数字化设计与虚拟样机技术
虚拟样机技术在产品设计中的应用

虚拟样机技术在产品设计中的应用随着科技的不断发展,虚拟样机技术在产品设计中的应用越来越广泛。
虚拟样机是一种通过计算机模拟的方式,在产品开发之前构建产品的虚拟模型。
它可以模拟产品的外观、结构和性能,帮助设计师在产品开发的早期阶段发现和解决潜在问题,提高产品设计的效率和质量。
首先,虚拟样机技术可以帮助设计师实现快速迭代。
在传统的产品设计中,设计师通常需要制作多个实物样机来进行测试和改进。
这不仅花费时间和金钱,还增加了开发周期。
而借助虚拟样机技术,设计师可以在计算机上快速制作和修改产品的虚拟模型,通过模拟仿真测试,快速发现潜在问题并进行改进。
这样一来,设计师可以快速迭代,减少了试错的成本和时间,提高了产品开发的效率。
其次,虚拟样机技术可以帮助设计师优化产品的外观和人机交互。
在产品设计的过程中,外观和人机交互是至关重要的因素。
借助虚拟样机技术,设计师可以在计算机上进行虚拟的三维建模和渲染,模拟产品在不同环境和使用场景下的真实表现。
通过虚拟样机,设计师可以实现对产品外观的快速修改和优化,以及对用户体验的评估和改善。
这样一来,设计师可以更好地满足用户的需求,提高产品的竞争力。
此外,虚拟样机技术还可以帮助设计师评估产品的可制造性和可维护性。
在产品设计的早期阶段,如果设计师没有充分考虑到产品的制造和维护过程,可能会导致生产效率低下、成本增加或者后期维护困难等问题。
通过采用虚拟样机技术,设计师可以在计算机上模拟产品的制造和维护过程,评估产品在实际生产和使用中的可行性,并进行相应的改进。
这样一来,设计师可以提前解决潜在问题,降低产品的制造和维护成本,提高产品的可制造性和可维护性。
最后,虚拟样机技术还可以帮助设计师进行产品展示和宣传。
在产品的市场推广过程中,展示和宣传是至关重要的环节。
借助虚拟样机技术,设计师可以在计算机上通过渲染和动画技术,实现对产品的高逼真度展示。
这不仅可以提高产品的吸引力和竞争力,还可以降低产品推广的成本。
机械创新设计中的虚拟样机技术

机械创新设计中的虚拟样机技术引言:随着科技的快速发展,机械创新设计正朝着数字化、虚拟化的方向迅猛发展。
虚拟样机技术作为数字化设计的重要组成部分,可以帮助工程师和设计师在机械创新设计过程中降低成本、缩短时间,并提高产品的可靠性和可持续性。
本文将重点探讨机械创新设计中虚拟样机技术的应用以及对设计过程的影响和优势。
一、虚拟样机技术在机械创新设计中的应用虚拟样机技术是指利用计算机模拟和仿真的方法来生成机械产品的三维模型,并对其进行各种工程分析和测试,以验证设计的可行性和优化产品性能。
在机械创新设计中,虚拟样机技术可以应用于以下几个方面:1. 产品设计和结构优化:通过虚拟样机技术,设计师可以在计算机上创建产品的三维模型,并进行结构优化和功能分析。
这样可以避免传统样机制作过程中的材料浪费和时间消耗,同时提高设计的灵活性和可调性。
2. 工艺规划和生产模拟:虚拟样机技术可以模拟生产过程并进行工艺规划,帮助企业降低成本、提高效率。
通过模拟机械产品的装配、制造和运行过程,工程师可以识别潜在的问题并进行改进,提高产品的质量和可靠性。
3. 故障分析和诊断:虚拟样机技术可以在设计阶段模拟产品的故障情况,并通过分析和诊断来找出问题所在。
这样可以提前预防和解决故障,减少产品的维修和召回成本。
二、虚拟样机技术对机械创新设计过程的影响和优势虚拟样机技术在机械创新设计过程中具有以下几个优势:1. 提高设计效率:传统的样机制作需要大量的时间和资源,而虚拟样机技术可以在计算机上进行模拟和仿真,大大加快了设计的速度和效率。
设计师可以通过快速生成和修改三维模型,迅速得到最佳设计方案。
2. 降低设计成本:传统样机制作需要消耗大量的材料和人力,而虚拟样机技术可以减少这些成本。
设计师可以通过虚拟样机进行多次优化和测试,减少实际制作样机的次数和成本。
