1心电前置放大电路设计
生物电放大器—心电图(ECG)前置放大器

昆明理工大学信息工程与自动化学院学生实验报告(2016 —2017 学年第一学期)课程名称:生物医学电子学开课实验室:信自111 实验日期:2016.12.28一、实验目的1、掌握三运算放大器组成差动放大器的原理;2、掌握元器件参数变化对放大器性能指标的影响;3、加深对生物电信号和生物电放大器的理解。
二、实验原理三运算放大器组成差动放大器具有高共模抑制比、高输入阻抗和可变增益等一系列优点,它是目前最典型的生理参数测量用的前置放大器,且已在各类生物医学仪器中获得广泛应用。
图2-1 心电图(ECG)前置放大器原理图如图2-1所示,是典型的三运算放大器组成的差动放大器,根据A1、A2、A3的理想特性,R5、R6、R7中的电流相等,得到622721511R U U R U U R U U o i i i i o -=-=- 从而导出(R6=R5))()(217511i i i o U U R R U U -=- )()(2175022i i i U U R R U U -=- 以上二式相加得))(21()(217521i i o o U U R R U U -+=- 由于)(21810o o o U U R R U --= 则其差模增益为)21(7581012R R R R U U U A i i o d +=-= 只要调节R7,就可改变三运算放大器的增益,而不影响整个电路的对称性。
三、实验内容及步骤1、用EWB 软件按图2-1三电极心电前置放大器电路图接线、设置各元器件参数、创建电路,接入示波器、,并保存电路。
2、激活仿真电路,用示波器、万用表,观察波形、读取实验数据,并记录于表2-1中。
模拟输入 输出示波器(波形) 万 用 表 交流档 直流档正弦波100μV/50H z2.2954mV 1.7997mV0V0 1.7998mV矩形波0.1mV/50H/90%0.6985mV0.2584mV 3模拟输入输出放大倍数放大倍数计算值正弦波100μV/50Hz2.2954mV22.95234;改变R11的数值使其零点漂移最小、记录下R11的数值;将三只运算放大器改设为理想运算放大器,记录有关数据、填入表2-3。
一种心电信号采集放大电路的简单设计方法

一种心电信号采集放大电路的简单设计方法
心电信号采集放大电路是一种将人体心脏电信号放大的电路,一般采用放大器、滤波器、隔离器等组成。
以下为一种简单的设计方法:
1. 选择放大器芯片
选择一个合适的放大器芯片,一般选用高质量低噪声的运放芯片,如AD620、AD8226等。
这些芯片具有高增益、低噪声等特点,适合于心电信号的放大。
2. 设计放大器电路
使用选择的芯片设计放大器电路,将心电信号输入放大器的非反馈端,输出连接到反馈端。
可以根据需要调整电阻和电容值来获得合适的增益和滤波效果。
一般放大倍数在100-1000之间。
3. 加入滤波器电路
由于心电信号存在很多干扰信号,所以需要加入滤波器来滤除掉干扰信号,使得输出信号更加可靠。
常用的滤波器如低通滤波器、带通滤波器等。
4. 设计隔离器电路
为了避免放大电路与其他电路之间的交叉干扰,需要加入隔离
器电路,将输入和输出信号隔离开。
一般采用光电耦合器或变压器等。
5. 验证电路性能
制作完成后,需要对电路的性能进行验证。
可以使用示波器、信号发生器等测试设备来检测电路的增益、频率响应等性能参数,以确保电路可靠度、准确性和稳定性。
通过以上简单方法,可以设计一款高质量的心电信号采集放大电路。
燕山大学心电信号检测放大电路-课程设计报告

燕山大学课程设计说明书题目:心电放大电路课程设计学院(系):燕山大学里仁学院年级专业: 09生物医学工程学号: 0912******** 学生姓名: ***指导教师: ***教师职称: ***摘要心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。
在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。
在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。
