试验八抽样定理

合集下载

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(2)7.7KHZ在频率为9HZ 时的波形如上图,低通滤 波器恢复出的信号与原信号基本一致, 只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右, 恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号 的频率一定时,采样频率不能低于被采 样信号的2倍,否则将会出现频谱的混 叠,导致恢复出的信号严重失真。

实验二PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ 用示波器接模块21的音频输出,观测信号 的幅频特性。

⑴、4000HZ(2)、3500HZ(1)9.0KHZ(3)7.0KHZ(3)120HZ⑷50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

抽样定理

抽样定理

实验一 抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性2、掌握自然抽样及平顶抽样的实现方法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产生孔径失真的原理8、理解带通采样定理的原理二、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。

抽样定理实验的原理框图如下:抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号图1抽样定理实验原理框图抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号低通滤波器图2实际抽样系统为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。

在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。

另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对比你能分辨图中抽样恢复后信号的失真吗?因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:图1被抽样信号波形及频谱示意图对抽样脉冲信号的考虑大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,用不同的宽度的脉冲信号来抽样所带来的失真程度是不一样的,为了让大家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中大家可以一边调节脉冲宽度,一边从频域和时域两个方面来观察孔径失真现象。

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。

实验器材:
示波器、函数信号发生器、导线、面包板。

实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。

2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。

5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。

6.将采样频率设置为30kHz,并观察波形。

7.继续提高采样频率直至可清晰观察到原始信号的波形。

实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。

在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。

实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。

在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。

通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。

通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。

抽样定理

抽样定理

抽样定理定义:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以1/2 f h的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续的全部信息。

抽样定理在实际应用中应注意在抽样前后模拟信号进行滤波,把高于二分之一抽样频率的频率滤掉。

这是抽样中必不可少的步骤。

07年的抽样定理:设时间连续信号f(t),其最高截止频率为f m ,如果用时间间隔为T<=1/2f m的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

什么是A/D转换和D/A转换?什么是A/D转换和D/A转换?一。

什么是a/d.d/a转换:随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。

通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。

由于系统的实际对象往往都是一些模拟量(如温度。

压力。

位移。

图像等),要使计算机或数字仪表能识别。

处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。

处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。

这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。

将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。

转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。

抽样定理验证实验

抽样定理验证实验

抽样定理验证实验抽样定理是统计学充满魅力的概念之一,它表明,当样本容量足够充分大时,样本的抽样分布会接近于总体分布。

这个定理被广泛用于各种数据分析和决策中,因为它可以减少成本和时间,同时保证结果的准确性。

在这篇文章中,我们将介绍如何进行一个简单的抽样定理验证实验。

实验目的:1、理解抽样定理的数学概念实验器材:1、一组充分大的总体数据2、随机数生成程序或工具3、计算器或数据分析软件实验步骤:1、准备一组充分大的总体数据。

这里我们选择一个简单的总体,例如一个1到10的自然数序列。

2、根据总体数据的范围,设定随机数生成程序或工具,以生成符合一定分布规律的随机数。

在这里,我们可以选择均匀分布或正态分布。

4、计算样本数据的平均值和标准差。

5、重复步骤2到4多次,得到多组样本数据。

6、将多组样本数据中的平均值和标准差绘制成频率分布图和直方图,观察它们的分布情况。

同时,计算它们的样本均值和样本标准差。

8、根据抽样定理,当样本容量足够充分大时,样本的抽样分布会接近于总体分布。

因此,我们可以提高样本容量,再次重复步骤2到7,观察样本数据的频率分布图和直方图与总体数据的分布情况,以及样本均值和标准差与总体均值和标准差之间的相似性,以验证抽样定理。

实验结果:对于上述实验过程,我们可以得到如下结果:1、在样本容量较小时(例如,10个样本数据),样本数据的频率分布图和直方图可能偏离总体数据,样本均值和标准差与总体均值和标准差之间的相似性也较低。

这些结果表明,随着样本容量的增加,样本数据的接近程度越来越高,最终接近于总体分布。

这验证了抽样定理的数学概念,也为我们在实际数据分析和决策中提供了可靠的理论基础。

结论:抽样定理强调了在估计总体参数时,样本容量对估计结果的重要性。

在实践中,我们应该坚持选择充分大的样本容量,以确保结果的可靠性和准确性。

通过验证抽样定理,我们可以更好地理解样本与总体之间的关系,为我们在实践中做出更好的决策提供可靠的依据。

实验八抽样定理

实验八抽样定理

实验八抽样定理一实验目的1 了解电信号的采样方法与过程以及信号恢复的方法。

2 验证抽样定理。

二原理说明1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:f S(t)= f(t)×s(t)如图8-1所示。

