法向量的快速求法

合集下载

平面法向量的快速求法叉乘

平面法向量的快速求法叉乘

平面法向量的快速求法叉乘平面法向量的快速求法叉乘---------------------------------平面法向量(Plane Vector)是现代几何学中一种重要的概念,它被广泛应用于工程、科学、数学等多个领域。

平面法向量定义为一组三个元素的数组,由一条有向线段的起点(A)和终点(B)构成。

它可以用来表示一个平面上的向量或一个三维空间中的向量。

叉乘(Cross Product)是一种常见的矢量运算,它通常用来求两个三维向量的叉乘积。

平面法向量的叉乘也是一种有用的运算,它可以用来求出两个向量在平面上的叉乘结果。

在求解平面法向量叉乘时,最常用的方法是使用叉乘定理,即使用另外两个向量来表示原始向量,然后将这两个向量分别叉乘,最后将叉乘的结果相加求得最终的叉乘结果。

这是一种相对比较复杂的计算方法,而且在计算大量数据时会耗费大量时间。

为了解决上述问题,人们开发了快速求法叉乘法(Fast Cross Product Method),这是一种计算平面法向量叉乘的新方法。

该方法不需要使用叉乘定理,而是直接使用原始向量来计算叉乘。

其核心思想是:将原始向量分别作为三个平面法向量,然后将这三个向量相乘,最后得出最终的叉乘结果。

在实践中,使用快速求法叉乘的方法可以很大地提高计算效率。

因为它不需要使用叉乘定理来计算叉乘,而是直接使用原始向量来计算叉乘,这样就能大大减少计算时间。

此外,该方法还具有较好的计算准确性,因为它不会出现因叉乘定理而产生误差的情况。

总之,快速求法叉乘法是一种有效的计算平面法向量叉乘的新方法。

该方法不仅能够大大提高计算效率,而且还具有较好的计算准确性。

因此,快速求法叉乘法已成为计算平面法向量叉乘的常用方法。

法向量的快速求法

法向量的快速求法

法向量的快速求法
法向量的快速求法可以通过以下方法实现:
1. 对于平面上的一个向量,其法向量可以通过求其逆时针旋转90度得到,即将向量(x,y)变为(-y,x)。