本文分析了体表心电信号的特征。
心电信号的各种生理参数都是复杂生命体(人体)发出的强噪声条件下的弱信号(除体温等直接测量的参数外),心电信号的幅度在l0µV~4mV之问,频率范围为O.05 ~ 100Hz,淹没在50Hz的工频干扰和人体其他信号之中,检测过程及方法较复杂。
去除信号检测过程的干扰和噪声、进行心电信号的分析是心电仪器的重要功能之一,心电信号的放大质量直接影响着分析仪器的性能和对人体心脏疾病的诊断。
本文设计了一个心电信号检测放大电路,充分考虑了人体心电信号的特点,·采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,并且利用软件对相应的电路进行仿真,仿真结果表明电路的放大滤波性能很好,硬件电路搭建后的实验结果也表明,电路能够很好地完成人体心电信号的检测放大。
关键字:放大器心电信号第一章绪论 (1)第二章设计基础2.1 心电信号特征分析 (2)2.1.1 心电信号时域特征分析 (2)2.1.2 心电信号的电特征分析 (3)2.2 心电信号的噪声来源 (5)第三章电路设计3.1 前置放大电路设计 (7)3.2 一阶高通滤波器电路设计 (8)3.3 一阶低通滤波器电路设计 (9)3.4 50Hz干扰信号陷波器设计 (9)3.5电压放大器设计 (13)第四章Multisim仿真 (14)总结 (16)参考文献 (17)答辩记录及评分表 (18)附录 (19)第一章绪论1人体生物信息的基本特点人体的生物信号测量的条件是很复杂的。
心电前置放大电路的研究_张舒

放大器的选择有一定的原则: 在满足给定输入、 负载、精度及环境要求条件下, 尽可能选用通用型、 低成本的运放。根据集成运放的选用原则, 分析实际 使用条件, 正确选择合适的运放, 做到经济合理。在 选用运放时, 必须考虑到如下问题:
6结论 通过对数据缓冲区的合理调度, 对DSP的DMA功能
的充分应用, 存储空间的优化, Cache功 能 的 使 用 , 以 及对运动搜索算法的适当选取和改进, 各个核心运算 程序模块的代码优化, 共同构成了高效的视频编码系 统 。该 系 统 最大 程 度 地 发 挥Blackfin DSP的 性 能 , 保 证 了编码器的实时性, 并且达到相对最佳的性能。 参考文献 1 ITU- R BT.601/656. “The Digital Video Standard ac-
传感器采集到的心电信号首先进入由电阻和电容 组成的无源低通滤波器, 滤波器的截止频率选在10kHz 左 右 。 由 于 信 号 中 混 有 各 种 干 扰 噪 声 会 影 响 ECG的 有 用 信号, 因此需要对这些噪声进行滤波。噪声来源主要 有两类, 一类是各种电子设备辐射出的高频噪声, 一 类是市电的50Hz噪声, 通常情况下后者影响尤为明显。 对 这 些 噪 声 的 滤 波 需 要 用 到 低 通 滤 波 器 。ECG的 低 通 滤 波器通常情况下截至频率选择在100Hz以下, 少数情况
332心电中间放大器的设计信号经高通滤波器隔直滤波后进入中间放大器又因前置放大限制了放大倍数因此二级放大需要有较大的倍数才能使心电信号足够大满足要求的同时为消除高频成分需经过低通滤波环节由于心电信号频率为005hz100hz故设定低通滤波器的截至频率为100hz
心电信号放大电路

浅谈滤波器在心电信号放大电路中的应用1 实验目的与意义心电信号十分微弱,一般在0.05-100Hz之间,幅度小于5mv。
在检测心电信号的同时存在着极大的干扰。
心电波仪器通过传感系统把心脏跳动信号转化为电压信号波形,一般为微伏到毫伏数量级。
这是需经过信号放大才能驱动测量仪表把波形绘制出来。
本实验通过应用运算放大器设计心电放大电路,目的是可以实现有效滤除与心电信号无关的高频信号,通过系统,可以得到放大,无干扰的心电信号。
本实验将就心电放大电路中的滤波器部分进行重点研究,采用multisim10.1进行仿真,分析其实现的功能以及所起的作用。
心电信号放大电路的其余部分将做简要介绍。
2 心电放大电路工作原理心电信号放大电路原理流程图2.1前置放大电路放大微弱的心电信号。
