spss统计分析及应用教程-第9章结构方程模型

合集下载

结构方程模型解读

结构方程模型解读

结构方程模型解读结构方程模型是一种统计分析方法,可以用来探究因变量和自变量之间的关系。

它是一种相对比较复杂的分析方法,但当被正确解读时,它有效地帮助研究者了解变量之间的关系以及变量如何影响彼此。

下面,我们将依次阐述如何理解结构方程模型。

一、构建模型:结构方程模型的第一步是构建模型。

这意味着研究者需要选择一个理论框架,并从中选择变量进行分析。

在选择变量时,研究者需要考虑变量之间的关系以及它们可能如何相互作用。

一旦选择了变量,研究者就需要确定变量之间的箭头方向,来表示它们之间的重要性和权重。

一般来说,箭头会从自变量指向因变量。

二、拟合模型:一旦成功地构建了模型,研究者需要拟合模型,这意味着他们需要在模型中添加数据并运行分析。

在这个步骤中,研究者采集数据,并将它们输入计算机程序中。

该程序将根据构建的模型来分析数据,并根据一些统计指标来计算模型的拟合度。

如果模型与数据的拟合度较高,则说明模型比较准确,反之则说明需要重新考虑模型结构。

三、解读结果:最后,研究者需要解读结果,这是最为挑战性的一步。

结果解释并不简单,因为它们可能包含了许多因素和变量。

因此,研究者需要进行更深层次的分析和理解,以找出关键的因素和变量之间的关系。

要解读结果,需要查看概览统计数据,包括R²值和残差,以及某些中介变量、潜在变量和多重潜在变量之间的关系。

这些数据将告诉研究者各个变量之间的影响力和关系。

在这里,研究者应该花时间来分析数据,并将其与模型进行对照。

如果模型与数据的拟合度很高,则研究者可以着手对数据中发现的关键变量进行更深入的分析。

总之,结构方程模型是一种富有成果的统计分析方法。

如果您正确地构建模型,并仔细解读结果数据,就可以从中得到非常好的结论。

★结构方程模型要点

★结构方程模型要点

★结构方程模型要点一、结构方程模型的模型构成1、变量观测变量:能够观测到的变量(路径图中以长方形表示)潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)内生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路中介变量:当内生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。

内生潜在变量:潜变量作为内生变量内生观测变量:内生潜在变量的观测变量外生潜在变量:潜变量作为外生变量外生观测变量:外生潜在变量的观测变量中介潜变量:潜变量作为中介变量中介观测变量:中介潜在变量的观测变量2、参数(“未知”和“估计”)潜在变量自身:总体的平均数或方差变量之间关系:因素载荷,路径系数,协方差参数类型:自由参数、固定参数自由参数:参数大小必须通过统计程序加以估计固定参数:模型拟合过程中无须估计(1)为潜在变量设定的测量尺度①将潜在变量下的各观测变量的残差项方差设置为1②将潜在变量下的各观测变量的因子负荷固定为1(2)为提高模型识别度人为设定限定参数:多样本间比较(半自由参数)3、路径图(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。

(2)常用记号:①矩形框表示观测变量②圆或椭圆表示潜在变量③小的圆或椭圆,或无任何框,表示方程或测量的误差单向箭头指向指标或观测变量,表示测量误差单向箭头指向因子或潜在变量,表示内生变量未能被外生潜在变量解释的部分,是方程的误差④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指向结果(内生)变量⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系⑦变量之间没有任何连接线,表示假定它们之间没有直接联系(3)路径系数含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)类型:①反映外生变量影响内生变量的路径系数②反映内生变量影响内生变量的路径系数路径系数的下标:第一部分所指向的结果变量第二部分表示原因变量(4)效应分解①直接效应:原因变量(外生或内生变量)对结果变量(内生变量)的直接影响,大小等于原因变量到结果变量的路径系数②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积③总效应:原因变量对结果变量的效应总和总效应=直接效应+间接效应4、矩阵方程式(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5x x ξδ=∧+ (1)y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)三、模型修正1、参考标准模型所得结果是适当的;所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;参考多个不同的整体拟合指数;2、修正原则①省俭原则两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。