2. 对于三维空间中的一个向量,其法向量可以通过向量积(又称为叉积)求得。

设a和b是两个不共线的向量,则它们的向量积a×b是一个向量,其大小等于以a和b为邻边所构成的平行四边形的面积,方向垂直于这个平行四边形,满足右手定则。

向量积的计算公式为:
a ×
b = (aybz −azby,azbx −axbz,axby −aybx)
其中,aybx表示a向量y分量与b向量x分量相乘。

3. 对于曲面上的一个点P,其法向量可以通过求其切平面的法向量得到。

曲面的切平面包含该点的所有切线,其法向量指向切平面凸出的一侧。

切平面的法向量可以通过对曲面方程求偏导数得到。

法向量的求法

法向量的求法

法向量的求法
求法向量是物理学中一个重要的概念,它可用于描述物体在空间中的移动和变化之间的关系。

通过求法向量,物体的位置和动量在任何时间以及任何方向上都可以得到准确的表达。

因此,求法向量在物理学研究中占据十分重要的地位和作用。

法向量是由单位向量构成的,它可以用来描述物体的变化,特别是当物体的变化是在逐渐发生时,求法向量尤为重要。

举例来说,如果你要表达物体在不同时间和不同位置 t 的变化,你可以采用如下公式来求出法向量 f (t)。

f (t) = r(t) - r(t-1)
其中,r(t) 代表物体在t时间单位的位置,而 r(t-1) 则代表这物体在 t-1 时间单位的位置。

事实上,问题就是求出物体在 t 时刻和 t-1 时刻的位置之间的距离。

这种距离可以被认为是一种“ 变化率”,可以用来描述物体的移动过程。

几何学中的求法向量并不仅仅限于空间上的运动,而且也可以应用于函数的导数中。

函数的导数,可以用公式 d f (x) / d x 来表示,其中 d f (x) 表示函数在 x 时刻的变化率,而 d x 表示这个变化率与 x 之间的距离。

另外,在机器学习中也大量应用到求法向量方法。

通过求法向量,可以确定每一个变量和优化目标之间的关系,并对数据进行分析,从中学习出最佳的解决方案。

总之,求法向量是一种常用的数学方法,用来表达变量们的空间变化关系,在机器学习等领域有着重要的应用价值。

平面法向量坐标的快速求法人教版

平面法向量坐标的快速求法人教版

空间直角坐标系中平面法向量的三种求法某某第八中学 谭武昌近几年高考立体几何解答题的设计,注意了求解方法既可用传统的几何方法解决,又可用向量方法处理,在求异面直线所成角、直线与平面的所成角、二面角的大小以及点到平面的距离时,向量方法都有标准的公式,这些公式对学生的空间想象能力要求相对不高,因此,师生逐渐重视空间向量方法的应用,但是,在完成解答的过程中,正确求出法向量的坐标是关键,下面总结三种常见的求法向量坐标的方法,希望大家在比较中掌握这一重要技能。

1. 方程法利用直线与平面垂直的判定定理构造三元一次方程组,由于有三个未知数,两个方程,要设定一个变量的值才能求解,这是一种基本的方法,师生容易接受,但运算稍繁,要使法向量简洁,设值可灵活,法向量有无数个,它们是共线向量,取一个就可以。

例1向量a 、b 是平面α内的两个不共线的向量,()3,2,1=a ,)1,1,2(-=b ,求平面α的一个法向量n 的坐标。

解:设),,(z y x n =,那么由a n ⊥,b n ⊥得⎪⎩⎪⎨⎧=⋅=⋅00b n a n 即⎩⎨⎧=-+=++02032z y x z y x 不妨设1=z ,得⎩⎨⎧=+-=+1233y x y x , ⎪⎩⎪⎨⎧-==3735y x 取)1,37,35(-=n 2.矢量积公式111(,,)a x y z =,222(,,)b x y z =,111111222222(,,)y z x z x y a b y z x z x y ⨯=-, 其中行列式11122122y z y z y z y z =-,法向量取与向量a b ⨯共线的即可。

用这一方法解答例1,先把平面内的两个向量坐标对齐写⎪⎩⎪⎨⎧-==)1,1,2()3,2,1(b a 蒙住第一列,把后两列看成一个二阶行列式,计算531)1(2-=⨯--⨯就是向量a b ⨯的x 坐标,蒙住第二列,把前后两列看成一个二阶行列式,计算732)1(1-=⨯--⨯,取7-的相反数7作为a b ⨯的y 坐标,蒙住第三列,把前两列看成一个二阶行列式,计算32211-=⨯-⨯作为z 坐标,所以)3,7,5(--=⨯b a ,可以取)3,7,5(--=n ,它与前面方程法求得的)1,37,35(-=n 是共线向量。

