动态规划实验报告

合集下载

实验6 动态规划

实验6 动态规划
3.1.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.1.3实验结论
要有截图,验证最后结果(图片分布要合理)。
输入/输出应与TEST文件夹测试用例一致。
3.1.4心得体会
xxxxxxxxxxxxxxxxxxxxxxxx
输入/输出应与TEST文件夹测试用例一致。
3.2.4心得体会
xxxxxxxxxxxxxxxx
4.教师批改意见
签字:
日期:
成绩
3.2最少硬币问题
3.2.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明
3.2.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.2.3实验结论
要有截图,验证最后结果(图片分布要合理)。
算法设计与分析实验报告
学号
姓名
班级
上课地点
教师
庄蔚蔚
上课时间
实验6动态规划
1.实验目的
1.1.理解动态规划算法的主要设计思想;
1.2.掌握用动态VC6.0
2.2 Window XP
3.实验内容
3.1石子合并问题
3.1.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明

动态基础设计实验报告(3篇)

动态基础设计实验报告(3篇)

第1篇一、实验目的1. 理解动态规划的基本思想和方法。

2. 掌握动态规划在解决实际问题中的应用。

3. 提高编程能力和算法设计能力。

二、实验内容本次实验主要涉及以下四个问题:1. 斐波那契数列2. 最长公共子序列3. 最长递增子序列4. 零钱找零问题三、实验原理动态规划是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划的基本思想是将一个复杂问题分解成若干个相互重叠的子问题,然后按照子问题的顺序逐个求解,最后将这些子问题的解合并成原问题的解。

四、实验步骤及代码实现1. 斐波那契数列斐波那契数列是指这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, ...,其中每个数都是前两个数的和。

```cppinclude <iostream>using namespace std;int Fibonacci(int n) {if (n <= 1) {return 1;}int fib[n+1];fib[0] = 1;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i-1] + fib[i-2];}return fib[n];}int main() {int n;cout << "请输入斐波那契数列的项数:" << endl;cin >> n;cout << "斐波那契数列的第 " << n << " 项为:" << Fibonacci(n) << endl;return 0;}```2. 最长公共子序列给定两个序列A和B,找出它们的公共子序列中长度最长的序列。

```cppinclude <iostream>using namespace std;int LCSLength(string X, string Y) {int m = X.length();int n = Y.length();int L[m+1][n+1];for (int i = 0; i <= m; i++) {for (int j = 0; j <= n; j++) {if (i == 0 || j == 0)L[i][j] = 0;else if (X[i-1] == Y[j-1])L[i][j] = L[i-1][j-1] + 1;elseL[i][j] = max(L[i-1][j], L[i][j-1]);}}return L[m][n];}int main() {string X = "AGGTAB";string Y = "GXTXAYB";cout << "最长公共子序列长度为:" << LCSLength(X, Y) << endl; return 0;}```3. 最长递增子序列给定一个序列,找出它的最长递增子序列。

动态规划实验报告

动态规划实验报告

动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。

本实验旨在通过实际案例,探究动态规划算法的原理和应用。

二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。

它通常适用于具有重叠子问题和最优子结构性质的问题。

三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。

四、实验过程本实验选择了经典的背包问题作为案例进行分析。

背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。

1. 确定状态在动态规划算法中,状态是问题的关键。

对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。

2. 确定状态转移方程状态转移方程是动态规划算法的核心。

对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。

则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。

对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。

4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。

具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。

五、实验结果与分析通过实验,我们得到了背包问题的最优解。

同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。

这为我们提供了在实际问题中应用动态规划算法的思路。

六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。

动态规划建模实验报告

动态规划建模实验报告

一、实验背景动态规划是一种重要的算法设计方法,它通过将复杂问题分解为若干个相互重叠的子问题,并存储子问题的解,从而避免重复计算,有效地解决一系列优化问题。

本实验旨在通过具体案例,加深对动态规划算法的理解和应用。

二、实验目的1. 掌握动态规划的基本概念和原理。

2. 熟悉动态规划建模的过程和步骤。

3. 提高运用动态规划解决实际问题的能力。

三、实验内容本次实验选取了“背包问题”作为案例,旨在通过解决背包问题,加深对动态规划算法的理解。

四、实验步骤1. 问题分析背包问题是一个经典的组合优化问题,描述为:给定一个容量为C的背包和N件物品,每件物品有价值和重量两个属性,求如何将物品装入背包,使得背包中的物品总价值最大,且不超过背包的容量。

2. 模型建立(1)定义状态:设dp[i][j]表示在前i件物品中选择若干件装入容量为j的背包所能获得的最大价值。

(2)状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i]] + values[i]),其中weights[i]表示第i件物品的重量,values[i]表示第i件物品的价值。