spss统计分析和应用教程_第9章_结构方程模型

spss统计分析和应用教程_第9章_结构方程模型

模型识别
确定所设定的模型是否能够对其估计求解.,如果模型是可 识別的,表示理论上模型中的每一个参数都可以估计出唯一的一 个估计值.
模型识别结果包括不能识别<Under-Identified>、适度识别 <just-Identified>及过度识别<Over-Identified>三种.
❖ 模型识别
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标. 潜变量:其测量是通过一个或几个可观察指标来间接完成的. 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变量. 内生潜在变量:由模型内变量作用所影响的变量〔因变量.
〔3可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度,通 过评估标准之后,才将测量资料用于进一步的分析.
在结构方程模型中,则允许将因素测量与因素之间的结构关系纳 入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和效 度,还可以将测量信度的概念整合到路经分析等统计推理中.
❖ 请对大学生闲暇时间消费与满意度之间构 建结构方程模型.
❖ 实验步骤
❖ 结构方程分析由SPSS17.0软件中的 AMOS插件完成.下面以案例说明判别分析 的基本操作步骤.
❖ 实验步骤
〔1准备工作.在SPSSl7.0软件中安装AMOS插件后,先 调用SPSS17.0软件,打开数据文件9-1.sav,通过选择" 文件—打开"命令将数据调入SPSSl7.0的工作文件窗口.

SPSS-结构方程式模型

SPSS-结构方程式模型

SPSS-结构方程式模型使你的数据更会说话——结构方程式模型在市场调查中的应用内容提要:在IDC日常市场研究工作中一些高级数据分析方法得不到应有的问题普遍存在。

而结构方程式模型作为一种实证性的数据分析技术已经发展的相当完备了,它广泛运用于市场调查的各个方面,成为提供市场营销战略策略的有力工具。

这种实证性统计方法的运用可以提高数据分析结果的有效性和科学性。

希望通过介绍结构方程式模型的建构原理,并通过一个具体研究案例的介绍使IDC同事们能对此项技术有一定了解。

结构方程式中包括了主要的分析方法,在IDC 公司中较为常见的是利用SPSS软件进行相关数字变量分析。

由于篇幅有限,本文只介绍一些基本定义,详细的介绍请参看文章后面的参考书目。

一、结构方程式模型及其建构原理结构方程式模型(Structural Equation Modeling,简称SEM)或称为因果关系模型、协方差结构模型,或者直接称为LISRLE模型,这主要是因为LISREL是用来分析结构方程式模型的早期最流行的软件。

它是一种建立、估计和检验因果关系模型的多元统计分析技术。

它包含了回归分析(multiple regression)、因子分析(factor analysis)、路径分析(path analysis)和多元方差分析(multivariate analysis of variance)等一系列多元统计分析方法,是一种非常通用的、线性的、借助于理论进行假设检验的统计建模技术。

这一模型和方法由K.Joreskog与其合作者在70年代提出并逐步改进和完善,到90年代初期开始得到了广泛的应用。

随着SEM理论和分析软件的不断发展和完善,结构方程式模型不仅在市场研究中成为分析数据、检验理论的好工具,而且在心理学、社会学、计量经济学、管理学、行为科学和传播学等领域都得到了广泛的应用。

