高一数学一元二次不等式解法练习题及

合集下载

一元二次不等式解法练习题及答案

一元二次不等式解法练习题及答案

高一数学一元二次不等式例题例1 解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()答 (1){x|x <2或x >4} (2){x|1x }≤≤32 (3)∅ (4)R (5)R【介绍定义域】例有意义,则的取值范围是.2 x x 2--x 6解 x ≥3或x ≤-2.练习:例3 若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( )[ ]A a xB x a .<<.<<11a a C x aD x x a.>或<.<或>x aa 11分析比较与的大小后写出答案.a 1a 解∵<<,∴<,解应当在“两根之间”,得<<.选. 0a 1a a x A 11a a【求a 、b 的值】例4 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪b a a ()()1211122×得 a b ==-1212,.练习:1、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________. 2、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.3、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解集是________________________.例不等式+>的解集为5 1x 11-x[] A .{x|x >0} B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C .例与不等式≥同解的不等式是6 0x x --32[] A .(x -3)(2-x)≥0 B .0<x -2≤1 C .≥230--xx D .(x -3)(2-x)≤0选B .【有关判别式】例7、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2- 例8、不等式()20ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥。

高中数学《一元二次不等式的解法》习题(含解析)

高中数学《一元二次不等式的解法》习题(含解析)

解得 x 2 或 x 2 ,即不等式的解集为{x | x 2 或 x 2};
(2)设 t x 0 ,则不等式 2x x 1 ,可化为 2t 2 t 1 0 ,
解得 t 1或 t 1 (舍去),即 2
x 1 ,解得 x 1 ,即不等式的解集为 { x | x 1} .
所以

的真子集,
所以
或 ,解得

所以 的取值范围是 17.解下列不等式:
或.
(1) x4 x2 2 0 ;
(2) 2x x 1 . 【答案】(1){x | x 2 或 x 2};(2) { x | x 1} .
【解析】
(1)由题意,可得不等式 x4 x2 2 (x2 2)(x2 1) 0 ,解得 x2 2 ,
【解析】
3x2 x 2 0 , 即 (x 1)(3x 2) 0 ,
即 1 x 2 , 3
故 x 取值范围是 (1, 2) . 3
11.不等式
2x 1 x 1
3
的解集为_____________
【答案】 (4, 1)
【解析】
由题意,不等式
2x 1 x 1
3 ,即
2x 1 x 1
3
2x
1 3x x 1
x x
5 2
0},则
A
B
(
)
A.{x |1 x 2} B.{x |1 x 2} C.{x | 2 x 4} D.{x|2<x≤4}
【答案】D 【解析】
依题意 A 1, 4, B 2,5 ,故 A B 2, 4.
6.若不等式 ax2 x a 0 对一切实数 x 都成立,则实数 a 的取值范围为( )
当 m 1 0 时,即 m 1时,此时不等式 1 0 恒成立,满足题意; 当 m 1 0 时,即 m 1 时,则 [3(m 1)]2 4(m 1)(m) 0 ,即 (m 1)(13m 9) 0 , 解得 9 m 1;

(完整)高中数学一元二次不等式练习题

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=∆ 0>∆ 0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象()002>=++a c bx ax的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1) (x+4)(x+5)2(2-x)3<0 x 2-4x+1 3x 2-7x+2 ≤1 解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}.(2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图不等式解集为{x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2-4 -5 2 21 1 3 1一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x31、03282>--x x 32、031082≥-+x x 33、041542<--x x34、02122>--x x 35、021842>-+x x 36、05842<--x x1.(2012年高考上海卷)不等式2-x x +4>0的解集是________. 2.已知不等式ax 2+bx +c <0(a ≠0)的解集是R ,则( )A .a <0,Δ>0B .a <0,Δ<0C .a >0,Δ<0D .a >0,Δ>03.不等式x 2x +1<0的解集为( ) A .(-1,0)∪(0,+∞) B .(-∞,-1)∪(0,1)C .(-1,0)D .(-∞,-1)4.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z },若P ∩Q ≠∅,则m 等于( )A .1B .2C .1或25D .1或2X k b 1 . c o m 5.如果A ={x |ax 2-ax +1<0}=∅,则实数a 的集合为( )A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}6.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2} C .{x |-1≤x ≤2} D .{x |-1≤x <2}二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.(1)03222<--a ax x (2)0)1(2<--+a x a x。

