高一数学二次函数的综合问题人教版
人教版高中数学必修一《二次函数的综合问题—最值问题》

f x 在区间 a, a 2 上的最小值.
聚焦·典例精析
例2.已知函数
f ( x) x 2 2ax 3 在区间 1,5 f ( x) x 2 2ax 3 , x 1,5 f ( x) x 2ax 3 ,x 1,5
2
上是单调函数,则实数 a 的取值范围是____________.
o
对称轴:
yபைடு நூலகம்
x 1
x 1
(2 )
-2
x
-2
o
5
x
当x 2,0 时, f ( x) max f (2) 5 f ( x) min f (0) 3
当x 2,5 时, f ( x) max f (5) 12 f ( x) min f (1) 4
小结
二次函数闭区间的最值问题
【方法点睛】 1.影响二次函数 f ( x) 在区间 m, n 上最值的要素有三个,即抛物 线的开口方向、对称轴位置、闭区间;常用数形结合思想求解, 但当三要素中有一要素不确定时,要分情况讨论. 2.常结合二次函数在该区间上的单调性或图像求解,在区间的
端点或二次函数图像的顶点处取得最值;
3.注意分类讨论。
变式1.已知函数
求函数
f ( x)
的最小值.
变式2.已知函数
若 f ( x) 0
恒成立,求实数
a 的取值范围.
挑战·突破自我
学业水平测试压轴题:
已知函数
f ( x) x 2 4ax 3 ,是否存在实数 a ,
使得函数 f ( x) 在区间 a, a 2 上有最小值 -6? 若存在,请求出实数 a 的值;若不存在,请说明理由.
人教版高中数学必修1《二次函数与一元二次方程、不等式》第2课时课件

[方法技巧] 对于含参数的二次函数在闭区间上的函数值恒大(小)于或等于零的问题, 可以利用函数的图象与性质求解,也可以分离变量,转化为二次函数的最值 问题求解.
【对点练清】 1.对于1≤x≤3,mx2-mx-1<-m+5恒成立,求m的取值范围.
解:当 1≤x≤3 时,mx2-mx-1<-m+5 恒成立,
化简得-x2+x-3 1>0,即2xx++31<0,
∴(2x+1)(x+3)<0,解得-3<x<-12.
∴原不等式的解集为x-3<x<-12
.
(2)原不等式可化为2xx22-+23xx--32≤0,
如图,
故原不等式的解集为x-2≤x<-1或12≤x<3
.
题型二 一元二次不等式的实际应用 【学透用活】
则 x2+2ax+b<0 变为 x2-4x+3<0,解得 1<x<3 , 所以不等式解集为 {x|1<x<3} .
(2)f(x)=ax2-(2a+1)x+2=(ax-1)(x-2)=ax-1a(x-2). ①当1a<2,即 a>12时, 1a<x<2 ;
②当1a=2,即 a=12时, 无解 ;
③当1a>2,即 0<a<12时,2_<__x_<__1a__.
题型三 不等式恒成立问题 【学透用活】
[典例3] (1)若对∀x∈R,不等式x2+mx>4x+m-4恒成立,求实数m的取值 范围;
(2)若x2>4x+m-4在R上恒成立,求m的取值范围. [解] (1)原不等式可化为x2+(m-4)x+4-m>0, ∴Δ=(m-4)2-4(4-m)=m2-4m<0,∴0<m<4, ∴m的取值范围为{m|0<m<4}. (2)原不等式可化为x2-4x+4=(x-2)2>m恒成立, ∴m<0,∴m的取值范围为{m|m<0}.
