线性相关与线性回归方程
线性相关分析和线性回归

相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。
两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。
协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。
协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。
协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。
相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。
(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。
因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。
当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。
线性相关与回归(简单线性相关与回归、多重线性回归、Spearman等级相关)

4.剔除强影响点(Influential cases;或称为突出点, outliers)
通过标准化残差(Standardized Residuals)、学生氏残 差(Studentlized Residuals)来判断强影响点 。当指标 的绝对值大于3时,可以认为样本存在强影响点。
删除强影响点应该慎重,需要结合专业知识。以下两种情 况可以考虑删除强影响点:1.强影响点是由于数据记录错 误造成的;2.强影响点来自不同的总体。
r r t sr 1 r2 n2
只有当0时,才能根据|r|的大小判断相关 的密切程度。
4.相关与回归的区别和联系 (1)相关与回归的意义不同 相关表达两个变量 之间相互关系的密切程度和方向。回归表达两个变 量之间的数量关系,已知X值可以预测Y值。从散点 图上,散点围绕回归直线的分布越密集,则两变量 相关系数越大;回归直线的斜率越大,则回归系数 越大。 (2)r与b的符号一致 同正同负。
5.自变量之间不应存在共线性(Collinear)
当一个(或几个)自变量可以由其他自变量线性表示时,称 该自变量与其他自变量间存在共线性关系。常见于:1.一个 变量是由其他变量派生出来的,如:BMI由身高和体重计算 得出 ;2.一个变量与其他变量存在很强的相关性。 当自变量之间存在共线性时,会使回归系数的估计不确定、 预测值的精度降低以及对y有影响的重要自变量不能选入模 型。
P值
截距a 回归系数b sb 标准化回归系数 t值 P值
3.直线回归的预测及置信区间估计
给定X=X0, 预测Y
3.直线回归的预测及置信区间估计
因变量
自变量
保存(产生新变量,保 存在当前数据库) 统计
3.直线回归的预测及置信区间估计
第三节:多元线性相关与回归分析

第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52)(t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
回归分析与相关性分析的基本原理与应用

回归分析与相关性分析的基本原理与应用数据分析是现代社会中非常重要的一个领域,在各个行业和领域中都有广泛的应用。
而回归分析和相关性分析是数据分析中经常使用的两种方法,本文将探讨回归分析和相关性分析的基本原理和应用。
一、回归分析的基本原理与应用回归分析是用来研究变量之间关系的一种统计方法,主要用于预测一个变量(因变量)与其他变量(自变量)之间的关系。
具体来说,回归分析可以帮助我们确定自变量对因变量的影响程度以及预测因变量的取值。
回归分析的基本原理是基于线性回归模型,即通过建立一个线性方程来描述因变量和自变量之间的关系。
简单线性回归模型的表达式为:Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β为回归系数,ε为误差项。
在应用回归分析时,我们需要确定自变量与因变量之间的关系强度以及回归系数的显著性。
这可以通过计算相关系数、拟合优度等统计指标来实现。
此外,回归分析还可以通过预测因变量的取值来进行决策和规划,例如销量预测、市场需求预测等。
二、相关性分析的基本原理与应用相关性分析是用来研究变量之间线性相关关系的一种统计方法,主要用于衡量变量之间的相关性程度。
相关性分析可以帮助我们理解变量之间的相互关系,以及在研究和预测中的应用。
相关系数是用来衡量两个变量之间相关性的指标,最常用的是皮尔逊相关系数。
皮尔逊相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。
通过计算相关系数可以判断两个变量之间是否存在线性关系,以及线性关系的强弱程度。
在应用相关性分析时,我们可以利用相关系数来进行综合评价和比较。
例如,在市场研究中,我们可以通过相关性分析来确定产品特性与客户购买意愿之间的关系,以指导产品开发和市场推广策略。
三、回归分析与相关性分析的比较回归分析和相关性分析都是研究变量之间关系的统计方法,但它们在方法和应用上存在一些区别。
首先,回归分析主要关注自变量对因变量的影响程度和预测,而相关性分析主要关注变量之间的相关程度。
多元线性回归与相关