高中数学一元二次不等式及其解法检测题(附答案)

高中数学一元二次不等式及其解法检测题(附答案)

高中数学一元二次不等式及其解法检测题(附答案)1.下列不等式的解集是的为()A.x2+2x+10 B.x20C.(12)x-1<0 D.1x-3>1x答案:D2.若x2-2ax+20在R上恒成立,则实数a的取值范围是()A.(-2,2] B.(-2,2)C.[-2,2) D.[-2,2]解析:选D.=(-2a)2-410,-22.3.方程x2+(m-3)x+m=0有两个实根,则实数m的取值范围是________.解析:由=(m-3)2-4m0可得.答案:m1或m94.若函数y=kx2-6kx+k+8的定义域是R,求实数k的取值范围.解:①当k=0时,kx2-6kx+k+8=8满足条件;②当k>0时,必有=(-6k)2-4k(k+8)0,解得0<k1.综上,01.一、选择题1.已知不等式ax2+bx+c<0(a0)的解集是R,则()A.a<0,>0 B.a<0,<0C.a>0,<0 D.a>0,>0答案:B2.不等式x2x+1<0的解集为()A.(-1,0)(0,+) B.(-,-1)(0,1)C.(-1,0) D.(-,-1)答案:D3.不等式2x2+mx+n0的解集是{x|x>3或x<-2},则二次函数y=2x2+mx+n的表达式是()A.y=2x2+2x+12 B.y=2x2-2x+12C.y=2x2+2x-12 D.y=2x2-2x-12解析:选D.由题意知-2和3是对应方程的两个根,由根与系数的关系,得-2+3=-m2,-23=n2.m=-2,n=-12.因此二次函数的表达式是y=2x2-2x-12,故选D.4.已知集合P={0,m},Q={x|2x2-5x<0,xZ},若P,则m等于()A.1 B.2C.1或25 D.1或2X k b 1 . c o m解析:选D.∵Q={x|0<x<52,xZ}={1,2},m=1或2. 5.如果A={x|ax2-ax+1<0}=,则实数a的集合为() A.{a|0<a<4} B.{a|0a<4}C.{a|0<a D.{a|04}解析:选D.当a=0时,有1<0,故A=.当a0时,若A=,则有a>0=a2-4a0<a综上,a{a|04}.6.某产品的总成本y(万元)与产量x(台)之间的函数关系式为y=3000+20x-0.1x2(0<x<240,xN),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是()A.100台 B.120台C.150台 D.180台解析:选C.3000+20x-0.1x225xx2+50x-300000,解得x -200(舍去)或x150.二、填空题7.不等式x2+mx+m2>0恒成立的条件是________.解析:x2+mx+m2>0恒成立,等价于<0,即m2-4m2<00<m<2.答案:0<m<28.(2019年高考上海卷)不等式2-xx+4>0的解集是________.解析:不等式2-xx+4>0等价于(x-2)(x+4)<0,-4<x<2.答案:(-4,2)9.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和与t之间的关系)式为s=12t2-2t,若累积利润s超过30万元,则销售时间t(月)的取值范围为__________.解析:依题意有12t2-2t>30,解得t>10或t<-6(舍去).答案:t>10三、解答题10.解关于x的不等式(lgx)2-lgx-2>0.解:y=lgx的定义域为{x|x>0}.又∵(lgx)2-lgx-2>0可化为(lgx+1)(lgx-2)>0,lgx>2或lgx<-1,解得x<110或x>100.原不等式的解集为{x|0<x<110或x>100}.11.已知不等式ax2+(a-1)x+a-1<0对于所有的实数x 都成立,求a的取值范围.解:当a=0时,不等式为-x-1<0x>-1不恒成立.当a0时,不等式恒成立,则有a<0,<0,即a<0a-12-4aa-1<0a<03a+1a-1>0a<0a<-13或a>1a<-13.即a的取值范围是(-,-13).12.某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,政府决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少52t万亩,为了既可减少耕地的损失又可保证此项税收一年不少于9000万元,则t应在什么范围内?解:由题意知征收耕地占用税后每年损失耕地为(20-52t)万亩.则税收收入为(20-52t)24000t%.由题意(20-52t)24000t%9000,整理得t2-8t+150,解得35.当耕地占用税率为3%~5%时,既可减少耕地损失又可保证一年税收不少于9000万元.。

