5种混合制冷剂各自的物理性质沸点临界温度临界压力
制冷剂性质

混合制冷剂R507详细介绍物理性质: 分子量98.86 沸点, °C -47.1 临界温度, °C 70.9 临界压力, Mpa 3.79 溶解度(水中, 25°C), % 0.89 破坏臭氧潜能值(ODP) 0 全球变暖系数值(GWP) 0.847 包装规格: 一次性钢瓶25lb/11.3kg;可回收钢瓶400L,800L,926L;ISO-坦克。
质量指标:纯度, % ≥99.8 水份, PPm ≤10 酸度, PPm ≤1 蒸发残留物, PPm ≤100 外观无色,不浑浊气味无异臭用途:可替代R22和R502共沸混合物R502详细介绍物理性质: 分子量111.63 沸点, °C -45.6 临界温度, °C 82.1 临界压力, Mpa 4.07 饱和液体密度, 30°C, (g/cm3) 1.217 液体比热, 30°C, [KJ/(kg•°C)] 1.25 破坏臭氧潜能值(ODP) 0.18 全球变暖系数值(GWP) 3.8-4.1 包装规格: 一次性钢瓶30lb/13.6kg,50lb/22.7kg。
质量指标:纯度, % ≥99.8 水份, PPm ≤20 酸度, PPm ≤1 蒸发残留物, PPm ≤100 外观无色,不浑浊气味无异臭用途:高纯级R502用作感温工质,优级和一级R502可用作制冷剂制冷剂R415B详细介绍物理性质: 分子量70.20 沸点, °C -26.72 临界温度, °C 124 临界压力, Mpa 4.768 饱和液体密度, 25°C, (g/cm3) 0.935 破坏臭氧潜能值(ODP) 0.01 全球变暖系数值(GWP) 0.10 包装规格: 一次性钢瓶26.5lb/12kg;可回收钢瓶400L;ISO-坦克。
质量指标:纯度, % ≥99.8 水份, PPm ≤10 酸度, PPm ≤1 蒸发残留物, PPm ≤100 外观无色,不浑浊气味无异臭用途:可替代R12。
5种混合制冷剂各自的物理性质沸点临界温度临界压力

甲烷是无色、无味、可燃和微毒的气体。
甲烷对空气的重量比是0.54,比空气约轻一半。
甲烷溶解度很小,在20℃、0.1千帕时,100单位体积的水,只能溶解3个单位体积的甲烷。
同时甲烷燃烧产生明亮的蓝色火焰,然而有可能会偏绿,因为燃甲烷要用玻璃导管,玻璃在制的时候含有钠元素,所以呈现黄色的焰色,甲烷烧起来是蓝色,所以混合看来是绿色。
熔点:-182.5℃沸点:-161.5℃蒸汽压53.32kPa/-168.8℃饱和蒸气压(kPa):53.32(-168.8℃)相对密度(水=1)0.42(-164℃)相对蒸气密度(空气=1):0.5548(273.15K、101325Pa)燃烧热:890.31KJ/mol总发热量:55900kJ/kg(40020kJ/m3)净热值:50200kJ/kg(35900kJ/m3)临界温度(℃):-82.6临界压力(MPa):4.59爆炸上限%(V/V):15.0爆炸下限%(V/V):5.0闪点(℃):-188引燃温度(℃):538分子直径0.414nm标准状况下密度为0.717g/L,极难溶于水通常情况下,乙烯是一种无色稍有气味的气体,密度为1.25g/L,比空气的密度略小,难溶于水,易溶于四氯化碳等有机溶剂。
外观与性状:无色气体,略具烃类特有的臭味。
少量乙烯具有淡淡的甜味。
吸收峰:吸收带在远紫外区pH:水溶液是中性熔点(℃):-169.4沸点(℃):-103.9相对密度(水=1):0.61相对蒸气密度(空气=1):0.98饱和蒸气压(kPa):4083.40(0℃)燃烧热(kJ/mol):1411.0临界温度(℃):9.2临界压力(MPa):5.04闪点(fp):无意义引燃温度(℃):425爆炸上限%(V/V):36.0爆炸下限%(V/V):2.7溶解性:不溶于水,微溶于乙醇、酮、苯,溶于醚。
溶于四氯化碳等有机溶剂。
丙烷物理性质主要成分:纯品外观与性状:无色气体,纯品无臭。
制冷剂与压焓图

(CH3CH2CH2CH33)--R600 ;
异丁烷
(CH(CH3)3)--R600a 。从经济观点来看,它们
是出色的制冷剂,但易燃,安全性很差。
3.不饱和碳氢化合物类