结构方程式模型本质上是利用联立方程求解。

我们希望的是模型拟合的再生数据尽可能接近原始数据,如果真是这样的话,假设的因果关系结构与变量间的相互关联模式就是拟合的或是一致的。

结构方程模型简介

结构方程模型简介

2019/7/26
20
模型评价:绝对指标
从设定模型的拟合和独立模型拟合之间 的比较得出的
卡方值与自由度的比值:1~3之间 (p>0.05)
GFI:>0.9 AGFI:>0.9 RMSEA:<0.08
2019/7/26
21
模型评价:相对指标
设定模型和特定模型的比较 规范拟合指数(NFI):设定模型和独立
2019/7/26
15
模型估计:方法选择1
最大似然估计和最小二乘估计 假定:观测变量是连续变量,具有多元
正态分布。 即使是在大样本的情况下,观测变量的
偏态性,尤其是在很高的峰度下,会导 致很差的估计以及不正确的标准误和偏 高的卡方值。
2019/7/26
16
模型估计:方法选择2
对偏态分布的变量进行转换; 去除奇异值; 采用加权最小二乘法
必须为模型中的每一个潜在变量建立一个测量 尺度。将潜在变量的方差设定为1;将潜在变量 的观测标识中任何的一个因子负载设定为一个 常数,通常为1
2019/7/26
14
模型识别:预防措施
预防不可识别的模型主要是有关参数的 设定,尽量减少自由参数的数目,让模 型简约。当模型中的变量之间有循环或 是双向关系,那么这个模型就是非递归 的,一般是不可识别的。
12
模型识别:不可识别的 原因
模型能否识别并不是样本的问题 原因: 1、自由度少 2、因子之间的相互作用,即双向作用
2019/7/26
13
模型识:判断方法
数据点的数目不能少于自由参数的数目。数据 点的数目就是观测变量的方差和协方差的数目。 自由参数的数目特指待定的因子载荷、通径系 数、潜在变量和误差项的方差、潜在变量之间 与误差项之间的协方差的总数

结构方程模型到底是啥?真的过时了吗

结构方程模型到底是啥?真的过时了吗

结构方程模型到底是啥?真的过时了吗文章转自:SPSS学堂作者:屠西茜本期我们对结构方程模型(SEM)进行初步介绍。

SEM将不可直接观察的概念,通过潜变量的形式,由多个观测变量构成,不仅可以估计测量过程中的误差,还能够评估测量的信度与效度。

探讨变量关系的同时,把测量过程产生的误差包含于分析过程之中,把测量信度的概念整合到路径分析等统计推断决策过程中。

在结构方程模型(SEM)中,将变量分为显变量(观测变量)和潜变量两种。

显变量是可以直接观测到的变量,如:身高、性别、被试在量表上的得分等,在结构方程模型图中用长方形表示;潜变量与显变量相对应,不可以直接观测,包括比较抽象的概念和由于种种原因不能准确测量的变量,需要借助显变量指标来估计。

比如社科研究中的自尊、信任、能力等。

在结构方程模型图中用椭圆形表示。

根据变量间的关系,SEM将变量分为内生变量和外生变量。

内生变量(1)影响自身的因素在模型之内(2)在模型中被影响的变量外生变量(1)影响自身的因素在模型之外(2)在模型中不被影响的变量内生变量和外生变量的关系如上图,对于“责任心”变量,由于在整个模型内没有影响它的因素,因此是一个外生变量,而对于“成功”变量,在模型内有影响它的因素,它被变量“责任心”影响,因此它是一个内生变量。

一般一个结构方程模型由两部分组成:测量模型和结构模型。

测量模型:描述潜变量与测量指标之间的关系,测量模型的基本目的是描述观察变量是否适合作为潜变量的测量手段,可以通过CFA来评估。

结构模型:描述潜变量之间的相互关系。

下图中,虚线框中为测量模型,实线框中为结构模型。

结构方程模型分析步骤假设提出研究假设的提出从研究问题出发。

例如,我们的研究问题是学生的学习动机是否与他的学习投入度有关?那么将问题转化为假设,H0:学习动机与学习投入无关,H1:一个学生的学习动机越积极,其学习投入度就越高。