(3)边界条件:dp[0][j] = 0,表示没有物品时,背包价值为0。

3. 编程实现使用C语言编写动态规划程序,实现背包问题的求解。

4. 结果分析(1)运行程序,输入背包容量和物品信息。

(2)观察输出结果,包括物品选择的列表和最大价值。

(3)验证结果是否正确,与理论分析进行对比。

五、实验结果与分析1. 实验结果:通过编程实现,成功求解了背包问题,并得到了最大价值。

2. 结果分析:(1)动态规划算法在解决背包问题时,有效地避免了重复计算,提高了求解效率。

(2)实验结果表明,动态规划算法能够有效地解决背包问题,为实际应用提供了有力支持。

六、实验总结1. 动态规划是一种重要的算法设计方法,具有广泛的应用前景。

2. 动态规划建模过程中,关键在于正确地定义状态和状态转移方程。

动态规划实验报告心得

动态规划实验报告心得

一、实验背景动态规划是一种重要的算法设计方法,广泛应用于解决优化问题。

本次实验旨在通过实际操作,加深对动态规划算法的理解,掌握其基本思想,并学会运用动态规划解决实际问题。

二、实验内容本次实验主要包括以下几个内容:1. 动态规划算法概述首先,我们对动态规划算法进行了概述,学习了动态规划的基本概念、特点、应用领域等。

动态规划是一种将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解,以避免重复计算的方法。

2. 矩阵连乘问题矩阵连乘问题是动态规划算法的经典问题之一。

通过实验,我们学会了如何将矩阵连乘问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解矩阵连乘问题的动态规划算法。

3. 0-1背包问题0-1背包问题是另一个典型的动态规划问题。

在实验中,我们学习了如何将0-1背包问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解0-1背包问题的动态规划算法。

4. 股票买卖问题股票买卖问题是动态规划在实际应用中的一个例子。

在实验中,我们学习了如何将股票买卖问题分解为若干个相互重叠的子问题,并利用动态规划方法求解。

实验过程中,我们分析了问题的最优子结构、子问题的重叠性,以及状态转移方程,从而得到了求解股票买卖问题的动态规划算法。

三、实验心得1. 动态规划算法的思维方式通过本次实验,我深刻体会到了动态规划算法的思维方式。

动态规划算法的核心是将复杂问题分解为若干个相互重叠的子问题,并存储已解决子问题的解。

这种思维方式有助于我们更好地理解和解决实际问题。

2. 状态转移方程的重要性在动态规划算法中,状态转移方程起着至关重要的作用。

它描述了子问题之间的关系,是求解问题的关键。

通过本次实验,我学会了如何分析问题的最优子结构,以及如何建立合适的状态转移方程。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

南京邮电大学算法设计实验报告——动态规划法

南京邮电大学算法设计实验报告——动态规划法
for(int j=1;j<=n;j++) {
if(a[i]==b[j]) {
c[i][j]=c[i-1][j-1]+1; s[i][j]=1; } else if(c[i-1][j]>=c[i][j-1]) { c[i][j]=c[i-1][j]; s[i][j]=2; } else { c[i][j]=c[i][j-1]; s[i][j]=3; } } } return c[m][n]; //返回最优解值 }
算法分析与设计 A
动态规划法
2009
年 11 月 20 日
计算机学院软件工程系
张怡婷
学生姓名 学院(系)
丁力琪 班级学号 计算机学院 专 业
B07030907 软件工程
实验报告
实验名称
动态规划法
指导教师 张怡婷
实验类型
验证
实验学时 2×2 实验时间 2009-11-20
一、 实验目的和任务
目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态
6
8、输入序列 X={x1,x2,……,xm}={a,b,c,b,d,a,b}和 Y={y1,y2,……,yn}={b,d,c,a,b,a}作为测 试数据,测试程序是否能够正确运行?输出结果是什么? 运行正确,实验结果显示:4
bcba
9、分析该动态规划算法的两个主要成员函数 int LCSLength()和 void CLCS()的时间复杂 性。
#include<iostream> #include<string> using namespace std; #define maxlength 11 class LCS { public:

动态规划算法实验报告

动态规划算法实验报告

南京信息工程大学滨江学院实验(实习)报告1.实验目的动态规划通常用来求解最优化问题。

通过本次实验掌握动态规划算法。

通过矩阵连乘问题和0-1背包问题实现动态规划算法。

学会刻画问题的最优结构特征,并利用最优化问题具有的重叠子问题性质,对每个子问题求解一次,将解存入表中,当再次需要这个子问题时直接查表,每次查表的代价为常量时间。

2.实验内容及分析设计过程1.矩阵链乘法问题矩阵链乘法问题可描述如下:给定个矩阵的链,矩阵的规模为,求完全括号方案,使得计算乘积所需的标量乘法次数最少。

令m[i,j]表示计算矩阵所需标量乘法次数的最小值,那么,原问题的最优解计是m[1,n]。

最小代价括号化方案的递归求解公式为采用自底向上表格法代替上述递归算法来计算最优代价。

为了实现自底向上方法,我们必须确定计算m[i,j]时需要访问哪些其他表项。

上述公式显示,j-i+l 个矩阵链相乘的最优计算代价m[i,j] 只依赖于那些少于j-i+l 个矩阵链相乘的最优计算代价。

因此,算法应该按长度递增的顺序求解矩阵链括号化问题,并按对应的顺序填写表m。

对如下输入A1 A2 A3 A4 A5 A630⨯35 35⨯15 15⨯5 5⨯10 10⨯20 20⨯25程序运行结果为2.背包问题给定n 个重量为价值为的物品和一个承重为W 的背包。

