数学建模中的优化模型

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

优化模型一:线性规划模型数学建模课件

优化模型一:线性规划模型数学建模课件
题的求解过程。
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。

数学建模中的优化模型

数学建模中的优化模型

数学建模中的优化模型优化模型在数学建模中起着重要的作用。

通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。

本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。

让我们来了解一下什么是优化模型。

优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。

这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。

在优化模型中,目标函数是我们希望最大化或最小化的指标。

它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。

约束条件是对变量的限制,可以是等式约束或不等式约束。

变量则是我们需要优化的决策变量,可以是连续变量或离散变量。

常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。

线性规划是指目标函数和约束条件都是线性的优化模型。

它可以通过线性规划算法来求解,如单纯形法和内点法。

非线性规划是指目标函数和约束条件中包含非线性项的优化模型。

它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。

整数规划是指变量取值只能是整数的优化模型。

它的求解方法包括分支定界法和割平面法等。

动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。

优化模型在实际问题中有着广泛的应用。

例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。

在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。

在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。

优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。

通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。

优化模型在数学建模中是非常重要的。

它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。

数学建模最优化模型

数学建模最优化模型
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。

数学建模动态优化模型

数学建模动态优化模型

数学建模动态优化模型数学建模是一种通过建立数学模型来解决实际问题的方法。

动态优化模型则是指在一定的时间尺度内,通过调整决策变量,使系统在约束条件下达到最优效果的数学模型。

本文将介绍数学建模中动态优化模型的基本原理、方法和应用。

动态优化模型是一种考虑时间因素的优化模型。

在解决实际问题时,往往需要考虑到系统随时间变化的特性,因此单纯的静态优化模型可能无法满足需求。

动态优化模型对系统的演化过程进行建模,通过引入时间因素,能够更准确地描述系统的行为,并找到最优的策略。

动态优化模型的核心是建立一个数学模型来描述系统的演化过程。

在建模过程中,需要确定决策变量、目标函数、约束条件和系统的动态特性。

决策变量是指在不同时间点上的决策变量值,目标函数是指目标的数量指标,约束条件是系统必须满足的条件,系统的动态特性是指系统状态随时间的变化规律。

动态优化模型的建模方法有很多种,常见的方法包括状态空间建模、差分方程建模和优化控制建模等。

其中,状态空间建模是一种通过描述系统状态和系统状态之间的关系来建立模型的方法;差分方程建模是一种通过描述离散时间点上系统的状态之间的关系来建立模型的方法;优化控制建模则是一种将优化方法和控制方法相结合的建模方法。

动态优化模型在实际问题中有广泛的应用。

例如,在生产调度问题中,我们需要根据不同时间的产销情况来安排生产任务,以使得产能得到充分利用并满足市场需求;在交通控制问题中,我们需要根据交通流量的变化来调整信号灯的配时方案,以最大程度地减少交通拥堵;在能源管理问题中,我们需要根据电网的负荷变化来调整发电机组的出力,以实现能源的有效利用。