法向量简便求法

法向量简便求法

法向量简便求法
在三维空间中,我们经常需要求解一个平面的法向量。

平面的法向量是指垂直于该平面的向量,它的方向和大小都可以用来描述该平面的特征。

在计算机图形学、物理学、机器人学等领域中,求解平面的法向量是一个非常常见的问题。

本文将介绍一种简便的方法——以法向量简便求法。

以法向量简便求法的基本思想是:通过平面上的三个点,计算出两个向量,然后求出这两个向量的叉积,即可得到平面的法向量。

这个方法的优点是简单易懂,计算量小,适用于大多数情况。

具体来说,以法向量简便求法的步骤如下:
1. 选取平面上的三个点A、B、C。

2. 计算向量AB和向量AC。

3. 求出向量AB和向量AC的叉积,即:
N = AB × AC
其中,N就是平面的法向量。

需要注意的是,向量的叉积满足右手法则,即如果将右手的四指从向量AB转向向量AC,那么大拇指所指的方向就是向量的叉积N的方向。

以法向量简便求法的优点在于,它不需要求解平面的方程,也不需要进行矩阵运算,计算量非常小。

同时,这个方法也非常容易理解,即使没有深厚的数学基础,也可以轻松掌握。

需要注意的是,如果三个点A、B、C共线,那么向量AB和向量AC就会共线,此时无法求解平面的法向量。

因此,在使用以法向量简便求法时,需要确保所选取的三个点不共线。

以法向量简便求法是一种简单易懂、计算量小的方法,适用于大多数情况。

在实际应用中,我们可以通过这个方法快速求解平面的法向量,从而更好地描述和分析三维空间中的各种问题。

快速求平面的法向量

快速求平面的法向量

快速求平面的法向量
用向量方法做立几题,必须会的一种功夫是求平面的法向量。

不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法,简直就是秒杀。

结论:向量a r =(x 1,y 1,z 1),b r
=(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量 n r
=(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量.
如果用二阶行列式表示,则
n r =(1
12
2
y z y z ,-
112
2
x z x z ,
112
2
x y x y ) ,这更便
于记忆和计算.
结论证明(用矩阵与变换知识可以证明,此处
略去),但你可以验证 n r
一定满足0
m a m b ⎧•=⎪⎨•=⎪⎩u r r u
r r ⇔111222
00x x y y z z x x y y z z ++=⎧⎨++=⎩; 而且∵a r 、b r 不共线,∴n r 一定不是0r
.
怎样用该结论求平面的法向量呢?举例说明.
例、向量a r =(1,2,3),b r
=(4,5,6)是平
面α内的两个不共线向量,求平面α的法向量
解:设平面α的法向量为n r
=(x ,y ,z ),
则00n a n b ⎧•=⎪⎨•=⎪⎩r r r r ⇒2304560x y z x y z ++=⎧⎨
++=⎩ 令z =1,得n r
=(1,-2,1).
注意:
① 一定按上述格式书写,否则易被扣分.
② n r
的计算可以在草稿纸上完成,过程参照右边“草稿纸上演算过程”.。