Q (Yi Y i ) Yi b0 b1 xi1 b2 xi 2 bp xip min
i 1 i 1
(15 1)
浙江大学医学院流行病与卫生统计学教研室
沈毅
根据微积分知识,b0,b1,bp必须满足联立方程组:
Q Q Q 0, 0,, 0, b0 b1 bp
浙江大学医学院流行病与卫生统计学教研室
沈毅
在许多情况下需要比较各自变量对应变量的相对贡献大 小。但由于各自变量的测量单位不同,单从各偏回归系数的 绝对值大小来评价是不妥的,必须对各偏回归系数进行标准 化处理,即消除测量单位的影响后,才能进行比较。这种消
除测量单位影响后的偏回归系数称为标准化偏回归系数 b'j
吸烟:0为不吸,1为过去或现在吸烟。(见表15-1)
由表15-2可知有关参数估计值为:b0=44.293,b1=1.778,b2=9.623。 b1=1.778表示 40岁以上男性吸烟状态不变的条件下,年龄每增加五岁,收 缩压平均提高1.778mmHg;b2=9.623表示年龄不变的条件下,吸烟者与不 吸烟者相比,收缩压平均提高 9.623 mmHg。于是得到回归方程:
浙江大学医学院流行病与卫生统计学教研室
沈毅
二、偏回归系数的假设检验 在多元线性回归模型中,线性回归方程有统计学意义, 并不说明所有βj均不等于零。为了检验每个自变量是否与Y
都有线性回归关系,需分别对每个自变量Xj或相应的偏回
归系数bj进行假设检验,以免把无统计学意义的自变量引 入回归方程。所用检验方法有F检验法与t检验法,这两者 的检验结果是一致的。
α(p,n-
p-1),则在α水准上拒绝H0,认为p个自变量X中至少有一个与应变量
第十章 线性相关与回归

相关与回归
28
直线回归就是用来研究两个连续性变量x 直线回归就是用来研究两个连续性变量 之间的数量依存关系。 和y之间的数量依存关系。其中 为自变 之间的数量依存关系 其中x为自变 y为因变量 它依赖于x。 为因变量, 量,y为因变量,它依赖于x。 直线回归适用于单变量正态分布资料, 直线回归适用于单变量正态分布资料,即 y为随机正态变量,x为可以精确测量的 为随机正态变量, 为可以精确测量的 为随机正态变量 值。
31
根据上例的数据,求男青年身高与前臂长之间的回归 方程。 从相关系数的计算中,已经求得:
• • • • • • ∑X=1891 ∑Y=500 ∑ X2=89599 ∑ Y2=22810 ∑XY=86185 N=11
相关与回归 12
例 10.1
• 从男青年总体中随机抽取11名男青年的身 高和前臂长,身高和前臂长均以cm为单位, 测量结果如表10-1所示,试计算身高与前 臂长之间的相关系数?是正相关还是负相 关?
相关与回归
13
表10-1 11例男青年身高与前臂长的测量结果 例男青年身高与前臂长的测量结果
编号 1 2 3 4 5 6 7 8 9 10 11 身高(cm) 170 173 160 155 173 188 178 183 180 165 166 前臂长(cm) 47 42 44 41 47 50 47 46 46 43 44
X、Y 变化趋势相同---变化趋势相同---完全正相关; 完全正相关; 反向变化----完全负相关。 反向变化----完全负相关。 ----完全负相关
图12-3 12相关系数示意图
相关与回归
9
X、Y 变化互不影响----零 变化互不影响-------零
相关(zero 相关(zero correlation)
相关系数与线性回归分析

相关系数与线性回归分析相关系数和线性回归分析是统计学中常用的方法,用于研究变量之间的关系和进行预测分析。
本文将介绍相关系数和线性回归分析的概念、计算方法和应用场景。
一、相关系数相关系数是用来衡量两个变量之间的相关性强弱的统计指标。
它的取值范围是-1到1之间,值越接近于1或-1,表示两个变量之间的相关性越强;值越接近于0,则表示两个变量之间的相关性越弱。
计算相关系数的方法有多种,常见的是皮尔逊相关系数。
它可以通过协方差和两个变量的标准差来计算。
具体公式如下:r = Cov(X,Y) / (σX *σY)其中,r表示相关系数,Cov(X,Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。
相关系数的应用非常广泛。
例如,在金融领域,相关系数可以用来研究股票之间的关联程度,有助于投资者进行风险分析和资产配置;在医学领域,相关系数可以用来研究疾病因素之间的关系,帮助医生进行诊断和治疗决策。
二、线性回归分析线性回归分析是一种用来研究自变量与因变量之间关系的统计方法。
它通过建立一个线性方程,来描述自变量对因变量的影响程度和方向。
线性回归模型可以通过最小二乘法来估计模型参数。
最小二乘法的基本思想是通过使模型预测值与实际观测值的残差平方和最小化来确定模型参数。
具体公式如下:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。
线性回归分析常用于预测和解释变量之间的关系。
例如,在市场营销中,可以通过线性回归分析来预测产品销售量与价格、广告投入等因素的关系;在经济学中,可以利用线性回归模型来研究GDP与就业率、通货膨胀率等经济指标之间的关系。
三、相关系数与线性回归分析的关系相关系数和线性回归分析常常一起使用,因为它们有着密切的关联。
相关系数可以用来衡量两个变量之间的相关性强弱,而线性回归分析则可以进一步分析两个变量之间的因果关系。
在线性回归分析中,相关系数经常作为检验模型是否适用的依据之一。
相关分析和线性回归分析