具有高输入阻抗、高共模抑制比、低噪声、低漂移、具有一定的电压放大能力的特点。
2.2高通滤波电路通过频率大于0.05Hz的信号,排除低频信号干扰。
2.3低通滤波电路通过频率低于100Hz的信号,排除高频信号干扰。
2.4带阻滤波电路有效阻断工频为50Hz的信号干扰。
2.5电压放大电路对处理过的心电信号进行放大,以便能够观察出微弱的心电信号。
3 技术指标信号放大倍数:1000倍输入阻抗:≥10MΩ共模抑制比:K cmr≥60dB频率响应:0.05-100Hz信噪比:≥40dB4心电放大电路介绍与分析4.1前置放大电路可应用AD620来设计放大电路,设计图如下根据心电信号特点,前置放大电路具有以下特点:1)高输入阻抗:被提取的心电信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,应提高放大电路的输入阻抗。
2)高共模抑制比:人体所携带的工频干扰以及所测量的参数以外的生理作用的干扰,一般为共模干扰,前置级须采用共模抑制比高的差动放大电路,以减少共模干扰。
3)低噪声,低漂移:使其对信号源影响小,输出稳定。
此放大电路可实现增益1-1000倍的调节。
新型心电信号前置放大电路设计解读

新型心电信号前置放大电路设计
摘要:基于经典的仪表放大器基本框架,改进和设计了一种可用于心电信号采集的前置放大器。
根据心电信号采集的特点,通过增加射频滤波器、右腿驱动电路和高通负反馈滤波器等措施,提高了放大器的共模抑制比,对被测的人体具有更安全的保护作用。
结果表明该放大器在频率响应特性、共模抑制比等性能参数方面符合标准,可用于ECG监护仪中。
关键词:心电图;放大器;共模抑制比;增益;滤波
中图分类号:TP342文献标识码:A文章编号:1009-3044(2008)01-10041-04
(责任编辑:背包走天下)。
生物医学信号前置放大及滤波电路设计

生物医学信号前置放大及滤波电路设计一、方案选择及电路设计:1.总体电路图此电路由前置放大电路和滤波电路构成,框架图如1-1。
前置放大滤波显示1-1总框架图图1-2 心电信号前置放大及滤波电路图2.前置放大电路:1)前置放大电路的要求:由于生物电信号源产生的信号幅度小,频率低,而且生物电信号源内阻高,存在较强的背景噪声和干扰,而生物电放大器是为了测量生物电位而专门设计的放大器,其最主要的作用就是把微弱的生物电位信号的幅度放大,以便进一步处理、记录或显示。
因此要求生物电放大器具有高输入阻抗、高共模抑制比、高增益、低噪声、低温漂、合适的频带宽度和动态范围等特性。
而放大器的输入阻抗、噪声、漂移及共模抑制比等特性的好坏主要由前置放大器所决定。
为了克服测量生物电时伴随的较强的模干扰,在生物电放大器的前置级通常采用差动放大以提高共模抑制比。
放大级通常包括初级差分放大和运放构成的主放大级,在本次实验中,初级差分放大采用的是三运放前置放大电路,主放大极由一个集成运放和电阻构成2)前置放大电路的构成:本次设计使用三运放前置放大器,它具有以下优点:(1) 输入阻抗高,由运放输入阻抗决定;(2) 可适当减少R4和R1,从而使CMRR 增大,而不影响输入阻抗与增益;(3) R2和R3失配仅影响CMRR 和Ac;如图1.3所示:图1.3 前置放大电路电路图它的第一级是有两个运放A1和A2组成,信号由两个同相输入差分放大器,因而有很高的的输入阻抗,可达1M Ω以上;第二级是由A3构成的基本差分放大器。
由于理想运放输入阻抗近似为零,A1和A2输入端的两个电阻R2与电位器R1相并联,所以可以得到:45)3221(R R R R Ad ⨯⨯+==303)电路分析① 参数设置:R4=500Ω ,R2=2KΩ ,R1=4K Ω ,R3=2kΩ,R5=5K Ω② 高输入阻抗:由于人体的心电信号是不稳定的高内阻源的微弱信号,为了减小信号源内阻的影响,必须提高放大器的输入阻抗,输入阻抗是指开环运行时,从两个输入端看进去的动态阻抗,它等于两个输入端之间的电压的变化和引起的输入电流的变化的比值。
心电前置放大器设计说明书