法向量秒求

法向量秒求

法向量秒求一.叉乘法求解法向量111222111221221112212211122122PAB PA=a b c PB=a b c n (x,y,z)b c x b c b c b c a c y (a c a c )a c a b z a b a b a b ===-=-=--==-uu u r uu r r 设平面的两边构成的向量为(,,)、(,,)平面PAB的一个法向量则,,,,,,二.掐头去尾交叉法求法向量111222a (x ,y ,z )b (x ,y ,z )n (x,y,z)===r r r 已知平面内两相交直线的方向向量、平面的法向量为分两步写,第一步横写两遍,掐头去尾;第二步:由左向右,交叉相乘再相减121212121212n (y z z y ,z x x z ,x y y x )=---r 说明:两种方法的实质是一样,都可以使用例题举证【例1】(2020·辽宁节选)已知平面α上三点()3,2,1A ,()1,2,0B -,()4,2,1C --,则平面α的一个法向量为()A.()4,9,16--B.()4,9,16-C.()16,9,4--D.()16,9,4-【答案】B【解析】解法一:常规法由已知()4,0,1AB =-- ,()1,4,2AC =-- ,设平面α的一个法向量为(),,n x y z = ,由00n AB n AC ⎧⋅=⎨⋅=⎩,可得40420x z x y z --=⎧⎨--=⎩,取4x =,可得16z =-,9y =,所以,平面α的一个法向量为()4,9,16=-n .故选:B.解法二:叉乘法由已知()4,0,1AB =-- ,()1,4,2AC =-- ,设平面α的一个法向量为(),,n x y z = ()0x 0(2)(4)(1)44241y [4(2)1(1)]9120z 4(4)101614n 4,9,16n B==⨯---⨯-=-----=-=--⨯--⨯-=--==-⨯--⨯=-=--r r ,-1,,,-4,,只要跟成倍数都是平面的法向量,所以选解法三:掐头去尾交叉法()n 4,9,16n B=--r r 只要跟成倍数都是平面的法向量,所以选【例2】(2020·全国)已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 法向量的是()A.(1,1,1)-B.(1,1,1)-C.333,333⎛⎫--- ⎪ ⎪⎝⎭D.333,,333⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】解法一:常规法(1,1,0),(1,0,1)AB AC =-=- ,设(,,)n x y z = 为平面ABC 的法向量,则00n AB n AC ⎧⋅=⎨⋅=⎩ ,化简得00x y x z -+=⎧⎨-+=⎩,∴x y z ==,故选C.解法二:叉乘法1x 11001110y -110(1)1-11-1z 101-11-10==⨯-⨯=-=-=-⨯-⨯-===-⨯-⨯=,00,,【】,1,(),()n 1,1,1n n =λr r r 只要跟成倍数都是平面的法向量,所以选C 解法三:掐头去尾交叉法()n 1,1,1n n =λr r r 只要跟成倍数都是平面的法向量,所以选C技巧强化1.(2020·全国)在三棱锥P ABC -中,CP 、CA 、CB 两两垂直,1AC CB ==,2PC =,如图,建立空间直角坐标系,则下列向量中是平面PAB 的法向量的是()A.11,1,2⎛⎫ ⎪⎝⎭B.()2,1C.()1,1,1D.()2,2,1-【解析】解法一:常规法()1,0,2PA =- ,()1,1,0AB =- ,设平面PAB 的一个法向量为(),,1n x y = ,由00n PA n AB ⎧⋅=⎨⋅=⎩则200x x y -=⎧⎨-+=⎩,解得22x y =⎧⎨=⎩,()2,2,1n ∴=r .又111,1,22n ⎛⎫= ⎪⎝⎭ ,因此,平面PAB 的一个法向量为11,1,2⎛⎫ ⎪⎝⎭.故选:A.解法二:叉乘法()1,0,2PA =- ,()1,1,0AB =- ,设平面PAB 的一个法向量为(),,z =n x y x 01(2)212y -[01(2)(1)]2-10z 110-11-11==-⨯-=-=-=⨯--⨯-===⨯-⨯=0,-21, 0,,1,0(),()n 2,2,1n n =λr r r 只要跟成倍数都是平面的法向量,所以选A解法三:掐头去尾交叉法()1,0,2PA =- ,()1,1,0AB =- ,设平面PAB 的一个法向量为(),,z =n x y()n 2,2,1n n =λr r r 只要跟成倍数都是平面的法向量,所以选A2.(多选)(2020·南京市第十四中学)已知(4A -,6,1)-,(4B ,3,2),则下列各向量中是平面(AOB O 是坐标原点)的一个法向量的是()A.15194⎛⎫- ⎪⎝⎭,,B.15194⎛⎫- ⎪⎝⎭,,C.(15-,4,36)D.(15,4,36)-【答案】BD【解析】解法一:常规法设平面(AOB O 是坐标原点)的一个法向量是(,u x =y ,)z ,则·0·0u OA u OB ⎧=⎨=⎩ ,,即4604320x y z x y z -+-=⎧⎨++=⎩,,得90y z +=,令1y =,解得15419x y z ⎧=⎪⎪=⎨⎪=-⎪⎩,,,令4y =,解得15436x y z =⎧⎪=⎨⎪=-⎩,,,故15,1,94u ⎛⎫=-⎪⎝⎭ 或(15,4u = ,36)-.