3. 提高产品质量:虚拟样机技术可以在设计阶段模拟产品使用过程中的各种场景和负载情况,进行各种分析和测试,从而提前发现和解决潜在问题,提高产品的质量和性能。
虚拟样机技术汇总.ppt

几何建模的预备知识 1、几何体类型 刚体、柔性体、点质量、大地 2、几何体的命名 点质量:POINT_MASS_1 刚体:PART_2
建模前的准备工作 1、工作栅格的设置 2、坐标系的设置 3、单位的设置 4、确定当前所绘几何形体属于:新的构件、向现有 构件添加的几何形体、添加在地基上的几何构件。
第一章 绪论
1、1虚拟样机技术
1、概念:
机械工程中的虚拟样机技术又称为机械系统动态仿真技术,是国际上 20世纪80年代发展起来的一项计算机辅助工程(CAE)技术。工程师 在计算机上建立样机模型,对模型进行各种动态性能分析,然后改进样 机设计方案,用数字化形式代替传统的实物样机实验。
2、研究范围
主要是机械系统的运动学和动力学分析,其核心是利用计算机辅助分析
技术进行机械系统的运动学和动力学分析,以确定系统及其各构件在任
意时刻的位置、速度和加速度,同时,通过求解代数方程组确定引起系
统及其各构性质的分析
1、机械系统的静力学分析:刚性系统 2、机械系统的运动学分析:主要涉及系统及其构件的运 动分析 当机构的自由度=0时,进行运动学分析 3、机械系统的动力学分析:主要涉及由外力作用引起的 系统运动分析 当机构的自由度AMS/Controls:用户可以将基于几何外形的完整的 系统模型,便捷的放到所使用的控制系统设计软件所 定义的框图中。
ADAMS/Flex(柔性分析模块):提供了ADAMS软 件与其他有基本步骤
机械系统 的建模
ADAMS(Automatic Dynamic Analysis Mechanical System)软件是美国MDI公司(现已并入 MSC公司)开发的机械系统动力学仿真分析软件,是目前世 界上最具权威的,使用最广的机械动力学分析软件。
虚拟样机技术

包括:边缘倒角、边缘圆角、开孔、添加凸台、 抽壳等。
修改构件特性
修改构件质量、转动惯量和惯性积
几何建模
..\ADAMS实例教程.pdf
3、3 约束模型机构
模型构件创建结束后,要定义构件间的连接方式和相对 运动方式,就是对模型施加约束
约束类型 1、理想约束。包括转动副、移动副和圆柱副 等 2、虚约束。限制构件某个运动方向 3、运动产生器。例如,规定一个构件遵循某 个时间函数按指定的轨迹规律运动。 4、接触约束。定义两构件在运动中发生接触 时是怎样相互约束的。
第二 章 ADAMS软件
2、1 ADAMS软件模块介绍 ADAMS由基本模块、扩展模块、接口模块、 专业领域模块组成
基本模块:ADAMS软件包包括三个最基本的解题模块: ADAMS/View(基本环境) ADAMS/Solver(求解器) ADAMS/PostProcessor(后处理)
ADAMS/View(界面模块):样机建摸、样机模型 数据的输入和编辑、与求解器和后处理等程序的 自动连接、虚拟样机分析参数的设置、各种数据 的输入和输出、同其他应用程序的接口。
仿真结果 •回放仿真结果 分析 •绘制仿真结果曲线 验证仿真 •输入实验数据 分析结果 •添加实验数据曲线 与实验结果一致? •增加摩擦力 精制机械 •定义柔性物体和连接 系统模型 •定义控制 重复仿真 •设置可变参数 分析 •定义设计变量 •进行主要设计影响因素研究 机械系统 •进行试验研究 优化分析 •进行优化研究
试验研究(Design of Experiments,DOE)
试验设计可以考虑多个设计变量同时发生变化, 对样机性能的影响
优化研究(Optimization)
在满足各种设计条件和指定的变量变化范围内, 通过自动化的选择设计变量,由分析程序求取 目标函数的最大值和最小值。
数字化功能样机技术及MSC.ADAMS的使用

