2020-2021学年级九年级(上)期末数学训练卷 (126)(含答案解析)

合集下载

2020—2021年部编人教版九年级数学上册期末试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若a ≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14 B .1 C ..4 D .33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 5.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.64的算术平方根是__________.2.因式分解:(x+2)x ﹣x ﹣2=_______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:3x x +﹣1x =12.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、C6、C7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、(x+2)(x﹣1)3、5或34、135、12 76、454353x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、分式方程的解为x=﹣34.2、(1)3a2-ab+7;(2)12.3、(1)阴影部分的面积为3;(2)略;(3)略.4、(1)(m,2m﹣5);(2)S△ABC =﹣82aa+;(3)m的值为72或.5、(1)答案见解析;(2)1 3 .6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .105C .3 D .10103.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<4.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+5.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25° 6.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=07.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <19.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+311.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 14.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10015.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,45) C .(203,45) D .(163,43) 二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.18.数据2,3,5,5,4的众数是____.19.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.20.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .23.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.27.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.28.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.29.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒32.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票. (1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.33.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率.四、压轴题36.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.37.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan2CDE∠=,记AD x=,ABC∆面积和DBC∆面积的差为y,直接写出y关于x的函数关系式.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.A解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D, CD=2,AD=22, tanA=21222CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.4.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.5.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.8.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.B解析:B 【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴22,34∵CD=DB,∴AD=DC=DB=5,2∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.14.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.15.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F 2⋅=,∴.在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(20,33). 故选C .【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 17.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.()【解析】设它的宽为xcm .由题意得 .∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10510)【解析】设它的宽为x cm .由题意得51:20x -=. ∴10510x = .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.23.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】 过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则. 【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 25.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 27.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.28.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙; 故答案为:乙. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.30.7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】 解:∵, ∴, ∴, ∴, ∴;故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7 【解析】 【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值. 【详解】解:∵2430x x +-=, ∴243x x +=, ∴2447x x ++=, ∴2(2)7x +=, ∴7n =; 故答案为:7. 【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题31.(1)x 1=-1,x 2=4;(2)原式=12【解析】 【分析】(1)按十字相乘的一般步骤,求方程的解即可; (2)把函数值直接代入,求出结果 【详解】解:(1)234x x -= (x+1)(x-4)=0 ∴x 1=-1,x 2=4;(2)原式2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值. 32.(1)14;(2)14. 【解析】 【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解. 【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.33.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【解析】【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论. 34.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】∵x 高=()110+6+7+8+9=85⨯(℃),x 低 =()11+01+0+3=0.65⨯-(℃),2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2)∴2S 高>2S 低∴这5天的日最高气温波动大. 【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦.35.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答. 【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y =x 2﹣5x +6的图象上, 所以P (这些点落在二次函数y =x 2﹣5x +6的图象上)=218=19. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,。

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)

2020-2021年九年级上册期末数学试题(含答案)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 2.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( )A .2011B .2015C .2019D .20203.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个 4.若x=2y ,则x y 的值为( ) A .2 B .1 C .12D .13 5.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2 B .15πcm 2 C .152π cm 2 D .10πcm 26.一元二次方程x 2-x =0的根是( )A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-17.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大 9.sin60°的值是( )A .B .C .D . 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80° 12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .100 13.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .19 14.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <> 15.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2)二、填空题16.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.17.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.18.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.19.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.20.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.21.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.22.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________23.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EF BF的值为_____.24.方程22x x =的根是________.25.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.26.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.27.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.28.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.29.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题31.国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加一位旅客,人均收费降低10元,但是人均收费不低于350元.现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?32.已知关于的方程,若方程的一个根是–4,求另一个根及的值.33.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y (个)与销售单价x (元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?34.已知二次函数y=x2-22mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.35.如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?四、压轴题36.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).37.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.38.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC .(2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长. 39.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度;(3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.40.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.2.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.3.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.A解析:A【解析】【分析】将x=2y 代入x y中化简后即可得到答案. 【详解】 将x=2y 代入x y得: 22x y y y ==, 故选:A.【点睛】此题考查代数式代入求值,正确计算即可.5.B解析:B【解析】试题解析:∵底面半径为3cm ,∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B . 6.C解析:C【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.7.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是2 23,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 10.C解析:C 【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=.故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.14.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 15.B解析:B【解析】试题分析:△ABC 中,∠ABC=90°,AB=6,BC=3,AB :BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.二、填空题16.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.18.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.19.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.20.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.21.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过 解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽, ∴AE BE BF CF =,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽, ∴AN DN CM DM =,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=, ∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.22.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E解析:2【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+,即:222(32)(13)m m m ++=+,解得:22m =, ∴边长为22m =.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.23..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.24.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.25.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.26.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.27.【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数解析:3k <【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.1a ,b =-,c k =方程有两个不相等的实数根,241240b ac k ∴∆=-=->,3k ∴<.故答案为:3k <.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.28.【解析】【分析】【详解】试题分析:把x=2代入y=x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD ∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D 的坐标代入反比例函数的解析式求出k 即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.29.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 30.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题31.30【解析】【分析】设该单位一共组织了x位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费350元时的人数,即可得出20<x<35,再利用总费用=人数×人均收费,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设该单位一共组织了x位职工参加旅游观光活动,∵500×20=10000(元),10000<12000,(500﹣350)=15(人),12000÷350=342 7(人),3427不为整数,∴20<x<20+15,即20<x<35.依题意,得:x[500﹣10(x﹣20)]=12000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(不合题意,舍去).答:该单位一共组织了30位职工参加旅游观光活动.【点睛】本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.32.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.33.(1)y=﹣2x+260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.【解析】【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.【详解】(1)设y =kx +b (k ≠0,b 为常数)将点(50,160),(80,100)代入得1605010080k b k b =+⎧⎨=+⎩解得2260k b =-⎧⎨=⎩∴y 与x 的函数关系式为:y =﹣2x +260(2)由题意得:(x ﹣50)(﹣2x +260)=3000化简得:x 2﹣180x +8000=0解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x ﹣50)(﹣2x +260)=﹣2x 2+360x ﹣13000=﹣2(x ﹣90)2+3200∵a =﹣2<0,抛物线开口向下∴w 有最大值,当x =90时, w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【点睛】本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.34.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0。

2020—2021年部编人教版九年级数学上册期末考试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末考试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1124503_____. 2.分解因式:x 2-9=______.3.函数2y x =-x 的取值范围是__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、D6、D7、D8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、(x+3)(x-3)3、2x≥4、12 5.5、x=26、8.三、解答题(本大题共6小题,共72分)1、2x=2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P1),P2352,),P3),P4).4、羊圈的边长AB,BC分别是20米、20米.5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含3套