• 它们的命名是在R后面先写“1”主要有: 乙烯: R1150, 丙烯: R1270。
4.氟里昂类(饱和碳氢化合物)
• 它是饱和碳氢化合物的卤族元素的衍生物总称,
• 制冷剂在制冷系统中状态只发生物理变化,没 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。
二、常用制冷剂分类和命名
⑴ 1.无机物化合物 按 2.饱和碳氢化合物
⑵ 按
1.高温低压类
化 3.不饱和碳氢化合物 工
学 4.氟里昂
作
组 5.共沸溶液
成 分
6.非共沸溶液
温 2.中温中压类 度 压
类 7.有机化合物 8.环状有机化合物
4.2 制冷剂类别与环境保护
• 科学家的研究证实R11、R12、R13等氯氟烃化合物 (CFCs)制冷剂,当它们泄漏或排放后扩散到地球 的平流层中,会破坏臭氧层,结果使地球上生物遭 到紫外线的损害;另一方面,氯氟烃化合物的排放 会加剧地球的温室效应,会像二氧化碳那样使地球 温度升高。
• CFCs中含氯元素,对臭氧层具有最大的破坏作用, 是禁用制冷剂;而HCFCs中由于氢元素的存在,大大 减弱了对臭氧层的破坏作用,目前还可以继续使用, 属过渡制冷剂;至于无氯的HFCs,则不会对臭氧层 破坏,受到国际社会的重视,成为替代制冷剂。
3.5 中国正式加入《蒙特利尔议定书》
• 联合国环保组织1987年在加拿大蒙特利尔市召开会议, 36个国家和10个国际组织共同签署了《关于消耗大气臭 氧层物质的蒙特利尔议定书》,我国1992年正式宣布加 入修订后的《蒙特利尔议定书》。
常用制冷剂性能对比

常用制冷剂性能对比常用制冷剂知识1.制冷剂R123不在《中国逐步淘汰消耗臭氧层物质国家方案》(1999年)受控的10种物质之内,R123符合《国家方案》的环保要求。
2.哥本哈根国际《议定书》修正案规定R123可使用到2040年,并且中国目前尚未签署《议定书》哥本哈根修正案。
3.环保制冷剂是指当制冷剂散发至大气层后,对臭氧层的破坏大小和对全球气候变暖的影响大小;R134a 对臭氧层没有影,但对全球气候变暖的影响是R123的十几倍,所以《京都议定书》对R134a 也作了限定使用;R123对臭氧层有较小的影响,但对全球气候变暖影响很小。
4.制冷剂R22、R123、R134a 均有毒,有毒与环保是两个不同概念,有毒不等于不环保。
目前家用冰箱和家用空调均大量使R22,而安全性完全有保障。
5.制冷剂R123在离心式制冷机工作时蒸发器为负压,不存在制冷剂向外泄漏的问题。
6.中央空调的用户完全不与制冷剂相接触,根本不存在用户安全问题,与用户接触的是水。
7.中南大学制冷方面的教授对R22、R123和R134a 的几点意见:(1)制冷剂的选择与设备生产厂商的技术及设计思路密切相关。
与采用的压缩机型式、热力循环效率、制冷工况、对材料的腐蚀性、与润滑油的相溶性、以及经济性、安全性等有很大关系,可以理解为厂商的“个性”。
(2)有的制冷机组厂家声称采用无氟的制冷剂或如何环保的制冷剂,把冷水机组的销售变成了制冷剂选用的唯一比较,给不太了解制冷剂的用户造成困惑,而忽略了对机组本身的性能参数比较。
(3)目前采用的制冷剂或多或少都含有R22等,是一种混合工质。
(4)另外我国没有承诺何时终止使用R22、R123等制冷剂的时间,关于制冷剂选择的焦虑是没有必要的,用户大可不必把心思花费到考虑选用何种制冷剂上,这些事情应交由设备生产厂商去考虑,因为这些是他们最关心的。
制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(ODP)表示,其数值以R11的ODP值作为基准值。
制冷剂的类型与参数

制冷剂的类型与参数按制冷剂包含的成份可分为:1、单一制冷剂2、混合制冷剂。
单一制冷剂只含有一种化学物质,其热物理性能参数恒定不变,如,R134a、R152a等制冷剂都具有较高的能量效率。
混合制冷剂是由两种或两种以上制冷剂组成的混合物。
根据它在气液相平衡时气相和液相的组成是否相等又分为:1、共沸混合制冷剂:气液相平衡时气液两相组成相等的属于共沸混合制冷剂(包括相平衡时气液两相组成近似相等的近共沸混合制冷剂),2、非共沸混合制冷剂。