故选:BD.解法二:叉乘法(4(4,3,2),(,,)=-==,6,-1)、设平面是坐标原点的一个法向量是OA OB n x y z6x 623(1)15241y -[424(1)44246z 43463643==⨯-⨯-=--=-=-⨯-⨯-=-==-⨯-⨯=-,-13,,], ,, ()n 15,4,36n n =-λr r r 只要跟成倍数都是平面的法向量,所以选BD解法三:掐头去尾交叉法()n 15,4,36n n =-λr r r 只要跟成倍数都是平面的法向量,所以选BD3.(2020·天津市第五十五中学)如图,长方体1111ABCD A B C D -中,4AB =,2BC =,13CC =,E ,F 分别是BC ,CD 的中点,以D 为原点,分别以DA ,DC ,1DD 为坐标轴建立空间直角坐标系,则平面1D EF的一个法向量是___________.【答案】(6-,3,2)【解析】解法一:常规法长方体1111ABCD A B C D -中,4AB =,2BC =,13CC =,E ,F 分别是BC ,CD 的中点,以D 为原点,分别以DA ,DC ,1DD 为坐标轴建立空间直角坐标系,则1(0D ,0,3),(1E ,4,0),(0F ,2,0),1(1D E =,4,3)-,1(0D F =,2,3)-,设平面1D EF 的一个法向量是(n x =,y ,)z ,则11·430·230n x y z n yz D E D F ⎧=+-=⎪⎨=-=⎪⎩ ,取3y =,得(6n =-,3,2),则平面1D EF 的一个法向量是(6-,3,2).故答案为:(6-,3,2).解法二:叉乘法1(1D E = ,4,3)-,1(0D F =,2,3)-,设平面1D EF 的一个法向量是(n x =,y ,)z ,x 4(3)2(3)6313y -[1(3)0(3)334z 120422==⨯--⨯-=---=-=⨯--⨯-=-==⨯-⨯=4,-32,,]0,1,()0,()n 6,3,1n n =-λr r r 2只要跟成倍数都是平面的法向量解法三:掐头去尾交叉法()n 6,3,1n n =-λr r r 2只要跟成倍数都是平面的法向量4.(2020·鱼台县第一中学)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD,1AB =1OCB 的法向量n =________.【答案】()1,0,1-(答案不唯一)【解析】解法一:常规法ABCD 是正方形,且2AB =AO OC 1∴==,OC (0,1,0)∴= ,A(0,1,0)- ,B(1,0,0),(1,1,0)AB ∴= ,11A B (1,1,0)∴= ,OA 1= ,1AA 2=1OA 211∴=-=,故1(0,0,1)OA = ,故1111OB OA A B (1,1,1)=+= ,∵向量(,,)n x y z = 是平面OCB 1的法向量,OC 0y n ∴⋅== ,1OB 0n x y z ⋅=++= ,故0y =,x z =-,取1x =,故1z =-,平面1OCB 的法向量()1,0,1n =- 故答案为:()1,0,1-(答案不唯一)5.(2020·全国)已知()0,2,3A ,()2,1,6B -,()1,1,5C -.求平面ABC 的一个法向量;【答案】平面ABC 的一个法向量为()1,1,1n =(答案不唯一);【解析】解法一:常规法因为()0,2,3A ,()2,1,6B -,()1,1,5C -,所以()2,1,3AB =-- ,()1,3,2AC =- ,设(),,n x y z =r为平面ABC 的一个法向量,则有230320n AB x y z n AC x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ ,所以x y z ==,不妨令1x =,则()1,1,1n = ,所以平面ABC 的一个法向量为()1,1,1n =;解法二:叉乘法所以()2,1,3AB =-- ,()1,3,2AC =- ,设(),,n x y z =r 为平面ABC 的一个法向量,1x 12(3)37223y -[2213]712-3z 123-37-32-==-⨯--⨯=-=-=-⨯-⨯===-⨯-⨯=,3-3,,,1,(),()n 7,7,7n n =λr r r 只要跟成倍数都是平面的法向量解法三:掐头去尾交叉法()n 7,7,7n n =λr r r 只要跟成倍数都是平面的法向量(2)若存在实数m ,n ,使a mAB nAC =+,即()()()3,4,12,1,31,3,2m n -=--+-,则2334321m n m n m n -+=⎧⎪--=-⎨⎪+=⎩,解得57117m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以51177a AB AC =-+ ,即向量()3,4,1a =- 与平面ABC 平行.6.(2020·河南郑州市·高三月考)如图,S 为圆锥的顶点,O 为底面圆心,点A ,B 在底面圆周上,且60AOB ∠=︒,点C ,D 分别为SB ,OB的中点.