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含3套

密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分) 1.在﹣2,0,2,﹣3这四个数中,最小的数是( ) A .2 B .0 C .﹣2 D .﹣32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为( )A .30.1×108B .3.01×108C .3.01×109D .0.301×10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( ) A .x ﹣6=﹣4 B .x ﹣6=4 C .x+6=4 D .x+6=﹣44.设a=2﹣1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个( )A .2个B .3个C .4个D .6个6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )A .99.60,99.70B .99.60,99.60C .99.60,98.80D .99.70,99.607.如图为抛物线y=ax 2+bx+c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )A .ac <0B .a ﹣b=1C .a+b=﹣1D .b >2a8.如图,过▱ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的▱AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 2密封线内9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.1210.附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.二、填空题(本大题共4小题,每小题5分,满分20分.11.的平方根是.12.因式分解:a2b+2ab+b= .13.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.14.如图,等腰直角△ABC腰长为a,现分别按图1,图2在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC意截取一个正方形的面积为S3,则S3≤S1是.三、(本大题共2小题,每小题8分,满分16分)15为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣然后请你自选一个合理的数代入求值.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分) 17.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h 匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?18.如图,矩形ABCD 中,AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,第n 次平移将矩形A n ﹣1B n ﹣1C n ﹣1D n ﹣1沿A n ﹣1B n ﹣1的方向平移5个单位,得到矩形A n B n C n D n (n >2).(1)求AB 1和AB 2的长.(2)若AB n 的长为56,求n .五、(本大题共2小题,每小题10分,满分20分) 19.一透明的敞口正方体容器ABCD ﹣A ′B ′C ′D ′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究 如图1,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ 与BE 的位置关系是 ,BQ 的长是 dm ;(2)求液体的体积;(参考算法:直棱柱体积V 液=底面积S △BCQ ×高AB );(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果; (2)求滨湖湿地公园被选中的概率.六、(本题满分12分)21.已知:如图,在△ABC 中,AB=AC ,AE 是角平分线,BM 平分∠ABC 交AE 于点M ,经过B ,M 两点的⊙O 交BC 于点G ,交AB 于点F ,FB 恰为⊙O 的直径.(1)求证:AE 与⊙O 相切;(2)当BC=4,cosC=时,求⊙O 的半径.七、(本题满分12分)22.自2010年6月1消费者在购买政策限定的新家电时,部分由政府提供,其中三种家电的补贴方式如下表: 补贴额度新家电销售价格的10%说明:电视补贴的金额最多不超过400元/台; 洗衣机补贴的金额最多不超过250元/台; 冰箱补贴的金额最多不超过300元/台.为此,某商场家电部准备购进电视、洗衣机、冰箱共100这批家电的进价和售价如下表: 家电名进价(元/台) 售价(元/台)密学校 班级 姓名 学号密 封 线 内 不 得 答 题称电视39004300 洗衣机 1500 1800 冰箱20002400设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价﹣进价)(1)请分别求出y 与x 和w 与x 的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?八、(本题满分14分)23.如图1,在正方形ABCD 中,点M 、N 分别在AD 、CD 上. (1)若∠MBN=45°且∠ABM=∠CBN ,则易证 .(选择正确答案填空)①AM+CN >MN ;②(AM+CN )=MN ;③MN=AM+CN .(2)若∠MBN=∠ABC ,在(1)中线段MN 、AM 、CN 之间的数量关系是否仍然成立?若成立给予证明,若不成立探究出它们之间关系.【拓展】如图2,在四边形ABCD 中,AB=BC ,∠ABC 与∠ADC互补.点M 、N 分别在DA 、CD 的延长线上,若∠MBN=∠ABC ,试探究线段MN 、AM 、CN 又有怎样的数量关系?请写出猜想并证明.参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.D . 2. C .3.D .4.B .5.B .6. B .7.D .8.C . 9.B .10.C . 二、填空题(本大题共4小题,每小题5分,满分20分. 11.的平方根是 ± .12.因式分解:a 2b+2ab+b= b (a+1)2.13.如图,在直角三角形ABC 中,∠ACB=90°,AC=1,BC=2,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 .线内不得答题14.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是①②④.三、(本大题共2小题,每小题8分,满分16分)15.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分)17. 解:设该飞机在失去联系后能航行x 千米, 1:30﹣0:00=1.5(小时), 由题意得:1.5×400×5+5x ≤15000 解得:x ≤2400.答:该飞机在失去联系后最多能航行2400千米.18.解:(1)∵AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1﹣A 1A 2=6﹣5=1, ∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11, ∴AB 2的长为:5+5+6=16;(2)∵AB 1=2×5+1=11,AB 2=3×5+1=16, ∴AB n =(n+1)×5+1=56, 解得:n=10.五、(本大题共2小题,每小题10分,满分20分)19.(1)解:(1)CQ ∥BE ,BQ==3dm ;故答案为:平行,3;(2)V 液=×3×4×4=24(dm 3); (3)过点B 作BF ⊥CQ ,垂足为F , ∵×3×4=×5×BF , ∴BF=,∴液面到桌面的高度; ∵在Rt △BCQ 中,tan ∠BCQ=, ∴α=∠BCQ=37°.内不得题20.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.六、(本题满分12分)21.解(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴⊙O 的半径为.七、(本题满分12分)22.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x )=100x+24000商场所获利润:W=400x+300x+400(100﹣2x ) =﹣100x+40000. (2)根据题意得,解得30≤x ≤35,因为x 为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000, ∵k=﹣100<0,30≤x ≤35, ∴当x=30时,W 有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元. 