组成不相等的属于非共沸混合制冷剂。
共沸混合制冷剂的选用与节能共沸混合制冷剂在一定的压力下蒸发和冷凝时,气相和液相的组成不变,且能保持恒定的温度。
它和单一制冷剂具有近似的热物理性能。
这类制冷制是研究和应用最早、最成熟的制冷剂,现将已研究的共沸混合制冷剂列入表1中。
对于非共沸混合制冷剂,其在蒸发器中的蒸发过程及在冷凝器中的冷凝过程都是非理想混合过程。
这两种非理想混合过程使得混合制冷剂在制冷系统中冷凝压力降低,蒸发压力升高,压缩机的排气温度降低。
这就使得制冷机的压比降低,制冷系数提高,从而提高了制冷系统的能量效率。
表1已研究的共沸混合制冷剂不同种类的混合制冷剂具有不同的热物理性质,这就会为制冷剂的优选提供了较大的余地。
对于某一固定的制冷系统,在其最佳运行工况下,要求制冷剂必须具有特定的热物理性质。
合理选用不同的共沸混合制冷剂使其满足这种特定的热物理性质,就可以提高制冷系统的热力学效率,从而达到节能的效果。
由于共沸混合制冷剂可使冷凝压力降低,而同时蒸发压力升高,这样在冷凝温度和蒸发温度不变的情况下,压缩机的压比就会减小,从而使压缩机的功耗降低。
因此获得同样的制冷量时就只需较少的功。
同时蒸发压力的升高会减小蒸发器的真空度,使蒸发器更稳定地工作,而冷凝压力的降低会使冷凝器在更安全的状态下远行。
印度的制冷专家C.P.A RORA在第十五届国际制冷学会上发表的论文中,以共沸混合制冷剂R22/R12(85/15)为例肯定了这个效果。
制冷剂氟利昂临界压力

制冷剂氟利昂临界压力
氟利昂(氟氯烷类化合物)是一类常用的制冷剂,也被称为氟利昂制冷剂(Fluorocarbon Refrigerants)。
不同种类的氟利昂制冷剂具有不同的临界压力,临界压力是指在一定温度下,气液两相不再可区分的压力值。
以下是一些常见氟利昂制冷剂的临界压力(单位为千帕):
1.氟利昂-12(R-12):1248.8kPa
2.氟利昂-22(R-22):496
3.2kPa
3.氟利昂-134a(R-134a):4067.0kPa
4.氟利昂-410A(R-410A):492
5.0kPa
5.氟利昂-404A(R-404A):4851.0kPa
需要注意的是,这些数值可能是基于特定的温度范围和参考条件得出的,并且可能存在一定的变化范围。
此外,由于环境保护的考虑,一些氟利昂制冷剂已经被逐渐淘汰或受到限制使用。
请注意,在使用或处理氟利昂制冷剂时,应遵循相关的安全规范和环境法规,以确保正确的操作和防止对大气层臭氧层的破坏。
1/ 1。
常用制冷剂性能对比

常用制冷剂性能对比常用制冷剂知识1.制冷剂R123不在《中国逐步淘汰消耗臭氧层物质国家方案》(1999年)受控的10种物质之内,R123符合《国家方案》的环保要求。
2.哥本哈根国际《议定书》修正案规定R123可使用到2040年,并且中国目前尚未签署《议定书》哥本哈根修正案。
3.环保制冷剂是指当制冷剂散发至大气层后,对臭氧层的破坏大小和对全球气候变暖的影响大小;R134a对臭氧层没有影,但对全球气候变暖的影响是R123的十几倍,所以《京都议定书》对R134a也作了限定使用;R123对臭氧层有较小的影响,但对全球气候变暖影响很小。
4.制冷剂R22、R123、R134a均有毒,有毒与环保是两个不同概念,有毒不等于不环保。
目前家用冰箱和家用空调均大量使R22,而安全性完全有保障。
5.制冷剂R123在离心式制冷机工作时蒸发器为负压,不存在制冷剂向外泄漏的问题。
6.中央空调的用户完全不与制冷剂相接触,根本不存在用户安全问题,与用户接触的是水。
7.中南大学制冷方面的教授对R22、R123和R134a的几点意见:(1)制冷剂的选择与设备生产厂商的技术及设计思路密切相关。
与采用的压缩机型式、热力循环效率、制冷工况、对材料的腐蚀性、与润滑油的相溶性、以及经济性、安全性等有很大关系,可以理解为厂商的“个性”。
(2)有的制冷机组厂家声称采用无氟的制冷剂或如何环保的制冷剂,把冷水机组的销售变成了制冷剂选用的唯一比较,给不太了解制冷剂的用户造成困惑,而忽略了对机组本身的性能参数比较。
(3)目前采用的制冷剂或多或少都含有R22等,是一种混合工质。