()1求证:AC OB ⊥;()2若圆锥的底面半径为2,高为4,求直线AC 与平面SOA 所成的角的正弦值.【答案】()1证明见解析;()22114.【解析】()1由题意,得SO ⊥底面圆O ,点C ,D 分别为SB ,OB 的中点,∴//CD SO ,CD ⊥底面圆O ,OB 在底面圆O 上,∴OB CD ⊥.60AOB ∠=︒,∴AOB 为正三角形,又因为D 为OB 的中点,∴OB AD ⊥,又因为AD CD D = ,且AD ⊂平面ACD , C D ⊂平面ACD ,∴OB ⊥平面ACD ,AC ⊂平面ACD ,∴AC OB ⊥.()2解法一:常规法如图,以D 为原点,DA ,DB ,DC 所在直线为x 轴,y 轴,z轴建立空间直角坐标系,则()3,0,0A ,()0,0,2C ,()0,1,0O -,()0,1,4S -,故()3,0,2AC = ,()3,1,4AS =- ,)3,1,0OA = ,设平面SOA 的法向量为(),,n x y z = ,由00n AS n OA ⎧⋅=⎨⋅=⎩ ,可得34030y z x y ⎧-+=⎪+=,令1x =,得()1,3,0n =-r为平面SOA 的一个法向量,设直线AC 与平面SOA 所成的角为θ,则300321sin cos ,14133427n AC n AC n AC θ⋅-++=〈〉==+⨯+⋅ ,即直线AC 与平面SOA 所成的角的正弦值为2114.解法二:叉乘法()3,1,4=-AS ,)3,1,0OA = ,设平面SOA 的法向量为(),,n x y z = ,1x 101440y -[04]1z 1-101-==-⨯-⨯=-==--=-==-=,41, ,()()n n n =-λr r r 只要跟成倍数都是平面的法向量解法三:掐头去尾交叉法()n n n =-λr r r 只要跟成倍数都是平面的法向量7.(2020·浙江衢州市)如图,在三棱锥P —ABC 中,PA ⊥平面ABC ,AC ⊥BC ,D 为PC 中点,E 为AD 中点,PA =AC =2,BC=1.(1)求证:AD ⊥平面PBC :(2)求PE 与平面ABD 所成角的正弦值.【答案】(1)证明见解析;(2)21515.【解析】(1)证明:∵PA ⊥平面ABC ,∴PA BC⊥又因为BC AC ⊥,=PA AC A∩∴BC ⊥平面PAC ,∴BC AD ⊥.∵PA AC =,D 为PC 中点,∴AD PC ⊥,又∵PC BC C ⋂=,∴AD ⊥平面PBC ;(2)解法一:常规法以C为坐标原点建立如图空间直角坐标系()2,0,0A ,()0,1,0B ,()2,0,2P ,∴()1,0,1D ,310,22E ⎛⎫ ⎪⎝⎭,,∴13,0,22PE =--⎛⎫ ⎪⎝⎭ ,()2,1,0AB =- ,()1,0,1AD =- .设平面ABD 的法向量为(),,m x y z = ,则00AB m AD m ⎧⋅=⎨⋅=⎩200x y x z -+=⎧⇒⎨-+=⎩,令1x =,则2,1==y z ,得()1,2,1m = .设PE 与平面ABD 所成角为θ,则215sin 15θ⋅===⋅ PE m PE m .解法二:叉乘法()2,1,0AB =- ,()1,0,1AD =- .设平面ABD 的法向量为(),,m x y z = ,1x 11001120y -210(1)]2-11-1z 201-11-10==⨯-⨯=-=-=-⨯-⨯-===-⨯-⨯=,00,,[,2,(),()n 1,2,1n n =λr r r 只要跟成倍数都是平面的法向量设PE 与平面ABD 所成角为θ,则sin 15θ⋅===⋅ PE m PE m .解法三:掐头去尾交叉法()n 1,2,1n n =λr r r 只要跟成倍数都是平面的法向量设PE 与平面ABD 所成角为θ,则sin 15θ⋅===⋅ PE m PE m .8.(2020·河北邢台市·邢台一中高三月考=)已知四棱锥P ABCD -的底面是直角梯形,AD CD ⊥,//AB CD ,且3PA PC PD ===,24CD AD AB ===,O 为AC 的中点.()1求证:OP BC ⊥;()2求直线DP 与平面PBC 所成角的正弦值.【答案】()1证明见解析;()289.【解析】()1因为AD CD ⊥,所以2242AC AD CD =+=又3,PA PC O ==为AC 的中点,所以PO AC ⊥,()223221PO =-=,连接OD ,在Rt ACD △中,O 为AC 的中点,所以1222OD AC ==.因为222OD OP PD +=,所以OP OD ⊥,又OD AC O = ,所以OP ⊥平面ABCD .又BC ⊂平面ABCD ,所以OP BC ⊥.()2解法一:常规法如图,以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴,过点D 且与OP 平行的直线为z 轴建立空间直角坐标系D xyz -,则()4,2,0B ,()0,4,0C ,()2,2,1P ,()4,2,0BC =- ,()2,2,1CP =- ,()2,2,1DP = .设平面BCP 的一个法向量为(,,)n x y z = ,由00n BC n CP ⎧⋅=⎨⋅=⎩ ,得420220x y x y z -+=⎧⎨-+=⎩令1x =,可得()1,2,2n = .