八、(本题满分14分)23.解:(1)解:设BD 于MN 交于点H ,如图1(1), ∵BD 为正方形ABCD 的正方形, ∴∠ABH=∠CBH=45°,BA=BC , ∵∠MBN=45°,∠ABM=∠CBN , ∴∠ABM=∠HBM=∠HBN=∠CBN ,在△ABM 和△CBN 中,∴△ABM ≌△CBN , ∴BM=BN ,AM=CN , 而∠HBM=∠HBN , ∴BH ⊥MN , ∴MA=MH ,NH=NC , ∴AM=MH=HN=NC , ∴MN=AM+CN ; 故答案为③;封线 内题(2)解:在(1)中线段MN 、AM 、CN 之间的数量关系仍然成立.理由如下:把△BAM 绕点B 顺时针旋转90°得到△BCP ,如图1(2), ∴BM=BP ,AM=CP ,∠MBP=90°,∠BCP=∠A=90°, ∵∠BCP+∠BCN=180°, ∴点P 在DC 的延长线上, ∴NC+CP=NP ,∵∠MBN=∠ABC=45°, ∴∠NBP=45°, 在△BNM 和△BNP 中,∴△BNM ≌△BNP , ∴MN=NP ,∴MN=CP+CN=AM+CN ;【拓展】解:如图2,∵∠ABC+∠ADC=180°, ∴∠BAD+∠BCD=180°, 而∠BAD+∠BAM=180°, ∴∠BAM=∠BCD , ∵AB=BC ,∴把△BAM 绕点B 顺时针旋转90°得到△BCQ ,∴∠BAM=∠BCQ ,BM=BQ ,∠MBQ=∠ABC , ∴∠BCQ=∠BCD , ∴点Q 在CN 上, ∴CN=CQ+MQ=AM+NQ , ∵∠MBN=∠ABC , ∴∠MBN=MBQ ,∴∠MBN=∠QBN , 在△BMN 和△BQN 中,∴△BMN ≌△BQN , ∴MN=QN , ∴CN=AM+MN , 即MN=CN ﹣AM .第41页,共54页 第42页,共54页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级 数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分)1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x 的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方题号 一 二 三 总分 得分ABCD第27页,共54页 第28页,共54页差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6cm ,则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和一枚徽章的价格各是多少元?A BC图3E DA B CO E1D图1A第42页,共54页密封线学校班级姓名学号密封线内不得答题图1021.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆的顶点坐标分别为()5,2-A、()1,4-B和()3,1-C(1)作出ABC∆关于x轴对称的111CBA∆,并写出点A、B、C的对称点1A、1B、1C的坐标;(2)作出ABC∆关于原点O对称的222CBA∆,并写出点A、B、C的对称点2A、2B、2C的坐标;(3)试判断:111CBA∆与222CBA∆是否关于y轴对称(只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.yAOxBC共计145元共计280元第21题图第41页,共54页第27页,共54页 第28页,共54页(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 最大值及此时的xABCDEFG第41页,共54页 第42页,共54页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分)解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图 (4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C(2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号 1 2 3 4 5 6 7 选择项 D D C A B A D 题号 8 9 10 11 12 13 14 选择项ACDAACAB 2yCAB C 1B 1A 1C 2A 2Ox第21题答案图第27页,共54页 第28页,共54页23. (满分11分) (1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º.又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,… ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED ≌ΔDFC (AAS ). (2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. … ∵ DF=DE+EF , ∴ AE=FC+EF. )24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2. ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1)=-x 2+3x.… 即h=-x 2+3x (0<x <3). (3)略ABCDE F图6G图7第41页,共54页 第42页,共54页密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、单项选择题(每小题3分,满分30分) 1.下列计算正确的是( ) A .B .C .D .2.已知关于x 的方程2x 2﹣9x+n=0的一个根是2,则n 的值是( )A .n=2B .n=10C .n=﹣10D .n=10或n=23.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为,那么袋中共有球的个数为( )A .6个B .7个C .9个D .12个4.如图所示为农村一古老的捣碎器,已知支撑柱AB 的高为0.3米,踏板DE 长为1米,支撑点A 到踏脚D 的距离为0.6米,原来捣头点E 着地,现在踏脚D 着地,则捣头点E 上升了( )A .0.5米B .0.6米C .0.3米D .0.9米 5.如图,两条宽为1的带子,相交成α角,那么重叠部分的面积即阴影部分的面积为( )A .sin αB .C .D .B .6.如图所示,把矩形OABC 放入平面直角坐标系中,点B 坐标为(10,8),点D 是OC 上一动点,将矩形OABC 沿直线BD 折叠,点C 恰好落在OA 上的点E 处,则点D 的坐标是( )A .(0,4)B .(0,5)C .(0,3)D .(3,0)密封线内不得答题7.关于x的一元二次方程kx2﹣(2k+1)x+k=0有两个实数根,则k的取值范围是()A.k>﹣ B.k≥﹣C.k<﹣且k≠0 D.k≥﹣且k≠08.用配方法解方程:x2+x﹣1=0,配方后所得方程是()A. B.C.D.9.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是()A.8.5% B.9% C.9.5% D.10%10.如图,在Rt△ABC中,∠C=90°,∠B=30°,点P是AC的中点,过点P的直线L截下的三角形与△ABC相似,这样的直线L的条数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,满分30分)11.函数的自变量的取值范围是.12.已知,则= .13.在△ABC中,D、E是AB上的点,且AD=DE=EB,DF∥EG∥BC,则△ABC被分成的三部分的面积比S△ADF:S四边形DEGF:S四边形EBCG等于.14.直角△ABC中,斜边AB=5,直角边BC、AC之长是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,则m的值为.15.关于x的一元二次方程(k﹣1)x+6x+8=0的解为.16.已知关于x的方程x2﹣px+q=0的两个根为0和﹣3,则p= .q= .17.在△ABC中,(2sinA﹣1)2+=0,则△ABC的形状为.18.现有五张外观一样的卡片,背面朝上,正面分别由一个二次根式:,,,,,从中任取一张卡片,再从剩下的卡片中又抽取一张,则两次所取卡片上的二次根式是同类二次根式的概率是.第27页,共54页第28页,共54页第41页,共54页 第42页,共54页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,表示△AOB 为O 为位似中心,扩大到△COD ,各点坐标分别为:A (1,2),B (3,0),D (4,0),则点C 坐标为 .20.