在建立动态优化模型时,需要考虑到模型的复杂性和求解的难度。

一方面,动态优化模型往往比静态优化模型复杂,需要考虑到系统的动态特性和约束条件的演化;另一方面,求解动态优化模型需要考虑到系统的运行时间和求解算法的效率。

因此,在建立动态优化模型时,需要合理选择模型和算法,以保证模型的可行性和求解的可行性。

美赛数学建模常用模型及解析

美赛数学建模常用模型及解析

美赛数学建模常用模型及解析
数学建模是数学与实际问题的结合,解决实际问题的具体数学模型是数学建模的核心。

以下是一些美赛中常用的数学模型及其解析。

1. 线性规划模型
线性规划模型是一种最常见的优化模型,它的目标是在给定的约束条件下,寻找一个线性函数的最大值或最小值。

线性规划模型可以用于解决资源分配、生产计划、运输优化等问题。

2. 整数规划模型
整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。

整数规划模型可以应用于旅行商问题、装配线平衡问题等需要整数解决方案的实际问题。

3. 动态规划模型
动态规划是一种将多阶段决策问题转化为单阶段决策问题求解的方法。

动态规划模型可以用于解决背包问题、序列对齐问题等需要在不同阶段做出决策的问题。

4. 排队论模型
排队论模型用于分析系统中的排队现象,包括到达率、服务率、系统稳定性等指标。

排队论模型可以用于研究交通流量、电话系统、服务器排队等实际问题。

5. 随机过程模型
随机过程模型用于描述随机事件的演变过程,其中最常见的是马尔可夫链和布朗运动。

随机过程模型可以用于模拟金融市场、天气预测、股票价格等随机变化的问题。

这些模型只是数学建模中常用的几种类型,实际问题通常需要综合运用多种模型进行分析和求解。

对于每个具体的问题,需根据问题的特点和要求选择合适的数学模型,进行合理的建模和求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 设g=0.1不变
t 40r 60 , r 1.5 r
t 对r 的(相对)敏感度
20
t
15
S(t, r)

Δt Δr
/t /r

dt dr
r t
10
60
5
S(t, r)
3
40r 60
0
1.5
2
2.5
r3
生猪每天体重增加量r 增加1%,出售时间推迟3%。
敏感性分析
t 4r 40 g 2 rg
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
如果估计和预测有误差,对结果有何影响。
分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大
建模及求解
估计r=2, g=0.1 若当前出售,利润为80×8=640(元)
t 天 生猪体重 w=80+rt 出售 出售价格 p=8-gt
销售收入 R=pw 资金投入 C=4t
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
10 0
0.06 0.08 0.1 0.12 0.14 g 0.16
生猪价格每天的降低量g增加1%,出售时间提前3%。
强健性分析
研究 r, g不是常数时对模型结果的影响
w=80+rt w = w(t) p=8-gt p =p(t)
Q(t) p(t)w(t) 4t
Q(t) 0
p(t)w(t) p(t)w(t) 4
利润 Q=R-C=pw -C Q(t) (8 gt)(80 rt) 4t
求 t 使Q(t)最大 t 4r 40 g 2 =10 rg
Q(10)=660 > 640 10天后出售,可多得利润20元
敏感性分析
t 4r 40 g 2 rg
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 但必须检验它们是否满足约束条件. 为什么?
3)模型中增加条件:x1, x2, x3 均为整数,重新求解.
模型求解 整数规划(Integer Programming,简记IP)
Max z 2x1 3x2 4x3
s. t. 1.5x1 3x2 5x3 600
280 x1 250 x2 400 x3 60000
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
3. 数学规划模型
例1 汽车厂生产计划 例2 加工奶制品的生产计划 例3 运输问题
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
Max z 2x1 3x2 4x3
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
Row Slack or Surplus Dual Price
2 0.000000
0.731183
3 0.000000
0.003226
1)舍去小数:取x1=64,x2=167,算出目标函数值 z=629,与LP最优值632.2581相差不大. 2)试探:如取x1=65,x2=167;x1=64,x2=168等, 计算函数值z,通过比较可能得到更优的解.
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数 如:尽量少使用绝对值、符号函数、多个变量求 最大/最小值、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变 量的个数(如x/y <5 改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当(如小于103)
x1, x2 , x3为非负整数
简要提纲
1. 优化模型简介 2. 简单的优化模型 3. 数学规划模型 4. 图论,动态规划(选讲) 5. 建模与求解实例
1. 优化模型简介
优化问题的一般形式
无约束优化:最优解的分类和条件
约束优化的简单分类
优化建模如何创新?
• 方法1:大胆创新,别出心裁 ---- 采用有特色的目标函数、约束条件等 ---- 你用非线性规划,我用线性规划 ---- 你用整数/离散规划,我用连续规划/网络优化 ---- …… • 方法2:细致入微,滴水不漏 ---- 对目标函数、约束条件处理特别细致 ---- 有算法设计和分析,不仅仅是简单套用软件 ---- 敏感性分析详细/ 全面 ---- ……
x1, x2 , x3 0
线性规划 模型(LP)
模型 求解
结果为小数, 怎么办?
Objective Value: 632.2581
Variable Value Reduced Cost
X1 64.516129
0.000000
X2 167.741928
0.000000
X3 0.000000
0.946237
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对 钢材、劳动时间的需求,利润及工厂每月的现有量.
小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
相关文档
最新文档