设直线DP 与平面PBC 所成角为θ,则88sin cos ,339DP n θ===⨯ .即直线DP 与平面PBC 所成角的正弦值为89.解法二:叉乘法()4,2,0BC =- ,()2,2,1CP =- 设平面BCP 的一个法向量为(,,)n x y z = ,2x 21(2)02140y -[4102]421-2z 4(2)24422==⨯--⨯=-=-=-⨯-⨯===-⨯--⨯=-,0-2,,,4,,()n 2,4,4n n =λr r r 只要跟成倍数都是平面的法向量则8sin cos ,9==DP n θ .即直线DP 与平面PBC 所成角的正弦值为89.解法三:掐头去尾交叉法()4,2,0BC =- ,()2,2,1CP =- 设平面BCP 的一个法向量为(,,)n x y z = ,()n 2,4,4n n =λr r r 只要跟成倍数都是平面的法向量则8sin cos ,9==DP n θ .即直线DP 与平面PBC 所成角的正弦值为89.9.(2020·四川泸州市·泸县五中高三月考)如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,2PA =,E 为PD 中点.(1)求证:AE PC ⊥;(2)求二面角B AE C --的正弦值.【答案】(1)见详解;(2)3【解析】(1)证明:∵底面ABCD 是边长为2的正方形,2PA =,E 为PD 中点,∵AE PD ⊥,CD AD ⊥.∵PA ⊥平面ABCD ,CD 平面ABCD ,∴CD PA ⊥.∵PA AD A⋂=∴CD ⊥平面PAD ,∵AE 平面PAD ,∴CD AE ⊥,∵CD PD D = .∴AE ⊥平面PCD ,∵PC 平面PCD ,∴AE PC ⊥.(2)解法一:常规法以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立如图空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,1,1)E ,(0,1,1)AE = ,(2,0,0)AB =uu u r ,(2,2,0)AC =uuu r ,设平面ABE 的一个法向量(,,)m x y z = ,则200m AB x m AE y z ⎧⋅=⋅=⎨⋅=+=⎩,取1y =,得(0,1,1)m =- .设平面AEC 的一个法向量为111(,,)n x y z = .则2200n AC x y n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取11x =.得(1,1,1)n =-,cos 3||||m n m n m n ⋅<⋅>==-⋅ ,∴二面角B AE C --的正弦值33=解法二:叉乘法(法向量求解略)解法三:掐头去尾交叉法(法向量求解略)10.(2020·河北省晋州市)如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,BD=.(1)求证:BD ⊥平面PAC ;(2)求二面角P —CD —B 余弦值的大小;【答案】(1)证明见解析(2)22【解析】(1)建立如图所示的直角坐标系,则A (0,0,0)、D (0,2,0)、P (0,0,2).在Rt △BAD 中,AD =2,BD=∴AB =2.∴B (2,0,0)、C (2,2,0),∴(0,0,2),(2,2,0),(2,2,0)AP AC BD ===-∵0,0BD BD AP AC =⋅=⋅ ,即BD ⊥AP ,BD ⊥AC ,又AP ∩AC =A ,故BD ⊥平面PAC .(2)解法一:常规法(3)由(1)得(0,2,2),(2,0,0)PD CD =-=-.设平面PCD 的法向量为1(,,)n x y z = ,则110,0n PD C n D ==⋅⋅ ,即02202000y z x +-=⎧⎨-++=⎩,∴0x y z =⎧⎨=⎩,故平面PCD 的法向量可取为1(0,1,1)n =u r ,∵PA ⊥平面ABCD ,∴(0,01)AP = 为平面ABCD 的法向量.设二面角P —CD —B 的大小为θ,依题意可得112cos 2n AP n APθ⋅===⋅ ,故二面角P —CD —B 余弦值的大小为22.解法二:叉乘法(0,2,2),(2,0,0)PD CD =-=- 2x 2000002y -[00(2)(2)4-2002z 002-14-20==⨯-⨯=-=-=⨯--⨯-===⨯-⨯=,-20, 0,],,(),()n 0,4,4n n =λr r r 只要跟成倍数都是平面的法向量∵PA ⊥平面ABCD ,∴(0,01)AP = 为平面ABCD 的法向量.设二面角P —CD —B 的大小为θ,依题意可得1112cos22n AP n APθ⋅===⋅ ,故二面角P —CD —B 余弦值的大小为22.解法三:掐头去尾交叉法(0,2,2),(2,0,0)PD CD =-=- ()n 0,4,4n n =λr r r 只要跟成倍数都是平面的法向量∵PA ⊥平面ABCD ,∴(0,01)AP = 为平面ABCD 的法向量.设二面角P —CD —B 的大小为θ,依题意可得1112cos 22n AP n APθ⋅===⋅ ,故二面角P —CD —B 余弦值的大小为22.。