(4)另外我国没有承诺何时终止使用R22、R123等制冷剂的时间,关于制冷剂选择的焦虑是没有必要的,用户大可不必把心思花费到考虑选用何种制冷剂上,这些事情应交由设备生产厂商去考虑,因为这些是他们最关心的。
制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(ODP)表示,其数值以R11的ODP值作为基准值。
常用制冷剂热力参数一览

常用制冷剂热力参数一览1.氨(NH3):氨是一种广泛应用于制冷工程中的制冷剂,其化学名称为氨水。
其热力参数包括:-临界点温度:132.4℃-临界点压力:11.3MPa- 临界密度:225kg/m³- 气化热:1334kJ/kg-热传导系数:0.52W/m∙K- 比热容:4.69kJ/kg∙K2.氟利昂12(CFC-12,R-12):氟利昂12是一种氟氯烃制冷剂,其热力参数包括:-临界点温度:111.3℃-临界点压力:4.14MPa- 临界密度:512kg/m³- 气化热:164.97kJ/kg-热传导系数:0.048W/m∙K- 比热容:0.84kJ/kg∙K3.氟利昂22(HCFC-22,R-22):氟利昂22是一种氟氯碳烃制冷剂,其热力参数包括:-临界点温度:96.1℃-临界点压力:4.84MPa- 临界密度:547.4kg/m³- 气化热:210.66kJ/kg-热传导系数:0.049W/m∙K- 比热容:0.493kJ/kg∙K4.二氧化碳(CO2):二氧化碳是一种环保的制冷剂,其热力参数包括:-临界点温度:31.1℃-临界点压力:7.38MPa- 临界密度:467.6kg/m³- 气化热:571.7kJ/kg-热传导系数:0.015W/m∙K- 比热容:0.845kJ/kg∙K5.氦(He):氦是一种广泛应用于超低温制冷领域的制冷剂,其热力参数包括:-临界点温度:5.2K-临界点压力:0.227MPa- 临界密度:127.3kg/m³- 气化热:20.76kJ/kg-热传导系数:0.151W/m∙K- 比热容:5.1924kJ/kg∙K以上是常用制冷剂的部分热力参数,这些参数对于制冷系统的设计和性能评估至关重要。
除了热力参数外,还需要考虑制冷剂的环保性、安全性以及工程实施的可行性等因素来选择适当的制冷剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲烷是无色、无味、可燃和微毒的气体。
甲烷对空气的重量比是0.54,比空气约轻一半。
甲烷溶解度很
小,在20℃、0.1千帕时,100单位体积的水,只能溶解3个单位体积的甲烷。
同时甲烷燃烧产生明亮的蓝色火焰,然而有可能会偏绿,因为燃甲烷要用玻璃导管,玻璃在制的时候含有钠元素,所以呈现黄色的焰色,甲烷烧起来是蓝色,所以混合看来是绿色。
熔点:-182.5℃
沸点:-161.5℃
蒸汽压53.32kPa/-168.8℃
饱和蒸气压(kPa):53.32(-168.8℃)
相对密度(水=1)0.42(-164℃)
相对蒸气密度(空气=1):0.5548(273.15K、101325Pa)
燃烧热:890.31KJ/mol
总发热量:55900kJ/kg(40020kJ/m3)
净热值:50200kJ/kg(35900kJ/m3)
临界温度(℃):-82.6
临界压力(MPa):4.59
爆炸上限%(V/V):15.0
爆炸下限%(V/V):5.0
闪点(℃):-188
引燃温度(℃):538
分子直径0.414nm
标准状况下密度为0.717g/L,极难溶于水
通常情况下,乙烯是一种无色稍有气味的气体,密度为1.25g/L,比空气的密度略小,难溶于水,易溶于四氯化碳等有机溶剂。
外观与性状:无色气体,略具烃类特有的臭味。
少量乙烯具有淡淡的甜味。
吸收峰:吸收带在远紫外区
pH:水溶液是中性
熔点(℃):-169.4
沸点(℃):-103.9
相对密度(水=1):0.61
相对蒸气密度(空气=1):0.98
饱和蒸气压(kPa):4083.40(0℃)
燃烧热(kJ/mol):1411.0
临界温度(℃):9.2
临界压力(MPa):5.04
闪点(fp):无意义
引燃温度(℃):425
爆炸上限%(V/V):36.0
爆炸下限%(V/V):2.7
溶解性:不溶于水,微溶于乙醇、酮、苯,溶于醚。