人教A版高中数学必修一 二次函数与一元二次不等式 (解析版)

二次函数与一元二次不等式一、知识聚焦考点一 数学建模-不等式的应用例题6. 国家原计划以2 400元/吨的价格收购某种农产品m 吨.按规定,农户向国家纳税为:每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x 个百分点,收购量能增加2x 个百分点.试确定x 的范围,使税率调低后,国家此项税收总收入不低于原计划的78%. 【解析】设税率调低后“税收总收入”为y 元.y =2 400m (1+2x %)·(8-x )%=-1225m (x 2+42x -400)(0<x ≤8). 依题意,得y ≥2 400m ×8%×78%,即-1225m (x 2+42x -400)≥2 400m ×8%×78%, 整理,得x 2+42x -88≤0,解得-44≤x ≤2. 根据x 的实际意义,知x 的范围为0<x ≤2.考点二 数学运算-解不等式例题7、解下列不等式(1)-x 2+2x -3<0; (2)-3x 2+5x -2>0. 【答案】(1) R (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <1【解析】(1)原不等式可化为x 2-2x +3>0, 由于Δ<0,方程x 2-2x +3=0无解, ∴不等式-x 2+2x -3<0的解集为R . (2)原不等式可化为3x 2-5x +2<0,由于Δ>0,方程3x 2-5x +2=0的两根为x 1=23,x 2=1, ∴不等式-3x 2+5x -2>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <1. 考点三 直观想象-不等式恒成立例题8.若函数y =x 2+2(a -2)x +4对任意-3≤a ≤1时,y <0恒成立,如何求x 的取值范围?【答案】不存在【解析】要使对任意-3≤a ≤1,y <0恒成立,只需满足⎩⎨⎧2x +x 2-4x +4<0-3×2x +x 2-4x +4<0, 即⎩⎨⎧x 2-2x +4<0,x 2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4对任意-3≤a ≤1,y <0恒成立. 二、学业质量测评一、选择题1.(2019·全国高一课时练习)不等式(1)(2)0x x +-≤的解集为 ( )A .{|12}x x ≤≤-B .{|12}x x <<-C .1-12x x x ⎧⎫>-≤⎨⎬⎩⎭或 D .}{21x x x <-或【答案】A【解析】由二次函数()()12y x x =+-的图象可知,不等式的解是12x ≤≤-,故选A.2.(2019·全国高一课时练习)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥ B .0k ≥且2k ≠ C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】(k -2)x 2-2kx +k -6=0,∵关于x 的一元二次方程(k -2)x 2-2kx +k =6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨∆=----⎩…,解得:32k ≥且k ≠2. 故选D .3.(2019·全国高一课时练习)若0a <,则不等式()110a x x a ⎛⎫++< ⎪⎝⎭的解集是( ) A .1 1,a ⎛⎫--⎪⎝⎭B .1 ,1a ⎛⎫-- ⎪⎝⎭C .()1 ,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭D .()1,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】D【解析】0a <,对应二次函数()11y a x x a ⎛⎫=++⎪⎝⎭抛物线开口向下,小于零的解集为“两根之外”,又101a ->>-,故解集为()1,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭,故选D . 4.(2018·全国高二单元测试)设R x ∈,则“12x >”是“2210x x +->”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由题意得,不等式2210x x +->,解得1x <-或12x >,所以“12x >”是“2210x x +->”的充分而不必要条件,故选A .5.(2019·全国高一课时练习)已知方程()2250x m x m +-+-=的两根都大于2,则实数m 的取值范围是( ) A.(][) 5,44,--⋃+∞ B.(]5,4--C.() 5,-+∞D.[)[)4,24,--⋃+∞【答案】B【解析】方程()2250x m x m +-+-=的两根都大于2,则二次函数()225y x m x m =+-+-的图象与x 轴的两个交点都在x=2的右侧,根据图象得:方程的判别式0∆≥;当2x =时函数值0y >;函数对称轴222m -->。