如图,正三角形△A 1B 1C 1的边长为1,取△A 1B 1C 1各边的中点A 2、B 2、C 2,作第二个正三角形△A 2B 2C 2,再取△A 2B 2C 2各边的中点A 3、B 3、C 3,作第三个正三角形△A 3B 3C 3,…用同样的方法作正三角形则第10个正三角形△A 10B 10C 10的面积是 .三、解答下列各题21.解方程:(1)(x ﹣5)2=2(x ﹣5) (2)2x (x ﹣1)=3x+1.22.计算(1)(﹣)+(2)|﹣|﹣+(π﹣4)0﹣sin30°.23.完全相同的四张卡片,上面分别标有数字1,2,﹣1,﹣2,将其背面朝上,从中任意抽出两张(不放回),把第一张的数字记为a ,第二张的数字记为b ,以a 、b 分别作为一个点的横坐标与纵坐标;求点(a ,b )在第四象限的概率.(用树状图或列表法求解)24.先阅读理解下列例题,再按例题解一元二次不等式.例:解二元一次不等式6x2﹣x﹣2>0解:把6x2﹣x﹣2分解因式,得6x2﹣x﹣2=(3x﹣2)(2x+1)又6x2﹣x﹣2>0,所以(3x﹣2)(2x+1)>0由有理数的乘法法则“两数相乘,同号得正”有(1)或(2)解不等式组(1)得x>;解不等式组(2)得x<﹣,所以6x2﹣x﹣2>0的解集为x>或x<﹣,求一元二次不等式2x2﹣14x﹣16<0的解集.25.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B的对边,a、b是关于x的方程x2﹣7x+c+7=0的两根,求AB 上的中线长.26.已知关于x 的方程x 2﹣(k+2)x+2k=0.①小明同学说:无论k说的有道理吗?②若等腰三角形的一边a=1,另两边b、c个根,求△ABC的周长和面积.第27页,共54页第28页,共54页密学校 班级 姓名 学号密 封 线 内 不 得 答 题27.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元.(1)写出售出一个可获得的利润是多少元(用含x 的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?28.如图,在矩形ABCD 中,DC=2,CF ⊥BD 于点E ,交AD 于点F ,连接BF .(1)试找出图中与△DEC 相似的三角形,并选一个进行证明. (2)当点F 是AD 的中点时,求BC 边的长及sin ∠FBD 的值.29.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD 、小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)密封线内答题30.如图,在平面直角坐标系xoy中,四边形OABC是矩形,A(0,6),C(8,0),动点P以每秒2个单位的速度从点A出发,沿AC向点C移动,同时动点Q以每秒1个单位的速度从点C出发,沿CO向点O移动,设P、Q两点移动t秒(0<t<5)后,四边形AOQP的面积为S.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,能否使以C、P、Q为顶点的三角形与A、O、C为顶点的三角形相似?若能,求出此时点P的坐标;若不能,请说明理由.参考答案一、单项选择题(每小题3分,满分1.B.2.B.3.D.4.A.5.B.6.C.二、填空题(每小题3分,满分3011.函数的自变量的取值范围是x≥1且x≠2 .12.已知,则= .13.在△ABC中,D、E是ABBC,则△ABC被分成的三部分的面积比等于1:3:5 .14.直角△ABC中,斜边AB=5次方程x2﹣(2m﹣1)x+4(m﹣1)=015.关于x的一元二次方程(k﹣1)x+6x+8=0的解为x1=4,x2=﹣1 .密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题16.已知关于x 的方程x 2﹣px+q=0的两个根为0和﹣3,则p= ﹣3 .q= 0 .17.在△ABC 中,(2sinA ﹣1)2+=0,则△ABC 的形状为 直角三角形 .18.现有五张外观一样的卡片,背面朝上,正面分别由一个二次根式:,,,,,从中任取一张卡片,再从剩下的卡片中又抽取一张,则两次所取卡片上的二次根式是同类二次根式的概率是 .19.如图,表示△AOB 为O 为位似中心,扩大到△COD ,各点坐标分别为:A (1,2),B (3,0),D (4,0),则点C 坐标为 (,) .20.如图,正三角形△A 1B 1C 1的边长为1,取△A 1B 1C 1各边的中点A 2、B 2、C 2,作第二个正三角形△A 2B 2C 2,再取△A 2B 2C 2各边的中点A 3、B 3、C 3,作第三个正三角形△A 3B 3C 3,…用同样的方法作正三角形则第10个正三角形△A 10B 10C 10的面积是 •.三、解答下列各题 21.解方程:解:(1)(x ﹣5)2﹣2(x ﹣5)=0, (x ﹣5)(x ﹣5﹣2)=0, x ﹣5=0或x ﹣5﹣2=0, 所以x 1=5,x 2=7; (2)2x 2﹣5x ﹣1=0,△=(﹣5)2﹣4×2×(﹣1)=33, x=,所以x 1=,x 2=.22.计算解:(1)原式=2﹣+ =2;题(2)原式=﹣3+1﹣ =﹣2.23.完全相同的四张卡片,上面分别标有数字1,2,﹣1,﹣2,将其背面朝上,从中任意抽出两张(不放回),把第一张的数字记为a ,第二张的数字记为b ,以a 、b 分别作为一个点的横坐标与纵坐标;求点(a ,b )在第四象限的概率.(用树状图或列表法求解) 解:共有12种情况在第四象限的有4种情况,所以概率是. 24.解:由题意得或,解得两个不等式组的解集分别为﹣1<x <8和无解, 所以,此不等式组的解集为﹣1<x <8.25.解:∵a 、b 是关于x 的方程x 2﹣7x+c+7=0的两根, ∴根与系数的关系可知:a+b=7,ab=c+7; 由直角三角形的三边关系可知:a 2+b 2=c 2, 则(a+b )2﹣2ab=c 2, 即49﹣2(c+7)=c 2,解得:c=5或﹣7(舍去),再根据直角三角形斜边中线定理得:中线长为. 答:AB 边上的中线长是.26.解:(1)∵△=(k+2)2﹣4×1×2k=k 2+4k+4﹣8k=k 2﹣(k ﹣2)2≥0,∴方程无论k 取何值,总有实数根, ∴小明同学的说法合理; (2)①当b=c 时,则△=0, 即(k ﹣2)2=0,∴k=2,方程可化为x 2﹣4x+4=0,∴x 1=x 2=2, 而b=c=2, ∴C △ABC =5,S △ABC =;②当b=a=1,∵x 2﹣(k+2)x+2k=0. ∴(x ﹣2)(x ﹣k )=0, ∴x=2或x=k ,∵另两边b 、c 恰好是这个方程的两个根,密学校 班级 姓名 学号密 封 线 内 不 得 答 题∴k=1,∴c=2, ∵a+b=c ,∴不满足三角形三边的关系,舍去;综上所述,△ABC 的周长为5. 27.解:由题意得:(1)50+x ﹣40=x+10(元) (2)设每个定价增加x 元.列出方程为:(x+10)(400﹣10x )=6000 解得:x 1=10 x 2=20要使进货量较少,则每个定价为70元,应进货200个. (3)设每个定价增加x 元,获得利润为y 元.y=(x+10)(400﹣10x )=﹣10x 2+300x+4000=﹣10(x ﹣15)2+6250当x=15时,y 有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元. 28.解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD , ∴△DEC ∽△FDC .所以△DEC 相似的三角形是△FED ,△FDC ,△DCB ,△CEB ,△BAD ;(2)∵F 为AD 的中点,AD ∥BC , ∴FE :EC=FD :BC=1:2,FB=FC , ∴FE :FC=1:3,∴sin∠FBD=EF :BF=EF :FC=; 设EF=x ,则FC=3x , ∵△DEC ∽△FDC , ∴,即可得:6x 2=4,解得:x=, 则CF=, 在Rt △CFD 中,DF==,∴BC=2DF=2.29.解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .封线内不得题Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.30.解:(1)如图,过点P作PE⊥CO,垂足为E,根据题意可知,AP=2t,CQ=t,∵A(0,6),C(8,0),∴AC==10,则CP=10﹣2t,∵PE⊥CO,AO⊥CO,∴PE∥AO,∴△CPE∽△CAO,∴=,即=,解得:PE=(10﹣2t),CE=;故四边形AOQP的面积S==;(2)若△AOC与△CPQ相似,则有以下两种情况:①如图所示,当∠QPC=∠AOC=90°时,△AOC∽△QPC,可得:,即:,解得:t=,过点P作PD⊥OC,垂足为D,由(1)可知,PD=(10﹣2t)=,OD=8﹣=,∴点P坐标为(,);②如图,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题当∠PQC=∠AOC=90°时,△AOC ∽△PQC , 可得:,即:,解得:t=, PQ=,OQ=8﹣t=,∴点P 的坐标为(,);综上,存在这样的点P ,其坐标为(,)或(,).。