根据研究假设,建构相关的潜变量,即学习动机和学习投入。

结构方程模型

结构方程模型
⑤ 包含不同的统计技术。
⑥ 重视多重统计指标的运 用。
7.SEM的样本规模 ① 资料符合常态、无遗漏值
及例外值(Bentler & Chou, 1987)下,样本比例最小为 估计参数的5倍、10倍则 更为适当。 ② 当原始资料违反常态性假 设时,样本比例应提升为 估计参数的15倍。 ③ 以最大似然法(Maximum
02 基本
原1.理模型构建——变量
① 观测变量:能够观测到的变量(路径图中以长方形表示)。 ② 潜在变量:难以直接观测到的抽象概念,由测量变量推估出
来的变量(路径图中以椭圆形表示)。 ③ 内生变量:模型总会受到任何一个其他变量影响的变量(因
变量;路径图会受到任何一个其他变量以单箭头指涉的变量。 ④ 外生变量:模型中不受任何其他变量影响但影响其他变量的
代理:Multivariate Software
④Mplus
设计:BengtMuthén和Linda
01 概念
介绍
6.SEM的技术特性
① 具有理论先验性。
② 同时处理因素的测量关 系和因素之间的结构关 系。
③ 以协方差矩阵的运用为 核心。
④ 适用于大样本分析(样 本数<100,分析不稳定; 一般要>200)。
② 圆或椭圆表示潜在变量;
③ 小的圆或椭圆,或无任何框,表示方程或测量的误差:
单向箭头指向指标或观测变量,表示测量误差;
单向箭头指向因子或潜在变量,表示内生变量未能被外生
潜在变量解释的部分,是方程的误差;
④ 单向箭头连接的两个变量表示假定有因果关系,箭头由原
02 基本
原1.理模型构建——路径图
(2)路径系数 路径分析模型的回归系数,用来衡量变量之间影响程度或变量 的效应大小(标准化系数、非标准化系数)。 分为反映外生变量影响内生变量的路径系数和反映内生变量影 响内生变量的路径系数 路径系数的下标:第一部分所指向的结果变量,第二部分表示 原因变量。

结 构 方 程 模 型

结 构 方 程 模 型

结构方程模型结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计分析方法,其主要用于探究变量之间的关系和影响。

它不仅可以用于描述变量之间的相关性,还可以帮助我们理解变量之间的因果关系。

在社会科学、教育学、心理学等领域中,SEM已经成为了一种常用的分析方法。

本文将从以下几个方面对SEM进行详细介绍。

一、 SEM的基本概念1. 结构方程模型结构方程模型是一种复杂的统计分析方法,它可以同时考虑多个因素对某个结果变量的影响,并且可以建立一个包含多个因素和结果变量之间相互作用关系的模型。

2. 因果关系在SEM中,我们通常会建立一个因果模型来描述变量之间的关系。

因果关系指的是一个事件或现象引起另一个事件或现象发生的关系。

在SEM中,我们通过设定不同变量之间的路径来表示它们之间可能存在的因果关系。

3. 测量模型测量模型是指将观测到的数据转化为潜在变量(latent variable)或者隐含特征(hidden feature)所形成的数学模型。

在SEM中,我们通常会将多个测量指标(observed variables)用一个潜在变量来代表。

4. 结构模型结构模型是指变量之间的关系模型。

在SEM中,我们通常会建立一个结构方程模型,其中包含多个因素和结果变量之间相互作用的关系。

二、 SEM的应用领域1. 社会科学社会科学领域是SEM的主要应用领域之一。

在社会科学研究中,SEM 可以帮助研究人员探究不同因素对社会现象产生的影响,并且可以通过因果关系的建立来分析各种社会问题。

2. 教育学教育学领域也是SEM的重要应用领域之一。

在教育研究中,SEM可以帮助研究人员分析不同因素对学生学习成绩产生的影响,并且可以通过建立因果模型来探究各种教育问题。

3. 心理学心理学是SEM的另一个主要应用领域。

在心理学研究中,SEM可以帮助研究人员探究不同因素对心理问题产生的影响,并且可以通过建立因果模型来分析各种心理问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档