求这些物品中最有价值的一个子集,并且要能装到背包中。

设V[i,j]是能够放进承重量为j 的背包的前i 个物品中最有价值子集的总价值。

则递推关系为初始条件V[0,j]=0(j>=0),V[i,0]=0(i>=0) 我们的目标是求V[n ,W]。

递归式给出了V[i,j]的计算顺序,V[i,j]只依赖与前一行的那些项。

故可以逐行计算V[i,j].对于物品数量n=5,w[n]={2,2,6,5,4},v[n]={6,3,5,4,6},背包总重量c=10 程序运行结果为3. 实验小结通过本次实验加深了我对动态规划算法的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
int min;
if((i==0)||(j==0))
c[i][j]=0;
if(i==1)
{
if(((1<=j)&&(j<T[1]))||((T[1]<=j)&&(j<=L)&&(j%T[1]!=0)))
c[i][j]=500;
if((T[i]<=j)&&(j<=L)&&(j%T[i]==0))
c[i][j]=j/T[i];
指导教师签名
时间



min = a;
else
min = b;
}
return min;
}
int Sum(int i, int j)
{
int sum=0;
for (int m = 1; m <= j; m++)
sum += num[m];
return sum;
}
void recyle()
{
int m;
num[0] = num[1];
for(int i=1;i<=n;i++)
scanf("%d",&T[i]);
printf("请输入长度:");
scanf("%d",&L);
k=jisuan(n,L);
printf("请输出硬币个数:");
printf("%d",k);
return 0;
}
int jisuan(int i,int j)
二、实验仪器
1、计算机
三、实验原理
1、动态规划是求解最优化问题的算法设计,分布决策。
四、实验内容与步骤
(i)找零钱问题
问题描述
设有n种不同面值的硬币,各硬币的面值存于数组T[1:n]中。现要用这些面值的硬币来找钱,可以实用的各种面值的硬币个数不限。当只用硬币面值T[1],T[2],…,T[i]时,可找出钱数j的最少硬币个数记为C(i,j)。若只用这些硬币面值,找不出钱数j时,记C(i,j)=∞。
if (j == 2)
{
min = num[i] + num[i+1];
}
if (j>2)
{
int sum = Sum(i, j);
int a = re(i, j-1) + re(i+j-1,1)+sum;
int b = re(i, 1) + re(i+1, j - 1) + sum;
if (a <= b)
编程任务
编写程序,计算出将n堆石子合并成一堆的最小得分。
数据输入
第1 行是正整数n(1<=n<=100),表示有n堆石子。
第2行有n个数,分别表示每堆石子的个数。
建立环境工程,编写程序如下:
#include<stdio.h>
int n,i;
int num[10];
int re(int i, int j);
数学计算机科学学院实验报告
专业名称:
物联网工程
实 验 室:
学苑楼6幢301室
实验课程:
算法设计与分析实验
实验名称:
动态规划
姓 名:
李存凤
学 号:
120706019
同组人员:
实验日期:
2014-5-7
一、实验目的
(1)熟练掌握动态规划思想及教材中相关经典算法。
(2)掌握用动态规划解题的基本步骤,能够用动态规划解决一些问题。
min = re(1, n);
for (int i = 0; i < n - 1; i++)
{
recyle();
if (re(1, n) < min)
min = re(1, n);
}
printf("%d", min);
}
int re(int i,int j)
{
int min;
if (j == 1)
return 0;
int Sum(int i,int j);
void recyle();
void main()
{
int min;
printf("请输入石子堆数:");
scanf("%d", &n);
printf("请输入每堆石子个数:");
for ( i = 1; i <=n; i++)
scanf("%d", &num[i]);
for (m = 2; m <=n; m++)
num[m - 1] = num[m];
num[n] = num[0];
}
五、实验结果和分析
1、找零钱问题问题程序运行结果如下:
2、石子合并问题程序运行结果如下:
成绩评定
1、根据实验情况和实验报告质量作出写实性评价
2、评分
综合评分
折合成等级
优秀 良好 中等 差
编程任务
设计一个动态规划算法,对1≤j≤L,计算出所有的C( n,j )。算法中只允许实用一个长度为L的数组。用L和n作为变量来表示算法的计算时间复杂性
数据输入
数据的第1行中有1个正整数n(n<=13),表示有n种硬币可选。接下来的一行是每种硬币的面值。由用户输入待找钱数j。
(1)建立环境工程,编写程序如下:
}
else
{
min=jisuan(i-1,j);
for(int x=j/T[i];x>0;x--)
{
int a=jisuan(i-1,j-x*T[i])+x;
if(min>a)
min=a;
}
c[i][j]=min;
}
return c[i][j];
}
(ii)堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
#include<stdio.h>
int n,L; //n种硬币L长的数组
int c[13][20];
int T[13];//硬币面值
int jisuan(int i,int j);
int main()
{
int k;
printf("请输入硬币种数:");
scanf("%d",&n);
printf("请输入面值数:");
相关文档
最新文档