法向量的计算公式

法向量的计算公式

法向量的计算公式平面的法向量怎么求建立恰当的直角坐标系;设平面法向量n=(x,y,z);在平面内找出两个不共线的向量,记为a=(a1,a2,a3),b=(b1,b2,b3);根据法向量的定义建立方程组n·a=0与n·b=0;解方程组,取其中一组解即可。

1平面法向量的具体步骤(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)4、根据法向量的定义建立方程组①n·a=0②n·b=05、解方程组,取其中一组解即可。

法向量公式是:由向量AB和BC可知,当B=(0,0,0),则A(x1,y1,z1),C(x2,y2,z2)。

则直线AB:x/x1=y/y1=z/z1,直线CB:x/x2=y/y2=z2。

因此,过B和直线AB垂直的面方程为:x1x+y1y+z1z=0,过B和直线CB垂直的面方程为:x2x+y2y+z2z=0,联立上述两方程可得过B和直线AB,CB都垂直的直线方程:x/(y2z1-y1z2)=y/(x1z2-x2z1)=z/(x2y1-x1y2)。

即所求法向量为(y2z1-y1z2,x1z2-x2z1,x2y1-x1y2)。

垂直于一个面的向量就是这个面的法向量先表示出这个面中两个不平行的向量设法向量n=(x,y,z)然后用n点乘找出的两个向量都等于零得出一个不等式组,里面有三个未知数令x,y,z其中任意一个为1,然后就可以表示出法向量n了,n可以为不同的值。

也可以相反,只要垂直这个面的就行然后任何一个向量与n相乘为O就与n垂直,也就与此面平行如果一个向量可以表示成λn(λ是任意实数,n是刚才的法向量),那么就与n平行,也就与此面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法向量的快速求法
GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
法向量的快速求法
在数学考试过程中,大部分同学往往因为时间不够而没法做完一份完整的试卷,有些同学也因为时间不够,计算速度加快而出现计算错误等原因导致失分,所以能够简便而快速的算出结果是很多同学梦寐以求的。

用向量方法做立几题,必须会的一种功夫是求平面的法向量。

不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法。

新教材对平面几何的要求,重点在于求平面的法向量,常见的待定系数法解方程组,运算量大,学困生容易算错,最简单快捷的方法是行列式法。

结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量.
如果用二阶行列式表示,则
n =(112
2y z y z ,-112
2x z x z ,112
2
x
y x y ) ,这更便于记忆和计算.
结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n
时,a 、b 的纵坐标就不参与运a =(1,2求z 时,a 、b 的竖坐标就不参与运
一定满足0
m a m b ⎧•=⎪⎨•=⎪⎩⇔
111222
0x x y y z z x x y y z z ++=⎧⎨++=⎩; 而且∵a 、b 不共线,∴n 一定不是0. 怎样用该结论求平面的法向量呢?举例说明.
例、向量a =(1,2,3),b =(4,5,6)是平面α内的两个不共线向量,求平面
α的法向量
解:设平面α的法向量为n =(x ,y ,z ),
则0
n a n b ⎧•=⎪⎨•=⎪⎩⇒2304560x y z x y z ++=⎧⎨
++=⎩ 令z =1,得n =(1,-2,1). 注意:
① 一定按上述格式书写,否则易被扣分.
② n 的计算可以在草稿纸上完成,过程参照右边“草稿纸上演算过程”. 而在运算的过程中往往会碰到在一个平面中的两个向量的坐标中会有一个坐标轴的数字为0,这时候也可以用下面这种方法来运算。

向量a =(x 1,y 1,0 ),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,设平面α的法向量为n ,先由0=⋅n a ,直接设),,(11n z x y n -=或),,(11n z x y n -=;再通过
0=⋅,可得等式022112=+-z z y x y x n 或022112=++-z z y x y x n ,从而求得n z ,再根据
需要将法向量n 化简。

例、 向量a =(1,2,3),b =(4,5,0)是平面α内的两个不共线向量,求平面α的法向量。

解:∵向量b 中含有一个0,
∴设),4,5(z -=或),4,5(z -=,由0=⋅n a 得034215=⋅+⋅+⋅-z 或03)4(215=⋅+-⋅+⋅z
求得1-=z 或1=z 。

设)1,4,5(--=或)1,4,5(-=
此方法有一定局限性,当平面中的两个向量坐标中都找不到0的时候,此方法就难以用上。

相关文档
最新文档