数字化功能样机技术及MSC.ADAMS的使用
1.2、虚拟样机技术的内容
• 功能虚拟样机(狭义的虚拟样机技术)
对应于产品分析过程,用于评价已装配系统整体上的功 能和操作性能;
该解决方案充分利用三维零件的多体模型和零件有限元
模型的模态表示,在虚拟实验室或虚拟试验场的试验中精确地 预测产品的操作性能,如运动/操纵性、振动/噪声、耐久性/
想,在这个设想中,以网络方式组织在一起的人们将协同工作, 以完成对产品的设计、分析、制造及技术支持。他们的工作将
以数字化的方式确定和分配,从而使得他们能够在任何时间、
任何地点协同或独立地工作。这种开发网络除了生产公司外, 还将包括供应商、合作伙伴及客户。”
6
数字化功能样机技术及MSC.ADAMS的使用
发技术将产品的模型定义在计算机上,利用计算机网络通讯的技术,
使处于异地的产品设计人员也可方便地进行交流,协同进行产品的开 发。除了包含设计、制造、装配、试验等专业人员外,还有可以有合
作开发伙伴以及具体的用户参加,这样便可以使产品的开发者与需求
者能共同进行产品的设计。由于这一切都是在对计算机中的产品数据 模型进行操作,使得产品的开发过程中发现的问题可以通过对产品模 型的调整得到迅速的解决。
• 虚拟产品开发具备的三个主要特点: (3)网络协同 虚拟产品开发是开发网络协同工作的结果,产品本身及其开发
过程的复杂性,使得单一公司或部门难以胜任全部的工作,往
往是由相关的部门和公司共同组成一个开发网络,协同开发。 虚拟产品开发的数字化特性以及现代网络技术的发展使得网络
协同成为现实,基于网络的协同开发和并行工程成为VPD的重要
传统的CAE技术主要指应用有限元软件,完成产品零部件
机械设计的数字化与虚拟样机技术

机械设计的数字化与虚拟样机技术随着科技的快速发展,机械设计领域也在经历着革命性的变化。
数字化与虚拟样机技术的应用,为机械设计提供了全新的思路和方法。
本文将探讨机械设计的数字化与虚拟样机技术,并分析其在实际应用中的优势和挑战。
一、数字化技术在机械设计中的应用随着计算机技术的不断进步,数字化技术在机械设计中得到了广泛应用。
传统的机械设计往往需要通过手绘图纸和物理模型来呈现设计方案,而数字化技术则可以实现全程电子化设计过程。
设计师可以利用CAD软件进行设计绘图,实现快速、精准的设计方案展示。
此外,数字化技术还可以应用于模拟仿真、数据分析等方面,帮助设计师更好地评估和改进设计方案。
二、虚拟样机技术在机械设计中的应用虚拟样机技术是近年来兴起的一种新型技术,通过构建虚拟的三维模型和仿真环境,实现对机械产品性能、结构等方面的模拟和评估。
虚拟样机技术可以帮助设计师在设计初期就进行全面的评估和验证,避免了传统样机制作中的种种不便和限制。
设计师可以在虚拟环境中对产品进行多方位的测试,发现并解决潜在的设计问题,从而提高设计效率和质量。
三、数字化与虚拟样机技术的优势数字化与虚拟样机技术的应用为机械设计带来了诸多优势。
首先,节约了设计时间和成本。
传统设计需要花费大量时间和成本在样机制作上,而数字化与虚拟样机技术可以在计算机上完成设计、仿真和评估,大大降低了制作实物样机的成本。
其次,提高了设计精度和效率。
数字化技术可以实现对设计方案的精准绘制和修改,虚拟样机技术则可以帮助设计师及早发现并解决问题,提高了设计的准确性和效率。
此外,数字化与虚拟样机技术还可以实现设计过程的可视化,便于设计师与团队成员之间的沟通和合作。
四、数字化与虚拟样机技术的挑战尽管数字化与虚拟样机技术带来了诸多优势,但在实际应用中仍然存在一些挑战。
首先,技术的复杂性。
数字化与虚拟样机技术需要设计师具备一定的计算机技能和专业知识,对于一些传统的设计师来说可能需要进行培训和学习。
论数字化设计及仿真

论数字化设计及仿真数字化设计推动信息化进程向前发展,而仿真则是验证设计结果的有效手段。