高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.已知函数是R上的增函数,则的取值范围是A.≤<0B.≤≤C.≤D.<0【答案】B【解析】若递增,则,若递增,则,若函数是R上的增函数,还需,综上可得的取值范围是≤≤。
【考点】函数的单调性2.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)(1)分别写出两种产品的一年收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?【答案】(1),(2)投资债券类产品万元,则股票类投资为万元,收益最大,为万元.【解析】(1)根据题意设,,然后把分别代入,可求出两种产品的一年收益与投资额的函数关系;(2)该家庭的收益等于债卷收益+股票收益,设投资债券类产品万元,则股票类投资为万元,由(1)知债卷收益,股票收益,则总收益为,利用换元法求其最大值。
试题解析:(1)设,,所以,,即,; 5分(2)设投资债券类产品万元,则股票类投资为万元,依题意得:,令,则,所以当,即万元时,收益最大,万元. 13分【考点】(1)待定系数法求函数的解析式;(2)数形结合思想的应用;(3)换元法的应用。
3.定义在上的函数,如果对于任意给定的等比数列,有仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①=;②=;③;④=||,则其中是“保等比数列函数”的的序号为【答案】①③【解析】设等比数列的公比为,对于函数得为常数,因此得为保等比数列函数;对于函数得不是常数,因此不是保等比数列函数;对于函数得为常数,因此是保等比数列函数;对于函数得不是常数,因此不是保等比数列函数.【考点】判断是否为等比数列.4.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.5.已知函数定义在上,对任意的,,且.(1)求,并证明:;(2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)借助于特殊值得,然后把变形= 即可,(2)首先判断出函数是增函数,然后找出,代入整理的,最后用分类讨论的思想方法求出即可.(1)令得,又∵,, 2分由得=,∵,∴. 5分(2)∵,且是单调函数,∴是增函数. 6分而,∴由,得,又∵因为是增函数,∴恒成立,.即. 8分令,得 (﹡).∵,∴,即.令, 10分①当,即时,只需,(﹡)成立,∴,解得; 11分②当,即时,只需,(﹡)成立,∴,解得,∴. 12分③当,即时,只需,(﹡)成立,∴,∴, 13分综上,. 14分【考点】抽象函数;函数的单调性;向量的数量积公式;不等式恒成立的问题;分类讨论的思想方法.6.已知函数,则______.【答案】【解析】若,则,,故【考点】分段函数,特殊角的三角函数值.7.设关于x函数其中0将f(x)的最小值m表示成a的函数m=g(a);是否存在实数a,使f(x)>0在上恒成立?是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.【答案】(1)(2)不存在a;(3).【解析】(1)先利用二倍角公式将化简,将其看成的二次函数,从而转化成求二次函数的最值问题.因为含参数,要注意定义域的范围,对参数进行讨论.(2)恒成立,即求的最大值大于0即可.而的最大值为,所以无解.故不存在a,使得恒成立.(3)本题可看成二次函数在上递增,只需在上单调递减,故.(1)设, 由知,恒成立由于的最大值为,所以无解.故不存在a,使得恒成立.(3)上的减函数,故在上递增,只需在上单调递减,故所以存在,使函数为增函数.【考点】二倍角公式,二次函数的性质,最值,恒成立问题,等价转化的方法,函数的单调性.8.已知函数.(1)若在上存在零点,求实数的取值范围;(2)当时,若对任意的,总存在使成立,求实数的取值范围.【答案】(1);(2).【解析】(1)在上存在零点,只需即可;(2)本问是存在性问题,只需函数的值域为函数的值域的子集即可.试题解析:(1)的对称轴为,所以在上单调递减,且函数在存在零点,所以即解得.故实数的取值范围为.(2)由题可知函数的值域为函数的值域的子集,以下求函数的值域:①时,为常函数,不符合题意;②,,∴解得;③,,∴解得.综上所述,的取值范围为.【考点】1.函数的零点;2.恒成立问题.9.设函数,用二分法求方程的近似根过程中,计算得到,则方程的根落在区间A.B.C.D.【答案】A【解析】解:取,因为,所以方程近似根取,因为,所以方程近似根所以应选A.【考点】二分法.10.已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④B.①③④C.①③D.②④【答案】B【解析】解:根所题意,函数的图象如下图所示为分段函数,其解析式为由此可知①③④正确,故选B.【考点】函数图象和性质.11.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】令,所以.即.再令.代入可得.设.所以.又因为.所以可得.所以可得函数是递增.所以.又因为.故选C.【考点】1.函数的单调性.2.