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析1. 8.二次不等式ax2+bx+c<0的解集是R的条件是()A.B.C.D.【答案】D【解析】有题意知二次函数的图象恒在轴的下方,所以开口向下,与轴没有交点,.【考点】二次函数恒成立的问题.2.不等式的解集是()A.B.C.D.【答案】A【解析】,故选A,注意分解因式后变量系数的正负.【考点】解不等式.3.设函数,(1)若不等式的解集.求的值;(2)若求的最小值.【答案】(1)(2)9【解析】(1)由二次不等式的解集与对应方程根之间的关系可知:-1和3是方程的二实根,由此可得到关于a,b的二元一次方程组,解此方程组得到a,b的值;(2)由得到,利用基本不等式就可求得的最小值.试题解析:(1)因为不等式的解集,所以-1和3是方程的二实根,从而有:即解得:.(2)由得到,所以,当且仅当时“=”成立;所以的最小值为9.【考点】1.一元二次不等式;2.基本不等式.4.若关于的不等式的解集,则的值为_________.【答案】【解析】由题意得,为方程的两根,且由得又由得:【考点】不等式解集与方程根的关系5.若不等式ax2+bx+2>0的解集为,则a-b=________.【答案】-10【解析】由题意得:为方程的两根,且由韦达定理得:【考点】一元二次不等式解集与一元二次方程根的关系6.已知集合若,则实数m的取值范围是()【答案】当时,m的取值范围是【解析】思路分析:因为,,所以,应注意讨论或的情况。

①当时,方程无实根,只需判别式小于0.②当,时,方程的根为非负实根,利用一元二次方程根的分布加以讨论。

解:①当时,方程无实根,所以所以②当,时,方程的根为非负实根,设方程的两根为则即解得综上,当时,m的取值范围是【考点】集合的运算,不等式(组)的解法。

点评:中档题,本题易忽视的情况而出错。

当,时,注意结合二次函数的图象和性质,讨论根的分布情况。

7.不等式组的解集是()A.B.C.D.【答案】C【解析】根据题意,由于不等式组可知,对于,,然后求解交集得到结论为,故答案为C.【考点】不等式的解集点评:主要是考查了一元二次不等式的求解,属于基础题。

人教版-数学-高一-必修一-1.3-7-一元二次不等式与分式不等式的解法.

人教版-数学-高一-必修一-1.3-7-一元二次不等式与分式不等式的解法.
含有一个未知数,且未知数最高次数为2的 不等式。
一元二次不等式的定义
只含有一个未知数,并且未知数的最高次数是 2的不等式,称为一元二次不等式。
常见形式:
1, ax2 bx c>0(a>0)
2, ax2 bx c <0(a>0)
3, ax2 bx c >0(a<0)
4, ax2 bx+c <0(a<0)
1.求函数y x2 4x 9的定义域.
2.若关于x的一元二次方程x2-(m+1)xm=0有两个不等实根,求m的取值范围.
3.
若不等式ax2
bx
2
0的解集是x
1 2
x
1 3
则a -12 , b -2 .
例3:解不等式 x2 2x 3 0 化正x2 2x 3 0
解一元二次不等式的基本步骤 (1)化正——把二次项系数化成正数;
回顾:一元一次不等式的解法 画图——求根——定范围
根据一次函数y=2x-8的图象,填空: 当x =4 时,y=0; 当x >4 时,y>0;解2x-8>0 当x <4 时,y<0.
1. 已知函数y=x2-5x
(1)画出函数的图像
(2)当x取何值时,y=0;
y
当x取何值是,y>0;
当x取何值时,y<0 ?
判别式 =b2-4ac
二次函数 y=ax2+bx+c
(a>0)
>0 y
x1
x2 x
0 y
x x1=x2
<0 y
x
一元二次方程 ax2+bx+c=0
有两个相异的
实根x1,x2 x1<x2
有两个相等实根 x1=x2