T S为抽样周期,其倒数f S =1/T S称为抽样频率。

图8-1 对连续时间信号进行的抽样对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。

平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。

当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。

抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。

2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图8-2冲激抽样信号的频谱图3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。

而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。

图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。

东南大学系统实验报告

东南大学系统实验报告

实验八:抽样定理实验(PAM )一.实验目的:1. 掌握抽样定理的概念2. 掌握模拟信号抽样与还原的原理和实现方法。

3. 了解模拟信号抽样过程的频谱 二.实验内容:1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。

2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三.实验步骤:1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。

2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。

3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。

4. 实验连线5. 不同频率方波抽样6. 同频率但不同占空比方波抽样7. 模拟语音信号抽样与还原 四.实验现象及结果分析:1.固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形:抽样方波频率为4KHz 时的频谱:50K…………PAM 输出波形输入波形分析:理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。

仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。

(2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形:2KHz6K 10K 14K输入波形PAM 输出波形抽样方波为8KHz 时的频谱:分析:当采样频率为8KHz 时,频谱如上图所示,已抽样信号的频谱有无穷多个原始信号频谱叠加而成,周期为采样频率8KHz ,由于此时采样频率>>那奎斯特速率,故没有混叠。

抽样定理

抽样定理

实验一 抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性2、掌握自然抽样及平顶抽样的实现方法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产生孔径失真的原理8、理解带通采样定理的原理二、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。

抽样定理实验的原理框图如下:被抽样信号抽样脉冲抽样恢复信号图1抽样定理实验原理框图被抽样信号抽样恢复信号图2实际抽样系统为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。

在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。

另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对比你能分辨图中抽样恢复后信号的失真吗?因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz 正弦波”+“1KHz 正弦波”,波形及频谱如所示:图1被抽样信号波形及频谱示意图对抽样脉冲信号的考虑大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,用不同的宽度的脉冲信号来抽样所带来的失真程度是不一样的,为了让大家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中大家可以一边调节脉冲宽度,一边从频域和时域两个方面来观察孔径失真现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八抽样定理
一实验目的
1 了解电信号的采样方法与过程以及信号恢复的方法。

2 验证抽样定理。

二原理说明
1 离散时间信号可以从离散信号源获得,也可以从连续时间信号经抽样而获得。

抽样信号f S(t)可以看成是连续信号f(t)和一组开关函数s(t)的乘积。

即:
f S(t)= f(t)×s(t)
如图8-1所示。

T S为抽样周期,其倒数f S =1/T S称为抽样频率。

图8-1 对连续时间信号进行的抽样
对抽样信号进行傅里叶分析可知,抽样信号的频谱包含了原连续信号以及无限多个经过平移的原信号频谱。

平移后的频率等于抽样频率f S及其各次谐波频率2 f S、3f S、4f S、5f S ……。

当抽样信号是周期性窄脉冲时,平移后的频谱幅度按sinx/x规律衰减。

抽样信号的频谱是原信号频谱周期性的延拓,它占有的频带要比原信号频谱宽得多。

2 正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连接起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f max的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器的输出可以得到恢复后的原信号。

(a)连续信号的频谱
(b)高抽样频率时的抽样信号及频谱(不混叠)
(c)低抽样频率时的抽样信号及频谱(混叠)
图8-2冲激抽样信号的频谱图
3 信号得以恢复的条件是f S>2B,其中f S为抽样频率,B为原信号占有的频带宽度。

而f min =2B为最低的抽样频率,又称为“奈奎斯特抽样率”。

当f S <2B时,抽样信号的频谱会了生混叠,从发生混迭后的频谱中,我们无法用低通滤波器获胜者得原信号频谱的全部内容。

在实际使用中,仅包含有限频谱的信号是极少的,因此即使f S=2B,恢复后的信号失真还是难免的。

图8-2画出了当抽样频率f S>2B(不混迭时)及f S<2B(混迭时)两种情况下冲激抽样信号的频谱图。

实验中选用f S <2B、f S =2B、f S >2B三种情况抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f S必须大于信号频率中最高频率的两倍即f S >2 f max。

4 为了实现对连续信号的抽样和抽样信号的复原,可用实验原理框图8-3的方案。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混叠。

但这也会造成失真。

如实验选用的信号频带较窄,则可不设置低通滤波器。

本实验就是如此。

相关文档
最新文档