函数的特殊值法寻找等量关系.3.等式与不等式间的互化.4.归纳化归的能力.12.已知为偶函数,当时,,满足的实数的个数为()A.2B.4C.6D.8【答案】D【解析】因为为偶函数,当时,.所以函数的解析式为作出图像如图所示. .由于函数是关于y轴对称,考虑研究x>0部分的图像.当时.或.因为.所以有四个不同的值.因为,所以不存在.所以有四个值.有对称性可得在x<0部分也有一个x的值符合.所以对应有四个值.故选D.【考点】1.分段函数的性质.2.复合函数的运算.3.数形结合的思想.13.定义函数,若存在常数C,对于任意的,存在唯一的,使得,则称函数在D上的“均值”为,已知,则函数上的均值为()A.B.C.D.10【答案】A【解析】因为过点的中点的纵坐标为,所以对于任意的,存在唯一的,使得.所以均值.故选A.本小题的关键是考查函数的对称性问题.【考点】1.新定义的函数问题.2.函数的对称性.14.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必在所在区间是 ( )A.[-2,1]B.[,4]C.[1,]D.[,]【答案】D【解析】因为,,又,由二分法知函数在区间必有零点.故正确答案为D.【考点】二分法15.设函数.(Ⅰ)画出的图象;(Ⅱ)设A=求集合A;(Ⅲ)方程有两解,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(1)需将函数解析式改写成分段函数后在画图(2)利用整体思想把先看成整体,然后再去绝对值(3)方程有两个解即函数和函数的图像有两个交点,利用数形结合思想分析问题试题解析:(Ⅰ)图像如图(1)所示(Ⅱ)即(舍)或或(Ⅲ)由图像(2)分析可知当方程有两解时,或【考点】(1)函数图像的画法(2)一元二次不等式和绝对值不等式(3)数形结合思想16.已知函数,若存在当时,则的取值范围是【答案】【解析】如图所示当时有,当时有所以即【考点】分段函数,要使时,,即使与函数有两个不同的交点,数形结合思想.17.已知,符号表示不超过的最大整数,若关于的方程(为常数)有且仅有3个不等的实根,则的取值范围是( ).A.B.C.D.【答案】B【解析】因为,所以;分和的情况讨论,显然有.若,此时;若,则;若,因为,故,即.且随着的增大而增大。
二次函数综合应用题(有答案)

函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。
备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
新教材人教A版高中数学必修一 二次函数与一元二次方程、不等式二(含解析)

2.3.1 二次函数与一元二次方程、不等式(二)【新教材】人教A版(2019)高中数学必修第一册同步练习(含解析)一.单选题1.不等式x2x+1<0的解集为()A. {x|−1<x<0或x>0}B. {x|x<−1或0<x<1}C. {x|−1<x<0}D. {x|x<−1}2.设集合S={x|(x−2)(x−3)≥0},T={x|x>0},则S∩T=()A. {x|2≤x≤3}B. {x|x≤2或x≥3}C. {x|x≥3}D. {x|0<x≤2或x≥3}3.将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定为()A. 每个95元B. 每个100元C. 每个105元D. 每个110元4.设x∈R,则“|x−2|<1”是“x2+x−2>0”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−1 2(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm6.若不等式2x2+mx+n>0的解集是{x|x>3或x<−2},则m,n的值分别是()A. 2,12B. 2,−2C. 2,−12D. −2,−127.对于任意实数x,不等式(a−2)x2−2(a−2)x−4<0恒成立,则实数a的取值范围是()A. a<2B. a≤2C. −2<a<2D. −2<a≤28.不等式x−2x+1≤0的解集是()A. {x|x<−1或−1<x≤2}B. {x|−1≤x≤2}C. {x|x<−1或x≥2}D. {x|−1<x≤2}9.若a>0,b>0,则不等式−b<1x<a的解集为()A. {x|x<−1b ,或x>1a} B. {x|−1a<x<1b}C. {x|x<−1a ,或x>1b} D. {x|−1b<x<0,或0<x<1a}10.关于x的不等式−x2+|x|+2<0的解集是()A.{x|−2<x<2}B. {x|x<−2,或x>2}C. {x|−1<x<1}D. {x|x<−1,或x>1}二.多选题11.(多选题)下列不等式中有解的是()A. x2+3x+3<0B. x2+6x+9≤0C. −x2−2x−1>0D. x2−2ax+a2−1≥012.已知关于x的不等式a≤34x2−3x+4≤b,下列结论正确的是()A.当a<b<1时,不等式a≤34x2−3x+4≤b的解集为⌀B. 当a=1,b=4时,不等式a≤34x2−3x+4≤b的解集为{x|0≤x≤4}C. 