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

高一数学新教材解含参一元二次不等式练习及答案

高一数学新教材解含参一元二次不等式练习及答案

“解含参一元二次不等式”数学练习(9.27)班级:___________ 姓名:___________一、解答题1.解关于x 的不等式:()22210x m x m m -+++<.2.解关于x 的不等式:()210x x a a --->.3.解关于x 的不等式()()21440ax a x a ---<∈R .4.若R a ∈,解关于x 的不等式2(1)10ax a x +++>.5.解关于x 的不等式()222R ax x ax a ≥-∈-.6.当a ≤0时,解关于x 的不等式()21220ax a x +--≥.7.解关于x 的不等式:()2220mx m x +-->.8.解关于x 的不等式22(1)40()ax a x a R -++>∈.9.解关于x 的不等式 220x x a ++>.10.解关于x 的不等式2220ax x a +-+>“解含参一元二次不等式”数学练习参考答案(9.27) 1.(,1)m m +【分析】把已知不等式的左边因式分解,判断出对应方程两根大小后,利用不等式解法求得解集.【详解】解:由题意得:1m m <+又()2221()(1)0x m x m m x m x m -+++=---<∴解得不等式解为:1m x m <<+∴不等式()22210x m x m m -+++<的解集为(,1)m m +.2.见解析【解析】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->,讨论12a >,12a =,12a <三种情况计算得到答案.【详解】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->.①当12a >时,1a a ,解集为{x x a >,或}1x a <-; ①当12a =时,1a a ,解集为12x x ⎧⎫≠⎨⎬⎩⎭; ①当12a <时,1a a <-,解集为{x x a <,或}1x a >-. 综上所述, 当12a >时,原不等式的解集为{x x a >,或}1x a <-; 当12a =时,原不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当12a <时,原不等式的解集为{x x a <,或}1x a >-. 【点睛】本题考查了含参不等式的解法,考查了分类讨论的数学思想,属于常考题型. 3.答案见解析【分析】分0a =和0a ≠讨论,当0a ≠时,由原不等式可得()140x x a ⎛⎫-+< ⎪⎝⎭,讨论1a 与4-的大小关系即可得出不等式的解.【详解】①当0a =时,原不等式可化为40x --<,解得4x >-;①当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ①当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <①>当14a =-,即14a =-时,解得4x <-或4x >-; <①>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-; 当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭. 4.答案见解析. 【分析】分类讨论求解含参数的一元二次不等式作答.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>, 当0a <时,1()(1)0x x a ++<,解得11x a-<<-, 当0a >时,1()(1)0x x a++>, 若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-, 所以当0a <时,原不等式的解集是{}|11x x a-<<-;当0a =时,原不等式的解集是{|1}x x >-; 当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-. 5.详见解析.【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;①当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 6.答案见解析【分析】不等式化简为(ax +1)(x -2)≥0,分类讨论a =0,12a =-,102a -<<及12a <-,求出不等式的解集,即可求出答案.【详解】解:由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔①当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a-≤≤, 综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =;当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭. 7.答案见解析【分析】对m 进行分类讨论,结合一元二次不等式的解法求得不等式的解集.【详解】当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m<<-; 当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 8.答案见解析.