在现代制造企业产品设计和制造过程中,数字化设计和仿真一直是不可或缺的两个工具,在缩减经费、缩短开发周期、提高产品质量方面发挥了巨大作用。
从数字化设计和仿真两个方面介绍其发展历程、在制造业中的现状以及未来的发展趋势。
标签:数字化设计;仿真;虚拟样机技术我国工业信息化经历了多年的发展,从过去的产品设计、工艺设计、生产管理等所使用的文件都是纸张式发展到现在计算机产品数据管理(PDM),CAD/CAPP/CAM/MRP/ERP等数字化技术已经在企业中广泛应用,产品信息化正积极推动着工业化的发展。
产品数字化设计和仿真能大幅提高企业的产品开发能力、缩短产品研制周期、降低开发成本等,大大提高了企业的竞争力。
数字化设计与仿真技术集成了现代设计制造过程中的多项先进技术,包括三维建模、装配分析、优化设计、系统集成、产品信息管理、虚拟设计制造与仿真、多媒体和网络通讯等,是一项多学科的综合技术,在网络和计算机辅助下通过产品数据模型,全面模拟产品的设计、分析、装配、制造等过程。
1数字化设计技术的发展历程(1)CAx工具的广泛应用。
各种CAD/CAM工具自20世纪50年代开始出现,并逐步应用到制造业中,制造业已经开始利用现代信息技术来改进传统的产品设计,这标志着数字化设计的开始。
(2)并行工程思想的提出与推行。
并行工程作为一种新的产品开发的理念,在20世纪80年代后期提出,它吸收了计算机技术、信息技术的成果,成为产品数字设计的重要手段,是在现代信息技术作为背景支持下对传统的产品开发方式的一种根本性改进。
PDM(产品数据管理)技术及DFx(如DFM、DFA等)技术是并行工程思想在产品设计阶段的具体体现。
(3)虚拟样机技术的应用。
随着技术的不断进步,仿真在产品设计过程中的应用变得越来越广泛而深刻,由原先的局部应用(单领域、单点)逐步扩展到系统应用(多领域、全生命周期)。
机械设计中的仿真和虚拟样机技术

虚拟样机技术:在计算机上建立产品的三维模型,进行仿真分析和优化设计
作用:提高产品设计效率,减少物理试验成本,优化产品性能
应用领域:广泛应用于汽车、航空、航天、电子、机械等各个行业
与传统设计方法的区别
仿真和虚拟样机技术可以减少物理原型的制作,降低成本
仿真和虚拟样机技术可以提前发现设计中的问题,提高效率
船舶维护:通过虚拟样机技术对船舶进行维护和维修,提高维修效率和准确性
机械装备
汽车行业:仿真和虚拟样机技术用于汽车设计和制造,提高效率和准确性
航空航天行业:仿真和虚拟样机技术用于飞机、火箭等设备的设计和制造,提高安全性和可靠性
船舶行业:仿真和虚拟样机技术用于船舶设计和制造,提高效率和准确性
工程机械行业:仿真和虚拟样机技术用于挖掘机、推土机等设备的设计和制造,提高效率和准确性
仿真和虚拟样机技术人才短缺:需要加强人才培养,提高技术应用水平
仿真和虚拟样机技术的发展趋势和未来展望
6
智能化仿真技术
发展趋势:从传统的手工仿真到智能化仿真
应用领域:机械设计、航空航天、汽车制造等
未来展望:更加智能化、高效化,实现真正的虚拟制造
技术特点:自动化、智能化、高效化
云仿真技术
应用场景:复杂系统仿真、多学科优化设计、实时仿真
虚拟样机技术的优势:可以提高产品设计效率,降低成本,缩短研发周期
仿真和虚拟样机技术的应用场景
3
汽车行业
汽车设计:仿真技术用于优化汽车设计和性能
汽车制造:虚拟样机技术用于模拟生产过程,提高生产效率
汽车测试:仿真和虚拟样机技术用于模拟各种驾驶条件和环境,提高测试效率和安全性
汽车维修:虚拟样机技术用于远程诊断和维修,降低维修成本和时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字化设计与虚拟样机技术
无线测温
产品设计的数字化是企业信息化的重要内容。
近年来,随着产品复杂性的不断增长,以及企业间竞争的日趋激烈,传统的产品设计方法已经很难满足企业当前生存和发展的需要。