当a=2时,不等式a≤34x2−3x+4≤b的解集可以为{x|c≤x≤d}的形式D. 不等式a≤34x2−3x+4≤b的解集恰好为{x|a≤x≤b},那么b=43三.填空题13.设a,b>0,a+b=5,则√a+1+√b+3的最大值为.14.已知函数y=x2+mx−1,若对于任意x∈{x|m≤x≤m+1},都有y<0成立,则实数m的取值范围是______.15.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.16.若集合A={x|ax2−ax+1<0}=⌀,则实数a的值的集合为________.17.若关于x的不等式ax−b>0的解集为(1,+∞),则关于x的不等式(ax+b)(x−2)>0的解集为________.18.设集合A={x|x2−4x+3≤0},B={x|x2−(a+1)x+a<0},若B⊆A,则实数a的取值范围是________.19.不等式2x(x+2)<3(x+2)的解集是.<1的解集为{x|x<1或x>2},则a=.20.不等式axx−1四.解答题21.解下列不等式.<0.(1)2x−5x+4≤1.(2)x+12x−322.某农家院有客房20间,日常每间客房日租金为80元,每天都客满。
人教A版必修一二次函数与方程不等式同步练习题(含答案及解析)

人教A版必修一二次函数与方程不等式同步练习题一单项选择题1.已知关于x的不等式(m﹣2)x2+2(m﹣2)x+4>0得解集为R,则实数m的取值范围是()A.(2,6) B.(﹣∞,2)∪(6,+∞)C.(﹣∞,2]∪(6,+∞) D.[2,6)2.不等式对任意实数x都成立,则m的取值范围是()A.(﹣∞,2] B.C.D.3.若函数f(x)=的定义域为R,则实数a的取值范围是()A.{a|a≤﹣1或a≥0} B.{a|a<﹣1或a>0} C.{a|﹣1≤a≤0} D.{a|﹣1<a<0}4.关于x的不等式(x﹣1)(x﹣a)<0的解集中,恰有3个整数,则a的取值范围是()A.{a|4<a<5} B.{a|4<a<5或﹣3<a<﹣2}C.{a|4<a≤5} D.{a|4<a≤5或﹣3≤a<﹣2}5.不等式x2﹣3|x|<0的解集为()A.{x|0<x<3} B.{x|﹣3<x<0或0<x<3}C.{x|﹣3<x<0} D.{x|﹣3<x<3}6.关于x的不等式x2﹣(a+1)x+a<0的解集中恰有两个整数,则实数a的取值范围是()A.(﹣2,﹣1]∪[3,4)B.[﹣2,﹣1]∪[3,4]C.[﹣2,﹣1)∪(3,4] D.(﹣2,﹣1)∪(3,4)7.已知关于x的不等式a≤x2﹣3x+4≤b,下列结论正确的是()A.当a<b<1,不等式a≤x2﹣3x+4≤b的解集为∅B.当a=2时,不等式a≤x2﹣3x+4≤b的解集可以为{x|c≤x≤d}的形式C.不等式a≤x2﹣3x+4≤b的解集恰好为{x|a≤x≤b},那么b=D.不等式a≤x2﹣3x+4≤b的解集恰好为{x|a≤x≤b},那么b﹣a=48.若a、b、c均大于0,且,则a(a+b+c)+bc的最大值为()A.B.C.D.2二多项选择题9.已知函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,若存在实数x0,使得f(x)>0,则实数m的值可能是() A.x0﹣2 B.x+C.x+D.x+210.已知关于x的不等式ax2+bx+c>0解集为{x|﹣2<x<3},则()A.a>0 B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0 D.不等式cx2﹣bx+a<0的解集为11.已知函数y=x2+ax+b(a>0)有且只有一个零点,则()A.a2﹣b2≤4 B.a2+≥4C.若不等式x2+ax﹣b<0的解集为(x1,x2),则x1x2>0D.若不等式x2+ax+b<c的解集为(x1,x2),且|x1﹣x2|=4,则c=4三填空题12.研究问题:“已知关于x的不等式ax2﹣bx+c>0的解集为(1,2),则关于x的不等式cx2﹣bx+a>0有如下解法:由,令,则,所以不等式cx 2﹣bx+a >0的解集为.参考上述解法,已知关于x 的不等式的解集为(﹣2,﹣1)∪(2,3),则关于x 的不等式的解集 .13.定义域为R 的函数f (x )满足f (x+2)=2f (x ),当x ∈[0,2]时,,若x ∈[4,6]时,f (x )≥t 2﹣2t ﹣4恒成立,则实数t 的取值范围是 .14.已知函数f (x )=﹣x 2+ax+b 的最大值为0,若关于x 的不等式f (x )>c ﹣1的解集为{x|m ﹣4<x <m},则实数c 的值为 . 15.已知y 1=x+m ,,若对∀x 1∈[0,1],总∃x 2∈[1,2],使得y 1(x 1)>y 2(x 2),则实数m 的取值范围是 .注:y 1(x 1)表示的是函数y 1=x+m 中x 1对应的函数值,y 2(x 2)表示的是中x 2对应的函数值. 四 解答题16.已知函数f (x )=x 2﹣2ax+2a 2+2.(1)关于x 的方程f (x )=2a 2有解,求实数a 的取值范围;(2)求函数f (x )在区间的最小值.17.