【分析】对a 分0a =、0a <、01a <<、 1a =和1a >五种情况讨论得解.【详解】当0a =时,不等式240x -+>的解为2x <;当0a ≠时,不等式对应方程的根为2x a=或2, ①当0a <时,不等式22(1)40()ax a x a R -++>∈即 ()()220ax x --+<的解集为2,2a ⎛⎫ ⎪⎝⎭; ①当01a <<时,不等式()()220ax x -->的解集为 2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; ①当1a =时,不等式()220x +>的解集为 (,2)(2,)-∞⋃+∞;①当1a >时,不等式()()220ax x -->的解集为 2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 综上所述,当0a =时,不等式解集为(),2-∞;当0a <时,不等式的解集为2,2a ⎛⎫ ⎪⎝⎭; 当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【点睛】易错点睛:解答本题有两个易错点:(1)漏掉0a =这一种情况,因为不确定不等式是不是一元二次不等式,所以要讨论;(2)当0a ≠时,分类出现错误或遗漏. 9.分类讨论,答案见解析.【分析】利用含参一元二次方程不等式的解法求解.【详解】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,①当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,①当10a ->即1a <时,由220x x a ++=解得:1211x x =-=-1a ∴<时,不等式的解集是{|1>-x x 1<-x ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|1>-x x 1<-x ,10.答案不唯一,具体见解析【分析】原不等式可化为()()120x ax a +-+>.然后分0a =,0a >和0a <三种情况求解不等式【详解】解:关于x 的不等式2220ax x a +-+>可化为()()120x ax a +-+>.(1)当0a =时,()210x +>,解得{}|1x x >-.(2)当0a >,所以()210a x x a -⎛⎫+-> ⎪⎝⎭. 所以方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为-1和2a a -, 当21a a --<,即1a >时,不等式的解集为{|1x x <-或2a x a ->}, 当21a a --=,即1a =时,不等式的解集为{}|1x x ≠-. 当21a a -->,即01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1x >-},. (3)当0a <时,()210a x x a -⎛⎫+-< ⎪⎝⎭. 因为方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为—1和2a a -, 又因为2211a a a-=->,所以21a a --<,. 即不等式()210a x x a -⎛⎫+-< ⎪⎝⎭的解集是2|1a x x a -⎧⎫-<<⎨⎬⎩⎭, 综上所述:当0a <时,不等式的解集为2|1a x x a -⎧⎫-<<⎨⎬⎩⎭ 当0a =时,不等式的解集为{}1x x -,当01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1}x >- 当1a =时,不等式的解集为{}|1x x ≠-,当1a >时,不等式的解集为{|1x x <-或2a x a->},。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学一元二次不等式解法练习题及答案例若<<,则不等式--<的解是1 0a 1(x a)(x )01a[ ]A a xB x a.<<.<<11aaC x aD x x a.>或<.<或>x aa11分析比较与的大小后写出答案. a 1a解∵<<,∴<,解应当在“两根之间”,得<<.选.0a 1a a x A 11a a例有意义,则的取值范围是.2 x x 2--x 6分析 求算术根,被开方数必须是非负数.解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪baa()()1211122×得a b ==-1212,.例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).答 (1){x|x <2或x >4}(2){x|1x }≤≤32(3)∅(4)R (5)R说明:不能使用解公式的时候要先变形成标准形式.例不等式+>的解集为5 1x 11-x[ ]A .{x|x >0}B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x -1>0,即x >1.选C .说明:本题也可以通过对分母的符号进行讨论求解.例与不等式≥同解的不等式是6 0x x--32[ ]A .(x -3)(2-x)≥0B .0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0解法一原不等式的同解不等式组为≥,≠. ()()x x x ---⎧⎨⎩32020 故排除A 、C 、D ,选B .解法二≥化为=或-->即<≤x 320x 3(x 3)(2x)02x 3--x两边同减去2得0<x -2≤1.