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含4套

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含4套

密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ;(2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封 线 内 不 得五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC 中,∠A=120°,AB=AC ,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C 、射线BC 运动,连接PQ .当点P 到达点C 时,点P 、Q 同时停止运动.设BQ=x ,△BPQ 与△ABC 重叠部分的面积为S .如图2是S 关于x 的函数图象(其中0≤x ≤8,8<x ≤m ,m <x ≤16时,函数的解析式不同).(1)填空:m 的值为 ;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出△PCQ 为等腰三角形时x 的值.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点. (1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA ,PB ,PC 它们的数量关系.26.如图,抛物线y=a (x ﹣m )2﹣m (其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论; (3)直接写出C ′点的坐标(用含m 的式子表示).密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±,得 答 题则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°. 20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE ,∴=, ∴=,∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m 系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB .∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE ,∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E , ∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .密 封 线 内 不 得 答 题由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x . ③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°, ∴△APD 为等边三角形, ∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴CD=PB ,∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°,∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1,∴a=, ∴y=,故答案为:y=;(2)DE=BC . 理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上, 得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;密 封 线 内 不 得 答 题抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上, ∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.密封线内22.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.(1)请写出两个不同的正确结论;(2)若CB=8,ED=2,求⊙O的半径.23.在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC.(1)如图1,以点B为旋转中心,将△EBC得到△E′BA(点C与点A重合,点E到点E′处),连接DE证:DE′=DE;(2)如图2,若∠ABC=90°,AD=4,EC=2,求DE的长.24.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积密学校 班级 姓名 学号密 封 线 内 不 得 答 题25.如图,对称轴为直线x=2的抛物线经过点A (﹣1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a+1,0),点P 是第一象限内的抛物线上的动点. (1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.参考答案一、选择题:每小题3分,共36分.1.C .2.C . 3.C .4.B .5.A .6.D .7.D .8.D .9.B . 10.B .11.B .12.A .二、填空题:每小题3分,共18分.13.已知关于x 的方程x 2﹣3x+k=0有一个根为1,则它的另一个根为 2 .14.抛物线y=3x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是 y=3(x ﹣1)2﹣2 .15.如图,⊙O 的直径AB=12,弦CD ⊥AB 于M ,且M 是半径OB 的中点,则CD 的长是 6 (结果保留根号).密封线内不得答题16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1•x2= 2 .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是14 .18.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于4﹣4 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分.19.解方程:解:(1)x2﹣x﹣6=0,(x﹣3)(x+2)=0,x﹣3=0或x+2=0,所以x1=3,x2=﹣2;(2)△=(﹣6)2﹣4×3×(﹣2)=60,x==,所以x1=,x2=.20.解:(1)设每件衬衫应降价x元,由题意得:(50﹣x)(40+2x)=2400,解得:x1=10,x2=20,因为尽量减少库存,x1=10舍去.答:每件衬衫应降价20元.(2)设每天盈利为W元,则W=(50﹣x)(40+2x)=﹣2(x﹣15)2+2450,当x=15时,W最大为2450.答:每件衬衫降价15元时,商场服装部每天盈利最多.21.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)树状图得: ∴一共有6种等可能的情况点(x ,y )落在坐标轴上的有4种, ∴P (点(x ,y )在坐标轴上)=;(2)∵点(x ,y )落在以坐标原点为圆心,2为半径的圆内的有(0,0),((0,﹣1), ∴P (点(x ,y )在圆内)=.22.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∵OD ⊥CB ,∴CE=BE , =,则三个不同类型的正确结论:∠C=90°;CE=BE ; =;(2)∵OD ⊥CB ,∴CE=BE=BC=4,又DE=2, ∴OE 2=OB 2﹣BE 2,设⊙O 的半径为R ,则OE=R ﹣2, ∴R 2=(R ﹣2)2+42, 解得R=5.答:⊙O 的半径为5.23.(1)证明:∵以点B 为旋转中心,将△EBC 按顺时针方向旋转,得到△E ′BA (点C 与点A 重合,点E 到点E ′处), ∴BE ′=BE ,∠E ′BA=∠EBC , ∴∠E ′BE=∠ABC ,∵∠DBE=∠ABC ,∴∠DBE=∠E ′BE ,即∠DBE ′=∠DBE , 在△BDE ′和△BDE 中,,∴△BDE ′≌△BDE (SAS ), ∴DE ′=DE ;密封线内不得答题(2)解:以点B为旋转中心,将△EBC按顺时针方向旋转90°得到△E′BA(点C与点A重合,点E到点E′处),如图2,∵∠ABC=90°,BA=BC,∴∠BCE=∠BAD=45°,∵△EBC按顺时针方向旋转90°得到△E′BA,∴∠BAE′=∠BCE=45°,AE′=CE=2,∴∠DAE′=∠BAD+∠BAE′=90°,在Rt△DAE′中,∵DE′2=AD2+AE′2=42+22=20,∴DE′=2,由(1)的结论得DE=DE′=2.23.解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB∴四边形ABCD是平行四边形∴CD=AB=2∴S梯形OBCD===;∴图中阴影部分的面积等于S梯形OBCD﹣S扇形OBD=﹣×π×12=﹣.25.解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共12小题,每小题3分,满分36分) 1.一元二次方程x 2﹣2x=0的根是( ) A .x 1=0,x 2=﹣2 B .x 1=1,x 2=2 C .x 1=1,x 2=﹣2 D .x 1=0,x 2=22.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是( ) A .3个 B .4个 C .10个 D .16个 3.下列说法错误的是( )A .二次函数y=3x 2中,当x >0时,y 随x 的增大而增大B .二次函数y=﹣6x 2中,当x=0时,y 有最大值0C .抛物线y=ax 2(a ≠0)中,a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点4.下列命题中,是真命题的为( ) A .锐角三角形都相似 B .直角三角形都相似 C .等腰三角形都相似 D .等边三角形都相似5.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月增长的百分率是( ) A .30% B .25% C .20% D .15%6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ) A . B . C . D .7.圆锥的地面半径为10cm .它的展开图扇形半径为30cm ,则这个扇形圆心角的度数是( )A .60°B .90°C .120° D .150°8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5C.x1=1,x2=﹣5 D.x1=﹣1,x2=510.如图,AC是矩形ABCD的对角线,E是边BC延长线上一点,AE与CD相交于F,则图中的相似三角形共有()A.2对 B.3对 C.4对D.5对11.将△ACE绕点C旋转一定的角度后使点A落在点B处,点E在落在点D处,且B、C、E在同一直线上,AC、BD交于点F,CD、AE交于点G,AE、BD交于点H,连接AB、DE.则下列结论错误的是()A.∠DHE=∠ACB B.△ABH∽△GDHC.DHG∽△ECG D.△ABC∽△DEC12.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x大而减小.下列结论①a+b>0;②若点A(﹣3,y1),点B3,y2)都在抛物线上,则y1<y2;③a(m﹣1)+b=0;④若≤﹣1,则b2﹣4ac≤4a.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)13.二次函数y=x2+1的最小值是.14.已知正六边形的半径是2,则这个正六边形的边长是.15.如图,点D是等边△ABC内的一点,如果△ABD绕点A时针旋转后能与△ACE重合,那么旋转了度.密学校 班级 姓名 学号密 封 线 内 不 得 答 题16.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为 .17.如图,点M 、N 分别是等边三角形ABC 中AB ,AC 边上的点,点A 关于MN 的对称点落在BC 边上的点D 处.若=,则的值 .18.定义:长宽比为:1(n 为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图①所示操作1:将正方形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角线BD 上的点G 处,折痕为BH .操作2:将AD 沿过点G 的直线折叠,使点A ,点D 分别落在边AB ,CD 上,折痕为EF . 可以证明四边形BCEF 为矩形.(Ⅰ)在图①中,的值为 ;(Ⅱ)已知四边形BCEF 为矩形,仿照上述操作,得到四边形BCMN ,如图②,可以证明四边形BCMN 为矩形,则n 的值是 .三、解答题(共7小题,满分66分)19.已知y 是x 的反比例函数,并且当x=2时,y=6(1)求y 关于x 的解析式;(2)当x=4时,y 的值为该函数的图象位于第 象限在图象的每一支上,y 随x 的增大而 . 20.(1)解方程:x 2﹣2x+1=25(2)利用判别式判断方程3x 2+10=2x 2+8x 的根的情况. 21.已知,AG 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AG 交⊙O 于点C ,连接AO 并延长交BC 于点M(Ⅰ)如图1,若BC=10,求BM 的长;题(Ⅱ)如图2,连接AC,过点C作CD∥AB∠AG于点D,AM的延长线交过点C的直线于点P,且∠BCP=∠ACD.求证:PC是⊙O的切线.22.如图,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,连接AC、BD、AD、BC交于点Q.(1)若∠DAB=40°,求∠CAD的大小;(2)若CA=10,CB=16,求CQ的长.23.如图所示,一拱桥的截面呈抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,拱桥与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m景观灯.(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.24.已知,△ABC中,AB=AC,点E是边AC上一点,过点EEF∥BC交AB于点F(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE时,直接写出旋转角α的大小.25.已知抛物线y=x2+x﹣2(1)求抛物线与x轴的交点坐标;密线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)将抛物线y=x 2+x ﹣2沿y 轴向上平移,平移后与直线y=x+2的一个交点为点P ,与y 轴相交于点Q ,当PQ ∥x 轴时,求抛物线平移了几个单位;(3)将抛物线y=x 2+x ﹣2在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的起步部分保持不变,翻折后的图象与原图象在x 轴上方的部分组成一个“W ”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b 的值.参考答案一、选择题(共12小题,每小题3分,满分36分) 1.D ;2.D ;3.C ;4.D ;5.B ;6.C ;7.C ;8.A ;9.D ;10.C ;11.B ;12.B ;二、填空题(共6小题,每小题3分,满分18分) 13.1;14.2;15.60;16.;17.;18.;3;三、解答题(共7小题,满分66分) 19.一;减小;20.(1)(x-1)2=25 ;开平方x-1=±5;x=6或x=-4。