一、生物医学信号的基本特征 (3)1、频率特性 (3)2、幅值特性 (3)3、信号源阻抗高 (3)4、强噪声和干扰 (3)二、对生理参数放大器的要求 (3)1、增益高 (3)2、输入阻抗高 (3)3、噪声极低 (3)4、共膜抑制比高 (3)5、基线漂移小 (3)6、频带适当 (3)7、隔离阻抗大 (3)三、滤波器的选择与参数设定 (4)1、考虑是否采用电子元件 (4)2、考虑截止频率附近的幅频、相频特性 (4)3、考虑通带和阻带所处范围(幅频特性) (4)(1)放弃使用带通滤波器 (4)(2)采用高、低通滤波器叠加滤波 (5)(3)增加陷波器。
(7)四、设计流程图 (7)五、设计电原理图 (8)六、设计具体说明 (8)1、同相并联型差动放大器 (8)(1)电路构成 (8)(2)高共模抑制比 (9)(3)差模电压放大倍数 (9)(4)作用 (9)2、反相放大器 (9)(1)放大倍数 (10)(2)作用 (10)3、四阶高通滤波器 (10)4、四阶低通滤波器 (11)5、陷波器 (11)6、整体参数选用情况 (12)(1)具有较高输入阻抗 (12)(2)放大器差动增益 (13)(3)具有较高共模抑制比 (13)(4)等效输入噪声 (14)(5)频带范围 (14)7、设计的仿真情况 (14)七、思考 (15)八、设计心得 (16)九、参考文献 (16)课程设计说明书一、生物医学信号的基本特征1、频率特性绝大多数生物医学信号处在DC至10kHz之间,并具有较宽的频带。
我们认为ECG处在0.5Hz至100Hz。
2、幅值特性绝大多数生物医学信号非常微弱。
ECG在mV级。
3、信号源阻抗高生物电信号源自活体,内阻在kΩ、MΩ级。
4、强噪声和干扰(1)干扰(来自测量系统外部的无用信号):人体属于电的良导体,而且“目标”大,难以屏蔽,很容易接受外部电磁波干扰。
普遍存在的工频50Hz干扰几乎落在所有生物电信号的频带范围之内,完全淹没微弱的生物电信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心电前置放大器设计
报
告
姓名
班级
学号
目录
1、心电介绍
2、心电干扰
2.1 肌电干扰
2.2 交流干扰
3、心电采集电路设计思路
3.1 第一级差动放大
3.2 第二级低通滤波
3.3 第三级功率放大
4、心电采集电路及其仿真结果
心电信号采集电路设计
摘要:通过三导联采集人体的心电信号,然后三级放大,得到可以在示波器上较清楚显示的心电图。
其中三级放大为:第一级是CMRR很大的差动放大器,此处采用仪用放大器AD620;第二级是二阶有源低通滤波器,所设计的截止频率为120Hz;第三级是二级放大电路,前一级是放大倍数固定为10的电路,后一级是
放大倍数可调的放大电路。
一、心电介绍
心电信号是人类最早研究并应用于临床医学的生物电信号之一,与其他生物电信号相比,该信号也比较容易检测同时具有直观的规律性。
一般人体心电信号的幅值约20μV~5mV,频带宽度为0.05Hz~100Hz,由于心电信号取自于活体,所以信号源内阻较高,且存在着较强的背景噪声和干扰。
在检测人体生物电信号时,需要采用所谓的生物电测量电极,又称引导电极来实现的,通过引导电极将生物电信号引入到放大器的输入端。
对于心电信号的检测,临床上为了统一和便于比较所获得心电信号波形,对测定心电信号(ECG)的电极和引线与放大器的联接方式有严格的统一规定,称之为心电图的导联系统。
此处我们采用三导联。
二、心电干扰
心电干扰分为两种,一种是肌电干扰,一种是交流干扰。
肌电干扰一般是35HZ,交流干扰一般是50HZ。
而心电信号的频率范围是在0.05-100HZ之间。
所以肌电干扰和交流干扰极易混入心电信号,并被放大,需要对它们进行抑制处理,以保证心电图记录的质量。
2.1肌电干扰
肌电干扰是指由于人体肌肉颤动所引起的噪声信号。
这种噪声信号是不规则的。
肌电干扰信号的频率在10-3000Hz之间,电压从几十微伏到几毫伏之间。
在做心电图检查时,一般常见35Hz肌电干扰信号。
它产生的原因主要有以下几个方面:
1.病人精神过于紧张,引起肌电干扰;2.环境温度过低,病人发冷寒颤,引起肌电干扰;3.病人活动或病床不舒适,引起肌电干扰;4.心电图机电极绑带或电极夹过紧,引起肌电干扰。
2.2交流干扰