已知函数f (x )=x 2+bx+c (b ,c ∈R ).(1)当c =b 时,解关于x 的不等式f (x )>1;(2)若f (x )的值域为[1,+∞),关于x 的不等式f (x )<a 的解集为(m ,m+4),求实数a 的值;(3)设g (x )=,函数f (g (x ))的最大值为1,且当时,恒成立,求b 2+c 2的取值范围.18.知函数f (x )=log 2x+1,g (x )=f (x 2)+[f (x )]2.(1)求方程g (x )=2的解集;(2)若f (x )的定义域是[1,16],求函数g (x )的最值;(3)若不等式[f (x )]2+log 2x+4>m •f (x )对于∀x ∈[1,16]恒成立,求m 的取值范围. 19.已知函数f (x )=x 2﹣2ax (a >0).(1)当a =2时,解关于x 的不等式﹣3<f (x )<5; (2)对于给定的正数a ,有一个最大的正数M (a ),使得在整个区间[0,M (a )]上,不等式|f (x )|≤5恒成立.求出M (a )的解析式;(3)函数y =f (x )在[t ,t+2]的最大值为0,最小值是﹣4,求实数a 和t 的值.20.已知f (x )=﹣3x 2+a (6﹣a )x+12.(1)若不等式f (x )>b 的解集为(0,3),求实数a 、b 的值;(2)若a =3时,对于任意的实数x ∈[﹣1,1],都有f (x )≥﹣3x 2+(m+9)x+10,求m 的取值范围.21.已知集合A ={x|﹣1≤x ≤2},B ={x|x 2﹣2mx+m 2﹣1≤0}.(1)命题p :x ∈A ,命题q :x ∈B ,且p 是q 的必要非充分条件,求实数m 的取值范围;(2)若∀x ∈A ,都有x 2+m ≥4+3x ,求实数m 的取值范围.22.已知定义在R 上的函数f (x )=x 2﹣x+k ,其中k 为常数.(1)求解关于x 的不等式f (x )<kx 的解集;(2)若f (2)是f (a )与f (b )的等差中项,求a+b 的取值范围.人教A版必修一二次函数与方程不等式同步练习题参考答案与解析1.分析:对m讨论,分m=2,m>2,结合二次函数的图象和判别式的符号,可得所求范围.解:①当m=2时,4>0,解集为R,②当m>2且△=4(m﹣2)2﹣16(m﹣2)<0,即2<m<6时,不等式解集为R,综上可得,m的取值范围是[2,6).故选D.2.分析:题意转化为(3﹣m)x2+(2﹣m)x+2﹣m≥0对任意实数x恒成立,分二次项系数是否为0,即m=3和m≠3两种情况分类讨论可得结果.解:∵恒成立,不等式等价于3x2+2x+2≥m(x2+x+1),即(3﹣m)x2+(2﹣m)x+2﹣m≥0对任意实数x恒成立,①当3﹣m=0,即m=3时,不等式为﹣x﹣1≥0,对任意实数x不恒成立,不满足题意;②当3﹣m≠0,即m≠3时,则,解得m≤2,综上可得,实数m的取值范围是(﹣∞,2].故选A.3.分析:根据函数的定义域为R,转化为﹣1≥0恒成立,结合指数函数的性质以及一元二次不等式的解法进行转化求解即可.解:∵f(x)的定义域为R,∴﹣1≥0,得≥1恒成立,得x2+2ax﹣a≥0恒成立,即判别式△=4a2+4a≤0,得a(a+1)≤0,得﹣1≤a≤0,故选C.4.分析:对a讨论,写出解集,再根据题目要求求出对应的a的范围.解:①当a>1时,解得1<x<a,此时解集中的整数为2,3,4,则4<a≤5,②当a<1时,解得a<x<1,此时解集中的整数为0,﹣1,﹣2,则﹣3≤a<﹣2.故a∈{a|﹣3≤a<﹣2或4<a ≤5},故选D.5.分析:根据x2﹣3|x|<0去绝对值可得或,然后解不等式组即可.解:∵x2﹣3|x|<0,∴或,∴0<x<3或﹣3<x<0,∴不等式的解集为{x|﹣3<x<0或0<x<3}.故选B.6.分析:不等式化为(x﹣1)(x﹣a)<0,只需讨论a>1,a<1时,求出解不等式的解集,再根据不等式的解集中恰有两个整数,求出a的取值范围.解:关于x的不等式x2﹣(a+1)x+a<0可化为(x﹣1)(x﹣a)<0,当a>1时,解不等式得1<x<a;当a<1时,解不等式得a<x<1;由不等式的解集中恰有两个整数,则3<a≤4或﹣2≤a<﹣1,所以a的取值范围是[﹣2,﹣1)∪(3,4].故选C.7.分析:A:由x2﹣3x+4≤b,利用判别式即可判断;B:在同一平面直角坐标系中作出函数y=x2﹣3x+4=(x﹣2)2+1的图象以及y=a和y=b,利用图象可判断;C:根据不等式的解集求出b 的值,再判断a是否小于1;D:利用不等式求出a的值,即可得到结论.解:对于A:由x2﹣3x+4≤b,可得3x2﹣12x+16﹣4b≤0,又b<1,所以△=48(b﹣1)<0,从而不等式a≤x2﹣3x+4≤b的解集为∅,故A正确;对于B:在同一平面直角坐标系中作出函数y =x2﹣3x+4=(x﹣2)2+1的图象以及y=a和y=b,如图所示,由图可知,当a=2时,不等式a≤x2﹣3x+4≤b的解集为{x|xA ≤x≤xC}∪{x|xB≤x≤xD}的形式,故B错误;由不等式a≤x2﹣3x+4≤b的解集恰好为{x|a≤x≤b},可知a≤ymin,即a≤1,因此当x=a,x=b时函数值都是b,由当x=b时,函数值是b,可得b2﹣3b+4=b,解得b=或b=4,由a2﹣3a+4=b=,解得a =或a=,不满足a≤1,不符合题意,故C错误;当b=4时,由a2﹣3a+4=b=4,解得a=0或a=4,a=0满足a≤1,此时b﹣a=4﹣0=4,故D正确.