2020—2021年部编人教版九年级数学上册期末测试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末测试卷及答案【完美版】

2020—2021年部编人教版九年级数学上册期末测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.把一副三角板如图放置,其中90ABC DEB ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边10AC BD ==,若将三角板DEB 绕点B 按逆时针方向旋转45︒得到''D E B △,则点A 在''D E B △的( )A .内部B .外部C .边上D .以上都有可能二、填空题(本大题共6小题,每小题3分,共18分)1.81的算术平方根是____________.2.分解因式:2x +xy =_______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,抛物线2y axc =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x -+=--2.若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、B6、A7、C8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、32、()x x+y .3、5或34、3x <-或1x >.5、4π6、-2三、解答题(本大题共6小题,共72分)1、x=12、231211y x x =-+-3、(1)略;(2)2.4、羊圈的边长AB ,BC 分别是20米、20米.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。

2020-2021学年新人教版九年级数学上册期末试卷及答案

2020-2021学年新人教版九年级数学上册期末试卷及答案

2020-2021学年九年级(上)期末数学试卷一.选择题(共10小题)1.反比例函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限2.如图所示的工件的主视图是()A.B.C.D.3.如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F.则下列比例式不正确的是()A.=B.=C.=D.=4.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为1cm,2cm,2cm,4cm的线段是成比例线段5.根据下面表格中的对应值:x 3.24 3.25 3.26ax2+bx+c﹣0.02 0.01 0.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25C.3.25<x<3.26 D.x>3.266.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形7.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计8.如图,把一张长方形纸片对折,折痕为AB,以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O为顶点的等腰三角形,那么剪出的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形9.设a、b是两个整数,若定义一种运算“△”,a△b=a2+b2+ab,则方程(x+2)△x=1的实数根是()A.x1=x2=1 B.x1=0,x2=1 C.x1=x2=﹣1 D.x1=1,x2=﹣2 10.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A.6 B.8 C.10 D.12二.填空题(共6小题)11.顺次连接矩形各边中点所得四边形为形.12.如果关于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有实数根,那么m的取值范围是.13.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为x,则可列方程为.14.如图,点A在反比例函数y=(x<0)的图象上,过点A作x轴,y轴的垂足分别为点B,C,若AB=1.5,AC=4,则k的值为.15.已知点A(x1,3),B(x2,6)都在反比例函数y=图象上,则x1x2(填“<”或“>”或“=”).16.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中D点坐标为(2,0),则点E 的坐标是.三.解答题(共9小题)17.用适当的方法解下列方程:(1)(x﹣2)2﹣16=0(2)5x2+2x﹣1=0.18.如图,已知点O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OBꞌCꞌ;(2)若△OBC内部一点M的坐标为(a,b),则点M对应点M′的坐标是;(3)求出变化后△OBꞌCꞌ的面积.19.如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)20.某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x(m)、y(m).①求y关于x的函数表达式;②当y≥4m时,求x的取值范围;(2)小凯说篱笆的长可以为9.5m,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?21.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.22.已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.23.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元24.如图,在△ABC中,点D在边AB上,且BD=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;25.已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为(﹣2,4)、(4,﹣2).(1)求两个函数的解析式;(2)求△AOB的面积;(3)直线AB上是否存在一点P(A除外),使△ABO与以B、P、O为顶点的三角形相似?若存在,直接写出顶点P的坐标.参考答案与试题解析一.选择题(共10小题)1.反比例函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.2.如图所示的工件的主视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.3.如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F.则下列比例式不正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例即可得到结论.【解答】解:∵l1∥l2∥l3,∴,,,,故选:D.4.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为1cm,2cm,2cm,4cm的线段是成比例线段【分析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【解答】解:所有矩形对应边的比不一定相等,不一定都是相似的,A不正确,符合题意;若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=AB=(cm),C正确,不符合题意;四条长度依次为1cm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.5.根据下面表格中的对应值:x 3.24 3.25 3.26ax2+bx+c﹣0.02 0.01 0.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25C.3.25<x<3.26 D.x>3.26【分析】根据表中数据得到x=3.24时,ax2+bx+c=﹣0.02;x=3.25时,ax2+bx+c=0.01,则x取2.24到2.25之间的某一个数时,使ax2+bx+c=0,于是可判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.【解答】解:∵x=3.24时,ax2+bx+c=﹣0.02;x=3.25时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.25.故选:B.6.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.7.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计【分析】计算出摸出红球的平均数后分析,若得到到的平均数大于5,则说明红球比白球多,反之则不是.【解答】解:∵5位同学摸到红球的频率的平均数为=7,∴红球比白球多.故选:A.8.如图,把一张长方形纸片对折,折痕为AB,以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O为顶点的等腰三角形,那么剪出的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选:D.9.设a、b是两个整数,若定义一种运算“△”,a△b=a2+b2+ab,则方程(x+2)△x=1的实数根是()A.x1=x2=1 B.x1=0,x2=1 C.x1=x2=﹣1 D.x1=1,x2=﹣2 【分析】根据题中的新定义将所求方程化为普通方程,左边化为完全平方式,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故选:C.10.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A.6 B.8 C.10 D.12【分析】由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴==,==,∴△BPQ∽△DKM∽△CNH,∴=,∴=,=,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.二.填空题(共6小题)11.顺次连接矩形各边中点所得四边形为菱形.【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为:菱形.12.如果关于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有实数根,那么m的取值范围是m ≥﹣2且m≠2 .【分析】根据方程有实数根得出△=(﹣4)2﹣4×(m﹣2)×(﹣1)≥0,解之求出m 的范围,结合m﹣2≠0,即m≠2从而得出答案.【解答】解:∵关于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有实数根,∴△=(﹣4)2﹣4×(m﹣2)×(﹣1)≥0,解得:m≥﹣2,又∵m﹣2≠0,即m≠2,∴m≥﹣2且m≠2,故答案为:m≥﹣2且m≠2.13.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为x,则可列方程为 3.2(1+x)2=6 .【分析】设这两年投入资金的年平均增长率为x,根据题意可得,2018的投入资金×(1+增长率)2=2020年的投入资金,据此列方程.【解答】解:设这两年投入资金的年平均增长率为x,由题意得,3.2(1+x)2=6.故答案为:3.2(1+x)2=6.14.如图,点A在反比例函数y=(x<0)的图象上,过点A作x轴,y轴的垂足分别为点B,C,若AB=1.5,AC=4,则k的值为﹣6 .【分析】根据反比例函数k的几何意义可得|k|=AB•AC,再根据图象在二象限可确定k <0,进而得到解析式.【解答】解:∵S矩形ABOC=AB•AC=1.5×4=6,∴|k|=6,∵图象在二象限,∴k<0,∴k=﹣6,故答案为﹣6.15.已知点A(x1,3),B(x2,6)都在反比例函数y=图象上,则x1>x2(填“<”或“>”或“=”).【分析】根据反比例函数的增减性解答即可.【解答】解:∵k=m2+1>0,∴反比例函数y=图象在第一、三象限,∴在每一个象限内y随x的增大而减小,∵3<6,∴x1>x2.故答案为:>.16.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中D点坐标为(2,0),则点E 的坐标是(4,0).【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).三.解答题(共9小题)17.用适当的方法解下列方程:(1)(x﹣2)2﹣16=0(2)5x2+2x﹣1=0.【分析】(1)利用直接开平方法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵(x﹣2)2﹣16=0,∴(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;(2)∵a=5,b=2,c=﹣1,∴△=22﹣4×5×(﹣1)=24>0,则x==,即x1=,x2=.18.