求填写表格,提出最终实验报告。 结果评定: 1) 合格样品: 钻孔煤心采取率大于 75%, 提钻过程中因故障停顿时间不超过 10~15min; 煤样在空气中暴露时间不超过 10~15min;密封罐不漏气;瓦斯解析测定中量管不漏气;含 量气路无堵塞;脱气时没有瓦斯损失;煤样灰分含量不超过 40%;记录完整齐全。 2)参考样品:凡有一项不符合上述要求的样品,划为参考样品。
1 2 3 4 5 6 7 8
瓦斯
图 4-5
胶圈—压力粘液封孔系统
1—外管;2—胶圈;3—内 管;4—导液管; 5—支撑外管;6—压力 粘液;7—胶圈;8—内挡盘
这种方法在井下操作时,使用胶圈——压力粘液瓦斯压力测定仪。首先,在预定测压地 点的岩巷中向煤层打钻,钻孔见煤后立即停钻。将测压仪活节内、外管依次连接好,封孔深 度和封孔段长度按测压点的地质条件确定。打钻结束后,冲洗钻孔,排除封孔段的钻屑,将 测压仪送入钻孔。转动加压把手,使胶圈膨胀,严密封闭钻孔,然后用高压二氧化碳驱动粘 液进入钻孔封孔段, 即完成封孔任务。 再通过注气入口向钻孔注入补偿气体。 在测定过程中, 当粘液压力不足时,可再向粘液罐加压。 这种测压方法在原理上突破了国内外原有测压方法的设计思想, 井下操作比较简便, 可 以大大缩短测定瓦斯压力的时间,这对现场生产和安全都有现实意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档