当前您正浏览第十三页,共七十二页。
Spearman 等级相关系数
❖用来度量定序变量间的线性相 关系数。
❖该系数的设计思想与Pearson简 单相关系数完全相同,只是应 用的范围不一样。
❖对数据没有严格的要求。
当前您正浏览第十四页,共七十二页。
❖局部平均:样本足够大时 ❖函数拟合:模型拟合(广泛采用)
当前您正浏览第二十六页,共七十二页。
回归分析的一般步骤
❖ 确定解释变量和被解释变量 由于回归分析用于分析一个事物是如何
随着其他事物的变化而变化的,因此回归分 析的第一步应确定哪个事物是需要被解释的, 即哪个变量是被解释的变量(记为y),哪 些事物是用于解释其他变量的,即哪些变量 是解释变量(记为x)。回归分析是要建立y 关于x的回归方程,并在给定x的条件下,通 过回归方程预测y的平均值。
当前您正浏览第三十七页,共七十二页。
❖ 2、后退法(Backward),将已纳入方程的变 量按对因变量的贡献大小由小到大依次剔除, 每剔除一个自变量,即重新检验每一自变量对 因变量的贡献。
❖ 3、前进法(Forward),对已纳入方程的变量 不考察其显著性,直到方程外变量均达不到入 选标准。
标准回归方程:ZY=ß1Zx1+ ß2Zx2
❖ 此时的ß是标准偏回归系数。
当前您正浏览第三十五页,共七十二页。
多元线性回归的条件
❖ 1、线性走势:自变量与因变量之间的关系是 线性的。
❖ 2、独立性:因变量的取值必须独立。 ❖ 3、正态性:就自变量的任何一个线性组合,
因变量均服从正态分布。 ❖ 4、方差齐性:就自变量的任何一个线性组合,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间:2018年3月20日必修3第二章统计
第9课时线性相关与线性回归方程
学习目标:能在散点图中作出线性回归直线,能用线性回归方程进行预测
了解最小二乘法的含义及思想
理解数形结合、数学模型化的数学思想与方法
学习过程:
一、最小二乘法是什么?怎样得到线性回归直线方程?
1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据。
人体的脂肪百分比和年龄:
根据上述数据,人体的脂肪含量y与年龄x之间有怎样的关系?
(1)回归直线方程可不可以象前节一样取其中两个点得到?
(2)可不可以考虑选择不同的几组点求出相应的直线的斜率与截距,再求这些斜率、截距的平均值得到回归直线方程?
(3)你认为回归直线相对于样本数据的各点而言应具备什么特点才可靠?
(4)怎样刻画“样本数据的各点到回归直线的距离最小”?
(5)将表中的年龄作为x代入所求回归方程,得出的数值与真实值之间有什么关系?你怎样看待这种情况?
2.当两个变量线性相关时,这两个变量的线性回归直线方程(简称回归方程)如何求?
其中系数可直接由公式求之:
回归直线方程表明回归直线过点(称之为样本点的中心)
二、问题分析
1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,
则下列结论中不正确的是
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1cm,则其体重约增加0.85kg
D.若该大学某女生身高为170cm,则可断定其体重为58.79kg
2.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
摄氏温度/℃-5 0 4 7 12 15 19 23 27 31 36
热饮杯数156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天气温是2℃,预测这天卖出的热饮杯数。
三、总结性思考
1.最小二乘法是什么意思?
2.怎样根据样本数据求线性回归直线方程?
四、课后作业
P94 A3
五、再思考。