如图,已知点O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OBꞌCꞌ;(2)若△OBC内部一点M的坐标为(a,b),则点M对应点M′的坐标是(﹣2a,﹣2b);(3)求出变化后△OBꞌCꞌ的面积10 .【分析】(1)把B、C的横纵坐标都乘以﹣2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC的面积,然后利用相似的性质把△OBC的面积乘以4得到△OBꞌCꞌ的面积.【解答】解:(1)如图,△OBꞌCꞌ为所作;(2)点M对应点M′的坐标为(﹣2a,﹣2b);(3)△OBꞌCꞌ的面积=4S△OCB=4×(2×3﹣×2×1﹣×2×1﹣×3×1)=10.故答案为(﹣2a,﹣2b);10.19.如图,一块直角三角板的直角顶点P放在正方形ABCD的BC边上,并且使一条直角边经过点D,另一条直角边与AB交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)【分析】根据正方形推出∠B=∠C=∠QPD=90°,求出∠DPC=∠PQB,证△BPQ和△CDP 相似即可.【解答】解:△BPQ∽△CDP,证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠QPD=90°,∴∠QPB+∠BQP=90°,∠QPB+∠DPC=90°,∴∠DPC=∠PQB,∴△BPQ∽△CDP.20.某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x(m)、y(m).①求y关于x的函数表达式;②当y≥4m时,求x的取值范围;(2)小凯说篱笆的长可以为9.5m,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?【分析】(1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题;(2)构建方程求解即可解决问题;【解答】解:(1)①由题意xy=12,∴y=(x≥).②y≥4时,≤x≤3.(2)当2x+=9.5时,整理得:4x2﹣19x+24=0,△<0,方程无解.当2x+=10.5时,整理得:4x2﹣21x+24=0,△=57>0,符合题意;∴小凯的说法错误,洋洋的说法正确.21.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:a1 2 3b1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.22.已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.【分析】①根据DP∥AC,CP∥BD,即可证出四边形CODP是平行四边形,由矩形的性质得出OC=OD,即可得出结论;②根据勾股定理可求CD=8,由S△COD=S△ADC=××AD×CD=12=S菱形CODP,可求四边形CODP的面积.【解答】证明:①∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形.②∵AD=6,AC=10∴DC==8∵AO=CO∴S△COD=S△ADC=××AD×CD=12∵四边形CODP是菱形,∴S△COD=S菱形CODP=12,∴S菱形CODP=2423.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.24.如图,在△ABC中,点D在边AB上,且BD=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;【分析】(1)设∠B=x,利用等腰三角形的性质得到∠DCB=∠B=x,则∠ADC=2x,再表示出∠A=∠ADC=2x,利用三角形外角性质得到x+2x=108°,解方程求出x即可;(2)①利用黄金三角形的定义可判断△ABC、△DBC、△CAD都是黄金三角形.②根据黄金三角形的定义得到=,则AC=﹣1,所以CD=CA=BD=CD=﹣1,然后计算AB﹣BD即可.【解答】解:(1)设∠B=x,∵BD=BC,∴∠DCB=∠B=x,∴∠ADC=∠B+∠DCB=2x,∵AC=DC,∴∠A=∠ADC=2x,∵∠ACE=∠B+∠A,∴x+2x=108°,解得x=36°,即∠B的度数为36°;(2)①△ABC、△DBC、△CAD都是黄金三角形.理由如下:∵DB=BC,∠B=36°,∴△DBC为黄金三角形;∵∠BCA=180°﹣∠ACE=72°,而∠A=2×36°=72°,∴∠A=∠ACB,而∠B=36°,∴△ABC为黄金三角形;∵∠ACD=∠ACB﹣∠DCB=72°﹣36°=36°,而CA=CD,∴△CAD为黄金三角形;②∵△BAC为黄金三角形,∴=,而BC=2,∴AC=﹣1,∴CD=CA=﹣1,∵BD=CD=﹣1,∴AD=AB﹣BD=2﹣(﹣1)=3﹣.25.已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为(﹣2,4)、(4,﹣2).(1)求两个函数的解析式;(2)求△AOB的面积;(3)直线AB上是否存在一点P(A除外),使△ABO与以B、P、O为顶点的三角形相似?若存在,直接写出顶点P的坐标.【分析】(1)利用待定系数法求两函数的解析式;(2)设直线AB与y轴交于C点,则C点坐标为(0,2),然后利用S△AOB=S△AOC+S△BOC进行计算;(3)通过计算得到OA==2,OB==2,则△ABO为等腰三角形,若△ABO与以B、P、O为顶点的三角形相似,于是要有PO=PB,利用勾股定理可得x2+(﹣x+2)2=(4﹣x)2+(﹣x+2+2)2,解方程求出x,然后把x的值代入y=﹣x+2求出对应的函数值即可得到P点坐标.【解答】解:(1)把(﹣2,4)、(4,﹣2)代入y1=ax+b:,解得,所以一次函数的解析式为y=﹣x+2;把(﹣2,4)代入反比例函数y2=得k=﹣2×4=﹣8,所以反比例函数解析式为y=﹣;(2)设直线AB与y轴交于C点,则C点坐标为(0,2),如图,S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)∵OA==2,OB==2∴△ABO为等腰三角形,∵△ABO与以B、P、O为顶点的三角形相似,而OB为公共边,∴当PO=PB时,△POB∽△OAB,设P点坐标为(x,﹣x+2),∴PO2=x2+(﹣x+2)2,PB2=(4﹣x)2+(﹣x+2+2)2,∴x2+(﹣x+2)2=(4﹣x)2+(﹣x+2+2)2,∴x=,∴y=﹣x+2=﹣+2=﹣,∴P点坐标为(,﹣).1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年级九年级(上)期末数学训练卷 (126)一、选择题(本大题共12小题,共36.0分)1.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A. B. C. D.2.下列说法中,正确说法的个数是()(1)长度相等的两条弧一定是等弧;(2)半径相等的两个半圆是等弧;(3)同一条弦所对的两条弧一定是等弧;(4)直径是圆中最大的弦,也就是过圆心的直线.A. 1个B. 2个C. 3个D. 4个3.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面——小明赢1分;抛出其他结果——小刚赢1分;谁先到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是()A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”4.如图,A、B、C、D在⊙O上,BC是⊙O的直径.若∠D=36°,则∠BCA的度数是()A. 72°B. 54°C. 45°D. 36°5.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处正东400米的B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离等于()米.A. 400B. 100+100√3C. 200√5D. 200√36.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字−1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. 18B. 16C. 14D. 127.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为π−2B. 面积为12π−1C. 面积为2π−4D. 面积随扇形位置的变化而变化8.对于抛物线y=x2−2x−1,下列说法中错误的是()A. 顶点坐标为(1,−2)B. 对称轴是直线x=1C. 当x>1时,y随x的增大减小D. 抛物线开口向上9.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. 13B. 2√2 C. 2√23D. √2410.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A. 7B. 8C. 9D. 1011.如图,路灯灯柱OP的长为8米,身高1.6米的小明从距离灯的底部20米的点A处,沿AO所在的直线行走14米到点B处时,人影的长度()A. 变长了1.5米B. 变短了2.5米C. 变长了3.5米D. 变短了3.5米12.如图,点A的坐标为(−3,−2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,点P的坐标为()A. (−4,0)B. (−2,0)C. (−4,0)或(−2,0)D. (−3,0)二、填空题(本大题共6小题,共24.0分)13.如图,已知二次函数y=x2+bx+c的图象的对称轴是直线x=1,过抛物),则点B的坐标为线上两点的直线AB平行于x轴,若点A的坐标为(0,32________ .14.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40∘,则弧AD的度数是_______度.15.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______.16.⊙O中,AB为⊙O的弦,∠AOB=140°,则弦AB所对的圆周角为______ 度.17.如图,在平面直角坐标系中,矩形OABC顶点AC分别在x轴、y轴(x>0)的图象上,点P是矩形OABC的正半轴上,顶点B在函数y=6x内的一点,连接PO、PA、PB、PC,则图中阴影部分的面积是____.18.如图,Rt△ABC中,AB⊥BC,AB=8,BC=3,P是△ABC内部的一个动点,且满足∠APB=90°,则线段CP长的最小值为______.三、解答题(本大题共7小题,共55.0分)19.求值:sin245°+3tan30°tan60°−2cos60°20.如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图:(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为一个人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图法或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:蔬菜的批发量(千克)…25607590…所付的金额(元)…125300…(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?23.如图,用细线悬挂一个小球,小球在竖直平面内的A,C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细绳OB的长度,(参考数据;sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)24.如图,△ABC内接于⊙O,∠ABC=60°,CD为直径,点P是CD延长线上一点,且AP=AC.求证:PA是⊙O的切线.25.如图,在平面直角坐标系中,抛物线y=−x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=−x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.-------- 答案与解析 --------1.答案:A解析:本题主要考查的是简单几何体的三视图的有关知识,由题意利用左视图的定义进行求解即可.解:该几何体的左视图为:.故选A.2.答案:A解析:本题主要考查圆的相关知识点,关键在于熟练掌握等弧的定义、直径的定义和性质.根据等弧的定义,直径、弦的定义进行分析、解答即可.解:(1)不符合等弧的定义,在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同,故本选项错误;(2)由半径相等推出两个圆为等圆,所以两个半圆为等弧,故本选项正确;(3)同一条弦所对的两条弧不一定是等弧,除非这条弦为直径,故本选项错误;(4)说法不正确,直径为圆中最大的弦,也就是过圆心的弦,而不是直线,故本选项错误.故选A.3.答案:D解析:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.画树形图,表示出所有的结果.求两个正面发生的概率,判断公平性;修改规则的依据是使两个事件发生的概率相等即可.解:因为p (正,正)=14,则出现其他结果的概率为:34,A .根据出现抛出两个相同面的概率为:12,则把“抛出两个正面”改为“抛出两个同面”正确,故此选项正确不符合题意;B .