溶于四氯化碳等有机溶剂。
丙烷物理性质
主要成分:纯品
外观与性状:无色气体,纯品无臭。
熔点(℃):-187.6
沸点(℃):-42.1
相对密度(水=1):0.58(-44.5℃)
着火点(℃):450,易燃
相对蒸气密度(空气=1): 1.56
饱和蒸气压(kPa):53.32(-55.6℃)
燃烧热(kJ/mol):2217.8
临界温度(℃):96.8
临界压力(MPa): 4.25
闪点(℃):-104
引燃温度(℃):450
爆炸上限%(V/V):9.5
爆炸下限%(V/V): 2.1
溶解性:微溶于水,溶于乙醇、乙醚。
在低温下容易与水生成固态水合物,引起天然气管道的堵塞。
丙烷在较高温度下与过量氯气作用,生成四氯化碳和四氯乙烯Cl₂C=CCl₂;在气相与硝酸作用,生成1-硝基丙烷CH₃CH₂CH₂NO₂、2-硝基丙烷(CH₃)₂CHNO₂、硝基乙烷CH₃CH₂NO ₂和硝基甲烷CH₃NO₂的混合物。
上丙烷可从油田气和裂化气中分离得到[2]。
在空气中燃烧化学方程式:C₃H8 + 5O₂—→点燃3CO₂+ 4H₂O
异戊烷物理性质
主要成分:纯品
外观与性状:无色透明的易挥发液体,有令人愉快的芳香气味。
熔点(℃):-159.4
沸点(℃):27.8
相对密度(水=1):0.62
相对蒸气密度(空气=1): 2.48
饱和蒸气压(kPa):79.31(21.1℃)
燃烧热(kJ/mol):3504.1
临界温度(℃):187.8
临界压力(MPa): 3.33
闪点(℃):-56
引燃温度(℃):420
爆炸上限%(V/V):7.6
爆炸下限%(V/V): 1.4
溶解性:不溶于水,可混溶于乙醇、乙醚等多数有机溶剂。
主要用途:用于有机合成,也作溶剂。
危害危险
健康危害:主要有麻醉及轻度刺激作用。
可引起眼和呼吸道的刺激症状,重者有麻醉症状,甚至意识丧失。
慢性影响:眼和呼吸道的轻度刺激。
皮肤长期接触可发生轻度皮炎。
燃爆危险:本品极度易燃。
危险特性:极易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。
与氧化剂接触发生强烈反应, 甚至引起燃烧。
其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
若遇高热,容器内压增大,有开裂和爆炸的危险。
气态物质叫做汽。
临界温度物质处于临界状态时的温度,称为“临界温度”。
降温加压,是使气体液化的条件。
但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。
如果气体温度超过临界温度,无论怎样增大压强,气态物质也不会液化。
例如,水蒸汽的临界温度为374℃,远比常温度要高,因此,平常水蒸汽极易冷却成水。
其他如乙醚、氨、二氧化碳等,它们的临界温度高于或接近室温,这样的物质在常温下很容易被压缩成液体。
但也有一些临界温度很低的物质,如氧、空气、氢、氦等都是极不容易液化的气体。
其中氦的临界温度为-268℃。
要使这些气体液化。
必须具备一定的低温技术和设备,使它们达到它们各自的临界温度以下,而后再用增大压强的方法使其液化。
导体由普通状态向超导态转变时的温度称为为超导体的转变温度,或临界温度,用Tc 表示.
液体能维持液相的最高温度叫临界温度。
英文表述:In physical chemistry, thermodynamics, chemistry and condensed matter physics, a critical point, also called a critical state, specifies the conditions (temperature, pressure and sometimes composition) at which a phase boundary ceases to exist. There are multiple types of critical points such as vapor–liquid critical points and liquid–liquid critical points.。