1、50Hz交流干扰通常是指来自外界以及心电图机自身的电源50Hz交流干扰信号。
这种干扰信号是规则的。
50Hz交流干扰通常分为以下几种:[1]交流磁场干扰;[2]泄漏电流干扰;[3]阻抗耦合干扰;[4]静电干扰;[5]地环路干扰;[6]仪器内部50Hz干扰等等。
2、交流磁场干扰是指在人体附近存在的电流电路与病人回路之间通过电磁耦合而产生的交流磁场干扰。
如:照明设备、沿天花板和墙壁及地面排布的电源线等设备产生的干扰磁场穿过一定面积的输入加路时,产生感应电动势并与心电信号叠加,造成干扰。
3、泄漏电流干扰是指因绝缘强度下降产生的泄漏电流而引起的泄漏电流干扰。
如:在梅雨季节时,电源线、墙壁、及病床等因湿度增加而使其绝缘强度下降,
使泄漏电流增加。
4、阻抗耦合干扰是指因位移电流所产生的电位差而引起的阻抗耦合干扰(一般为电阻型)。
如:病房环境中的电源线,不管有无电流通过,电流线与心电图机导联线间总存在静电耦合电容。
由电容耦合所引起的位移电流所产生的电位差所引起的干扰。
三、心电采集电路设计思路
通过三导联采集到心电信号。
心电前置放大电路由三级组成,第一级是CMRR 很高的差动放大电路,主要用来抑制共模干扰,这一级放大倍数是8倍左右。
第二级是一个两阶低通滤波的电路。
最后一级是二级放大电路,第一级固定为10倍放大,第二级是可调放大倍数的放大电路。
3.1 第一级差动放大电路
这里主要选择了仪用放大器AD620,AD620的核心是三运放电路(相当于集成了三个OP07运放)。
这该放大器有较高的共模抑制比(CMRR),温度稳定性好,放大频带宽,噪声系数小且具有调节方便的特点,是生物医学信号放大的理想选择。
根据小信号放大器的设计原则,前级的增益不能设置太高,因为前级增益过高将不利于后续电路对噪声的处理。
因此在这一级选择放大8倍。
电路图设计如下:
其中,8号线相当于是右腿输入,11号线相当于是左手的输入,10号线相当于是右手的输入。
C1、C2、C3构成的电路是射频信号干扰滤波器。
在现实的测量环境中, 存在射频信号干扰,可能会导致后级的仪表放大器内部的射频整流,将导致仪表放大器不能正常工作。
特别当信号传输线路较长并且信号强度低的情况, 此时射频干扰的影响就更加严重,结果得不到有用的心电信号,必须处理不断增加的RFI, 降低仪
表放大器电路中的RFI整流误差。
本系统解决方案是设计一个用于防止RFI整流误差的差分低通滤波器电路。
OP07和周围电阻电容构成的电路。
是为了进一步提高前置放大器的共模抑制比和抗干扰能力,采用右腿驱动电路,从根本上降低空间电场在人体上产生的干扰。
元器件选择情况
C1 CT 47nF(插装)C2 CT 1nF(插装)C3 CT 1nF(插装)
C4 CT 10nF(插装)R3 8.25kΩ1/4W 1% R4 24.9kΩ1/4W 1% R5 24.9kΩ1/4W 1% R6 10kΩ1/4W 1% R7 1MΩ1/4W 5% 3.2 第二级滤波电路
此处是一个二阶有源低通滤波器,我选择TL082,由于它的频率响应范围比较大,滤波器中选用它,滤波效果会比较好。
电路图如下:
此处是一个二阶低通滤波器,这里选择的是巴特沃茨型,截止频率为120Hz 的滤波器。
计算方法如下:
元器件选择情况
R8 56kΩ1/8W 5% 金属膜(插装)R9 56kΩ1/8W 5% 金属膜(插装)C5 CT 16nF(插装)C6 CT 33nF(插装)
3.3 第三级功率放大电路
在第三级中,选择了OP07作为放大器,因为OP07有非常小的输入电压漂移,而且有很高的开环增益。
故最后一级的电压放大电路选择是OP07。
电路图如下:
这里用的是同相放大器,因为同相放大器有大的输入阻抗。
其中的电容作用是为了消除自激振荡,滑动电阻的作用是为了能调节放大倍数,使心电的输出更好。
R1 1kΩ1/4W 5% R2 9kΩ1/4W 5% R3 1kΩ1/4W 5%
R4 3296 W203 C1 CT 10pF(插装)C2 CT 10pF(插装)
四、心电采集电路及其仿真结果第一级差动放大电路
仿真结果
第二级二阶有源低通滤波器仿真结果
第三级功率放大电路仿真结果
总的电路图仿真结果。