把“抛出其他结果”改为“抛出两个反面”时,两人获胜概率都为:14,故此时公平,故此选项正确不符合题意;C .∵小明获胜概率为:14,小刚获胜概率为:34,故把“小明赢1分”改为“小明赢3分”,故此时公平,故此选项正确不符合题意;D .把“小刚赢1分”改为“小刚赢3分,此时不公平,故此选项错误符合题意;故选:D . 4.答案:B解析:解:∠B =∠D =36°,∵BC 是⊙O 的直径,∴∠BAC =90°,∴∠BCA =90°−∠B =54°,故选:B .根据圆周角定理求出∠B 的度数,根据直径所对的圆周角是直角,求出∠BAC 的度数,得到答案. 本题考查的是圆周角定理,掌握同弧所对的圆周角相等和直径所对的圆周角是直角是解题的关键. 5.答案:D解析:解:过P 作PC ⊥AB ,如图,由题意,可得∠PAC =30°,∠PBC =60°,∴∠APB =∠PBC −∠PAC =30°,∴∠PAC =∠APB .∴PB=AB=400米.在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400米,∴PC=PB⋅sin∠PBC=400×√32=200√3,故选:D.根据等角对等边得出PB=AB=400米,再利用三角函数求出PC的长即可.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.6.答案:C解析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:416=14.故选C.7.答案:C解析:解:连接CD,∵∠ACB=90°,CA=CB,∴DC=BD=2√2,∠BDC=90°,∠B=∠DCA=45°,∴∠BDH=∠CDG,在△BDH和△CDG中,{∠BDH=∠CDG BD=CD∠B=∠DCG,∴△BDH≌△CDG,∴图中阴影部分的面积=90π×(2√2)2360−12×2√2×2√2=2π−4,故选:C.连接CD,证明△BDH≌△CDG,利用扇形面积公式、三角形面积公式计算即可.本题考查的是扇形面积的计算、全等三角形的判定和性质、等腰直角三角形的性质,债务扇形面积公式是解题的关键.8.答案:C解析:解:∵y=x2−2x−1=(x−1)2−2,∴该抛物线的顶点坐标是(1,−2),故选项A正确,对称轴是直线x=1,故选项B正确,当x>1时,y随x的增大而增大,故选项C错误,a=1,抛物线的开口向上,故选项D正确,故选:C.根据题目中的函数解析式可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.答案:D解析:解:设圆A与x轴交于D点,连接CD,在Rt△OCD中,CD=6,OC=2,则OD=√CD2−OC2=4√2,tan∠CDO=OCOD =√24,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=√24,故选:D.作辅助线,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC=∠CDO,等量代换即可.本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键.10.答案:C解析:[分析]易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.本题考查了简单组合体的三视图和由三视图判断几何体,解题的关键是知道俯视图小正方形的个数即为最底层的小正方体的个数.[详解]解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9(个).故选C.11.答案:D解析:此题考查相似三角形的判定及性质,相似三角形的应用,中心投影等有关知识,小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化即可.解:设小明在A处时影长为x米,B处时影长为y米.∵AD//OP,BC//OP,∴△ADM∽△OPM,△BCN∽△OPN,∴ADOP =MAMO,BCOP=BNON,∵AO=20米,∴xx+20=1.68,∴x=5(米);yy+20−14=1.68,∴y=1.5(米),∴x−y=3.5米,故变短了3.5米.故选D.12.答案:D解析:解:连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,根据垂线段最短,可知当AP⊥x轴时,AP最短,∴P点的坐标是(−3,0).故选:D.连结AQ、AP,由切线的性质可知AQ⊥QP,由勾股定理可知QP=√AP2−AQ2,由于AQ=1,故当AP有最小值时,PQ最短,根据垂线段最短可得到点P的坐标.本题考查了切线的性质,坐标与图形性质.此题应先将问题进行转化,再根据垂线段最短的性质进行分析.)13.答案:(2,32解析:本题考查了二次函数图象上点的坐标特征及二次函数的性质;二次函数图象上点的坐标满足其解析式,且二次函数上点关于对称轴对称;已知抛物线的对称轴为x=1,判断出点A和点B关于直线x=1对称,即可求出点B的坐标.解:∵二次函数y=x2+bx+c的图象的对称轴是直线x=1,又∵过抛物线上两点的直线AB平行于x轴,∴点A和点B关于直线x=1对称,),∵点A的坐标为(0,32).∴B点坐标为(2,32故答案为(2,32). 14.答案:140解析:此题考查了圆周角定理以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先连接AD ,由等腰△ABC 中,AB =AC ,以AB 为直径的半圆交BC 于点D ,可得∠BAD =∠CAD =20°,即可得∠ABD =70°,继而求得∠AOD 的度数,则可求得AD ⌒的度数. 解:如图,连接AD 、OD ,∵AB 为直径,∴∠ADB =90°, 即AD ⊥BC ,∵AB =AC ,∴∠BAD =∠CAD =12∠BAC =20°,BD =DC ,∴∠ABD =70°,∴∠AOD =140°,∴AD ⌒的度数为140°.故答案为140. 15.答案:54π解析:解:∵S △ABC =S △AB 1C 1,∴S 阴影=S 扇形ABB 1=50360πAB 2=54π. 故答案为:54π.根据旋转的性质可知S △ABC =S △AB 1C 1,由此可得S 阴影=S 扇形ABB 1,根据扇形面积公式即可得出结论.本题考查了旋转的性质以及扇形的面积公式,解题的关键是找出S阴影=S扇形ABB1.本题属于基础题,难度不大,解决该题型题目时,根据旋转的性质找出阴影部分的面积等于扇形的面积是关键.16.答案:70或110解析:解:根据圆周角定理,得弦AB所对的圆周角=140°÷2=70°或180°−70°=110°.故答案为70或110.此题要分情况考虑:弦对了两条弧,则两条弧所对的圆周角有两类.再根据一条弧所对的圆周角等于它所对的圆心角的一半,进行计算.此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弦所对的圆周角有两种情况.17.答案:3解析:本题考查反比例函数系数K的几何意义、反比例函数图象上点的坐标特征、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.作PE⊥OC于E,EP的延长线交AB于F.利用S阴=12⋅OC⋅PE+12⋅AB⋅PF=12⋅CO⋅EF=12S矩形ABCO解答即可.解:作PE⊥OC于E,EP的延长线交AB于F.∵S阴=12⋅OC⋅PE+12⋅AB⋅PF=12⋅CO⋅EF=12S矩形ABCO=3.故答案为3.18.答案:1解析:解:∵AB ⊥BC ,∴∠ABC =90°,∵∠APB =90°,∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小,在Rt △BCO 中,∵∠OBC =90°,BC =3,OB =12AB =4, ∴OC =√OB 2+BC 2=5,∴PC =OC −OP =5−4=1.∴线段CP 长的最小值为1.故答案为:1.首先证明点P 在以AB 为直径的⊙O 上,连接OC 与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC 即可解决问题.本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P 位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.19.答案:解:原式=(√22)2+3×√33×√3−2×12 =12+3−1 =212.解析:直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.答案:解:(1)如图所示:主视图和俯视图即为所求;(2)如图所示:左视图即为所求.解析:此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.(1)直接利用主视图以及俯视图观察角度分别得出其视图即可;(2)直接利用这个几何体的主视图和俯视图不变,得出符合题意答案.21.答案: 解:(1)画树状图:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)=312=14,∴小颖参加比赛的概率为14.(2)不公平.理由:∵P(小颖参加比赛)=14,P(小亮参加比赛)=34,P(小颖参加比赛)≠P(小亮参加比赛),∴游戏不公平.游戏规则可修改为若两个数字之和小于5,小颖去参加比赛;否则,小亮去参加比赛.解析:本题考查的是树状图表示概率以及利用概率的知识对游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.22.答案:解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元),填写表格如下:蔬菜的批发量(千克)… 25 60 75 90 … 所付的金额(元) … 125 300 300 360 …(2)设该一次函数解析式为y =kx +b(k ≠0),把点(5,90),(6,60)代入,得{5k +b =906k +b =60, 解得:{k =−30b =240. 故该一次函数解析式为:y =−30x +240;(3)设当日可获利润W(元),日零售价为x 元,由(2)知,W =(−30x +240)(x −5×0.8)=−30(x −6)2+120,∵−30x +240≥75,即x ≤5.5,∴当x =5.5时,当日可获得利润最大,最大利润为112.5元.解析:此题主要考查了待定系数法求一次函数解析式以及二次函数的应用,根据销售问题的相等关系得出W 与x 的函数关系式是解题关键.(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y =kx +b(k ≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x −4),进而利用配方法求出函数最值即可.23.答案:解:设细线OB 的长度为x cm ,过点A 作AD ⊥OB 于D ,则∠ADM =90°,∵∠ANM =∠DMN =90°,∴四边形ANMD 是矩形,∴AN =DM =14,∴DB =14−5=9,∴OD =x −9,在Rt △AOD 中,cos∠AOD =OD AO ,∴cos66°=x−9x ≈0.40,解得:x ≈15,答:细线OB 的长度约为15cm .解析:本题考查解直角三角形的应用,解此题关键是把实际问题转化为数学问题,本题只要把实际问题抽象到三角形中,根据线段之间的转换列方程即可.设细线OB 的长度为xcm ,作AD ⊥OB 于D ,证出四边形ANMD 是矩形,得出AN =DM =14cm ,求出OD =x −9,在Rt △AOD 中,由三角函数得出方程,解方程即可.24.答案:证明:连接OA ,∵∠ABC 是AC⏜所对的圆周角且∠ABC =60°, ∴∠AOC =2∠B =120°,又∵OA =OC ,∴∠OAC =∠OCA =30°,又∵AP =AC ,∴∠P =∠ACP =30°,∴∠OAP =∠AOC −∠P =90°,∴OA ⊥PA ,∴PA 是⊙O 的切线.解析:本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理. 连接OA ,根据圆周角定理求出∠AOC ,再由OA =OC 得出∠ACO =∠OAC =30°,再由AP =AC 得出∠P =30°,继而由∠OAP =∠AOC −∠P ,可得出OA ⊥PA ,从而得出结论.25.答案:解:(1)将点A 、B 代入抛物线y =−x 2+ax +b 可得{−1+a +b =0−9+3a +b =0, 解得{a =4b =−3, ∴抛物线的解析式为:y =−x 2+4x −3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标=0+32=32, ∵点P 在抛物线y =−x 2+4x −3上,∴y P =−94+4×32−3=34 ,∴点P 的坐标为(32,34),(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32)∴BC =√(32)2+32=3√52, ∴sin∠OCB =OB BC =2√55.解析:本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P 的坐标是解答此题的关键.(1)将点A 、B 代入抛物线y =−x 2+ax +b ,解得a ,b 可得解析式;(2)由C 点横坐标为0可得P 点横坐标,将P 点横坐标代入(1)中抛物线解析式,易得P 点坐标;(3)由P 点的坐标可得C 点坐标,由B 、C 的坐标,利用勾股定理可得BC 长,利用sin∠OCB =OB :BC 可得结果.。

相关文档
最新文档