故选AD.8.分析:根据题意,分析可得a(a+b+c)+bc=a2+ab+ac+bc=(a+b)(a+c),结合基本不等式的性质分析可得答案.解:根据题意,a,b,c都是正数,且,则a(a+b+c)+bc=a2+ab+ac+bc=(a+b)(a+c)≤[]2==;当且仅当a+b=b+c时等号成立,故a2+ab+ac+bc的最大值为,故选C.9.分析:根据题意,分析可得a<0,c>0,由根与系数的关系可得m>0,由二次函数的性质分析零点﹣1到对称轴的距离,进而可得m﹣(﹣1)的取值范围,又由x0∈(﹣1,m),变形可得m与x的关系,据此分析选项可答案.解:根据题意,函数f(x)=ax2﹣bx+c(a<b<c)有两个零点﹣1和m,则有f(﹣1)=a+b+c =0,又由a<b<c,则a<0,c>0,方程ax2﹣bx+c=0的两个根为﹣1和m,则有(﹣1)×m=﹣m=<0,必有m>0,由a<b,a<0,得<1①,由0=a+b+c>a+b+b=a+2b,得﹣<,即>﹣②,由①②得:﹣<<1.函数f(x)=ax2﹣bx+c的图象是开口向下的抛物线,其对称轴方程为x=,则﹣<<,∴零点﹣1到对称轴的距离d∈(,),另一零点为m>0,则有m﹣(﹣1)=m+1=2d∈(,3),因为f(x0)>0,所以x∈(﹣1,m),故0<m﹣x<(2d)min ,∴x<m≤+x,综合四个选项,实数m的值可能是x+或+x,故选BC.10.分析:由已知可得﹣2,3是方程ax2+bx+c=0的两根,则由韦达定理可得:,且a<0,解得c=﹣6a,b=﹣a,然后对应各个选项逐个判断即可.解:由已知可得﹣2,3是方程ax2+bx+c=0的两根,则由韦达定理可得:,且a<0,解得c=﹣6a,b=﹣a,所以A错误,选项B:ax+c>0化简为x﹣6<0,解得x<6,B正确,选项C:a+b+c=a﹣a﹣6a=﹣6a>0,C正确,选项D:cx2﹣bx+a<0化简为:6x2﹣x﹣1<0,解得﹣,D正确,故选BCD.11.分析:由函数的零点的定义和二次方程有两个相等的实数解的条件可得a,b的关系式,由二次函数的最值求法,可判断A;由基本不等式可判断B;由二次方程的韦达定理可判断C,D.解:根据题意,函数y=x2+ax+b(a>0)有且只有一个零点,必有a2﹣4b=0,即a2=4b,(b>0),依次分析选项:对于A,a2﹣b2﹣4=4b﹣b2﹣4=﹣(b2﹣4b+4)=﹣(b﹣2)2≤0,b=2时,等号成立,即有a2﹣b2≤4,故A正确;对于B,a2+=4b+≥2=4,当且仅当b=时,取得等号,故B正确;对于C,由x1,x2为方程x2+ax﹣b=0的两根,可得x1x2=﹣b<0,故C错误;对于D,由x1,x2为方程x2+ax+b﹣c=0的两根,可得x1+x2=﹣a,x1x2=b﹣c,则|x1﹣x2|2=(x1+x2)2﹣4x1x2=a2﹣4(b﹣c)=a2﹣4b+4c=4c=16,解得c=4,故D正确.故选ABD.12.分析:先明白题目所给解答的方法:ax2﹣bx+c>0化为,类推为cx2﹣bx+a>0,解答不等式;然后依照所给定义解答题目即可.解:关于x的不等式+<0的解集为(﹣2,﹣1)∪(2,3),用替换x,不等式可以化为:可得,可得,故答案为:.13.分析:先确定当x∈[0,2]时,f(x)的最小值为﹣,利用函数f(x)满足f(x+2)=2f(x),可得x∈[4,6]时,f(x)的最小值为﹣1,从而可得﹣1≥t2﹣2t﹣4,即可得出结论.解:当x∈[0,1)时,f(x)=x2﹣x∈[﹣,0],当x∈[1,2]时,f(x)=(x﹣2)x∈[﹣,0],∴当x∈[0,2]时,f(x)的最小值为﹣,又∵函数f(x)满足f(x+2)=2f(x),当x∈[2,4]时,f(x)的最小值为﹣,当x∈[4,6]时,f(x)的最小值为﹣1,∵x∈[4,6]时,f(x)≥t2﹣2t﹣4恒成立,∴﹣1≥t2﹣2t﹣4,∴(t+1)(t﹣3)≤0,解得:﹣1≤t≤3,故答案为:﹣1≤t≤3.14.分析:根据题意,由二次函数的性质可得△=0,即a2+4b=0,由不等式的解集可得方程f(x)=c﹣1即﹣x2+ax﹣﹣c+1=0的两根分别为:m﹣4,m,利用根与系数的关系分析可得答案.解:根据题意,函数f(x)=﹣x2+ax+b的最大值为0,则二次函数f(x)与x轴只有一个交点,所以△=0,即a2+4b=0,变形可得b=﹣,关于x的不等式f(x)>c﹣1的解集为{x|m﹣4<x <m},所以方程f(x)=c﹣1即﹣x2+ax﹣﹣c+1=0的两根分别为:m﹣4,m,则有(m﹣4)+m =﹣a,m(m﹣4)=+c﹣1,则有[m﹣(m﹣4)]2=[m+(m﹣4)]2﹣4m(m﹣4)=a2﹣4(+c ﹣1)=4﹣4c=16,解可得:c=﹣3;故答案为:﹣3.15.分析:将∀x1∈[0,1],总∃x2∈[1,2],使得y1(x1)>y2(x2),转化为y1(x)min>y2(x)min,借助一次函数,二次函数的性质求解最大,最小值,再得到m的取出范围.