选B . 说明:注意“零”.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1[ ]A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a -答 选C .说明:注意本题中化“商”为“积”的技巧.例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}.说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 例9 已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2≤,若,求的范围.0}B A a ⊆分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关系,结合,利用数形结合,建立关于的不等式.B A a ⊆解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*)(1)B B A 0若=,则显然,由Δ<得∅⊆4a 2-4(a +2)<0,解得-1<a <2.(2)B (*)116若≠,则抛物线的图像必须具有图-特征:∅ 应有≤≤≤≤从而{x|x x x }{x|1x 4}12⊆12a 12042a 4a 201412a 22-·++≥-·++≥≤≤解得≤≤a a--⎧⎨⎪⎪⎩⎪⎪22187综上所述得的范围为-<≤.a 1a 187说明:二次函数问题可以借助它的图像求解. 例10 解关于x 的不等式(x -2)(ax -2)>0.分析 不等式的解及其结构与a 相关,所以必须分类讨论. 解 1° 当a =0时,原不等式化为 x -2<0其解集为{x|x <2};2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解集为22a a{x|2ax 2}<<; 3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解集为22a a{x|x 2x }<或>;2a4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解集是22a a{x|x x 2}<或>.2a从而可以写出不等式的解集为: a =0时,{x|x <2};a 0{x|2ax 2<时,<<};0a 1{x|x 2x }<<时,<或>;2aa =1时,{x|x ≠2};a 1{x|x x 2}>时,<或>.2a说明:讨论时分类要合理,不添不漏.例11 若不等式ax 2+bx +c >0的解集为{x|α<x <β}(0<α<β),求cx 2+bx +a <0的解集.分析 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:解法一 由解集的特点可知a <0,根据韦达定理知:-=α+β,=α·β.bac a⎧⎨⎪⎪⎩⎪⎪ 即=-α+β<,=α·β>.ba c a()00⎧⎨⎪⎪⎩⎪⎪∵a <0,∴b >0,c <0.又×,b a a c b c= ∴=-α+β①由=α·β,∴=α·β②b c c a a c (1)111对++<化为++>,cx bx a 0x x 022b c ac由①②得α,β是++=两个根且α>β>,1111x x 002b c a c∴++>即++<的解集为>α或<β.x x 0cx bx a 0{x|x x }22b c a c 11 解法二 ∵cx 2+bx +a =0是ax 2+bx +a =0的倒数方程. 且ax 2+bx +c >0解为α<x <β,∴++<的解集为>α或<β.cx bx a 0{x|x x } 211说明:要在一题多解中锻炼自己的发散思维.例解关于的不等式:<-∈.12 x 1a(a R)xx -1分析 将一边化为零后,对参数进行讨论.解原不等式变为--<,即<, (1a)00x x ax a x -+--111进一步化为(ax +1-a)(x -1)<0.(1)当a >0时,不等式化为(x )(x 1)01{x|a 1a x1}--<,易见<,所以不等式解集为<<;a a a a ---11(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-·->,易见>,所以不等式解集为<或>.a a a aa a---111综上所述,原不等式解集为:当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1ax 1}a 0{x|x 1}a 0{x|x x 1}--a a1例13 (2001年全国高考题)不等式|x 2-3x|>4的解集是________. 分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.由可解得<-或>,.(1)x 1x 4(2)∅答 填{x|x <-1或x >4}.例14 (1998年上海高考题)设全集U=R,A={x|x2-5x-6>0},B={x||x-5|<a}(a是常数),且11∈B,则[ ] A.(U A)∩B=RB.A∪(U B)=RC.(U A)∪(U B)=RD.A∪B=R分析由x2-5x-6>0得x<-1或x>6,即A={x|x<-1或x>6}由|x-5|<a得5-a<x<5+a,即B={x|5-a<x<5+a}∵11∈B,∴|11-5|<a得a>6∴5-a<-1,5+a>11 ∴A∪B=R.答选D.说明:本题是一个综合题,涉及内容很广泛,集合、绝对值不等式、一元二次不等式等内容都得到了考查。

相关文档
最新文档