为了能在竞争中处于有利位置,实现产品设计数字化势在必行。
产品设计过程本质上是一个对信息进行采集、传递、加工处理的过程,其中包含了两种重要的活动:设计活动和仿真活动。
因此产品设计也可以看作是一个设计活动和仿真活动彼此交织相互作用的过程。
设计活动推动信息流程向前演进,而仿真则是验证设计结果的重要手段,二者关系如图1所示。
随着技术的发展,仿真的重要性正在不断加强。
目前为止数字化设计技术的发展历程可以大体上划分为以下三个阶段。
(1) CAx工具的广泛应用。
自20世纪50年代开始,各种CAD/CAM工具开始出现并逐步应用到制造业中。
这些工具的应用表明制造业已经开始将利用现代信息技术来改进传统的产品设计过程,标志着数字化设计的开始。
(2) 并行工程思想的提出与推行。
20世纪80年代后期提出的并行工程是一种新的指导产品开发的哲理,是在现代信息技术的支持下对传统的产品开发方式的一种根本性改进。
PDM(产品数据管理)技术及DFx(如DFM、DFA等)技术是并行工程思想在产品设计阶段的具体体现。
(3) 虚拟样机技术。
随着技术的不断进步,仿真在产品设计过程中的应用变得越来越广泛而深刻,由原先的局部应用(单
领域、单点)逐步扩展到系统应用(多领域、全生命周期)。
虚拟样机技术正是这一发展趋势的典型代表。
虚拟样机技术是一种基于虚拟样机的数字化设计方法,是各领域CAx/DFx技术的发展和延伸。
虚拟样机技术进一步融合先进建模/仿真技术、现代信息技术、先进设计制造技术和现代管理技术,将这些技术应用于复杂产品全生命周期、全系统,并对它们进行综合管理。
与传统产品设计技术相比,虚拟样机技术强调系统的观点、涉及产品全生命周期、支持对产品的全方位测试、分析与评估、强调不同领域的虚拟化的协同设计。
虚拟样机技术充分体现了图1所示的产品设计过程,全面突出了仿真的重要性。
虚拟样机技术的实施是一个渐进的过程,其中涉及到许多相关技术,如总体技术、多领域协同建模/仿真/评估技术、数据/过程管理技术、支撑框架技术等等。
下面主要提及三个关键技术。
虚拟样机管理技术。
虚拟样机开发过程中涉及到大量的人员、工具、数据/模型、项目/流程,对这些元素进行合理的组织和管理,使其构成一个高效的系统,实现整个开发过程中的信息集成和过程集成,是优质成功的进行虚拟样机开发的必要条件。
通过对当前并联机床的发展现状和趋势的分析,可以看出,集成化、一体化、数字化的并联机床快速开发平台能够大大缩短并联机床的设计开发周期、实现最新设计理论和应用技术的集成和应用、保证设计过程的一体化,从而推动并联机床在理论方面的研究进展和在实际应用方面走向产业化的进程。
协同仿真技术。
协同仿真技术将面向不同学科的仿真工具结合起来构成统一的仿真系统,可以充分发挥仿真工具各自的优势,同时还可以加强不同领域开发人员之间的协调与合作。
目前HLA规范已经成为协同仿真的重要国际标准。
基于HLA的协同仿真技术也将会成为虚拟样机技术的研究热点之一。
多学科设计优化技术(MDO)。
复杂产品的设计优化问题可能包括多个优化目标和分属不同学科的约束条件。
现代的MDO
技术为解决学科间的冲突,寻求系统的全局最优解提供了可行的技术途径。
目前MDO技术在国外已经有了许多成功的案例,并出现了相关的商用软件,典型的如Engineous公司的iSIGHT。
国内关于MDO技术的研究和应用也已经展开。
纵观数字化设计技术的发展历程可以看出,虽然几十年来各种技术思想层出不穷,但时空两个方向上的协同始终是发展的主流。
宏观上看,数字化设计的发展历程正相当于现代信息技术在产品设计领域中的应用由点发展为线,再由线发展为面的过程。
仿真的广泛应用正在成为当前数字化设计技术发展的主要趋势。
随着虚拟样机概念的提出,使得仿真技术的应用更加趋于协同化和系统化。
开展关于虚拟样机及其关键技术的研究,必将提高企业的自主设计开发能力,推动企业的信息化进程。