解:对∀x1∈[0,1],总∃x2∈[1,2],使得y1(x1)>y2(x2),等价于y1(x)min>y2(x)min,由于y=x+m在x∈[0,1]单调递增,因此y1(x)min=y1(0)=m;而+2m﹣3,对称轴为x=,(1)若<1,即m<2,,即,得﹣2<m<2,(2)若,即2≤m≤4,,即m>,得﹣6<m<2,而2≤m≤4,即m无解,(3)若>2,即m>4,,∴m>,得m无解.综上,m的取出范围为(﹣2,2).16.分析:(1)关于x的方程f(x)=2a2有解,则Δ≥0,从而解不等式即可得出实数a的取值范围;(2)函数f(x)的对称轴为x=a,开口向上,按照a≤﹣,﹣<a<和a≥分类,分别根据函数的单调性,进而得出最小值.解:(1)由关于x 的方程f (x )=2a 2有解,等价于x 2﹣2ax+2=0有解,∴Δ=(﹣2a )2﹣4×2≥0,解得a ≤﹣或a ≥,故实数a 的取值范围是(﹣∞,﹣]∪[,+∞); (2)根据题意,f (x )=x 2﹣2ax+2a 2+2,x ∈[﹣,],对称轴为x =a ,开口向上,当a ≤﹣时,函数在[﹣,]上单调递增,此时f (x )min =f (﹣)=2a 2+3a+;当﹣<a <时,函数在[﹣,a]上单调递减,在[a ,]上单调递增,此时f (x )min =f (a )=a 2+2;当a ≥时,函数在[﹣,]上单调递减,此时f (x )min =f ()=2a 2﹣3a+,综上,函数在区间[﹣,]的最小值为f (x )min =.17.分析:(1)首先将所给的不等式写成两根式的形式,然后分类讨论确定不等式的解集即可,(2)由三个二次的关系得到方程的两个根之差为4,据此可得实数a 的值,(3)由题意将c 表示为含有b 的等式,然后求得实数b 的取值范围,最后结合二次函数的性质可得求b 2+c 2的取值范围. 解:(1)当c =b 时,由f (x )>1得x 2+bx+b ﹣1>0,即(x+b ﹣1)(x+1)>0,当1﹣b >﹣1,即b <2时,原不等式的解集为(﹣∞,﹣1)∪(1﹣b ,+∞),当b =2时,原不等式的解集为(﹣∞,﹣1)∪(﹣1,+∞),当b >2时,原不等式的解集为(﹣∞,1﹣b )∪(﹣1,+∞).(2)由f (x )的值域为[1,+∞),得,因为关于x 的不等式f (x )<a 的解集为(m ,m+4),所以m ,m+4是方程f (x )=a 的两个实根,即x 2+bx+c ﹣a =0的两根之差为4,所以,则,得a =5.(3),则,,则x ∈(﹣∞,﹣2]∪[2,+∞)时,f (x )≥0恒成立,又,因为f (g (x ))的最大值为1,所以f (x )在xe[﹣3,﹣2)上的最大值为1,由f (x )图象开口向上,得,即,则c =3b ﹣8,且b ≤5,此时由x ∈(﹣∞,﹣2]∪[2,+∞)时,f (x )≥0恒成立,得x 2+bx+3b ﹣8≥0恒成立,且f (﹣2)≥0,得b ≥4,要满足x ∈(﹣∞,﹣2]∪[2,+∞)时,f (x )≥0恒成立,则Δ≤0,b 2﹣4(3b ﹣8)≤0,解得4≤b ≤8,综上,4≤b ≤5,此时b 2+c 2=b 2+(3b ﹣8)2=10b 2﹣48b+64∈[32,74].18.分析:(1)依题意,g (x )=2可化简为+4log 2x =0,解之即可得到方程g (x )=2的解集;(2)依题意得1≤x 2≤16⇒1≤x ≤4⇒0≤log 2x ≤2,换元,令t =f (x )=log 2x+1,则t ∈[1,3],于是可得h (t )=(t+1)2﹣2,利用二次函数的单调性即可求得函数g (x )的最值;(3)令t =f (x )=log 2x+1,则t ∈[1,5],则不等式[f (x )]2+log 2x+4>m •f (x )对于∀x ∈[1,16]恒成立⇔t 2+t+3>mt 对于∀t ∈[1,5]恒成立⇔m <t++1(1≤t ≤5)恒成立,利用基本不等式即可求得m 的取值范围. 解:(1)∵f (x )=log 2x+1,∴g (x )=f (x 2)+[f (x )]2=2log 2x+1++2log 2x+1=+4log 2x+2,由g (x )=2得:+4log 2x =0,解得:log 2x =0或log 2x =﹣4,∴x =1或x =,∴方程g (x )=2的解集为{,1};(2)∵f (x )的定义域是[1,16],∴1≤x 2≤16,∴1≤x ≤4,∴0≤log 2x ≤2,∴f (x )=log 2x+1∈[1,3],令t=f(x)=log2x+1,则t∈[1,3],则h(t)=g(x)=+4log2x+2=(t﹣1)2+4(t﹣1)+2=(t+1)2﹣2,t∈[1,3].∵h(t)=(t+1)2﹣2的对称轴方程为t=﹣1,∴y=(t+1)2﹣2在区间[1,3]上单调递增,∴h(t)min =h(1)=2,h(t)max=h(3)=14.即g(x)min=2,g(x)max=14.(3)若不等式[f(x)]2+log2x+4>m•f(x)对于∀x∈[1,16]恒成立,令t=f(x)=log2x+1(1≤x≤16),则t∈[1,5],则上式等价于t2+t+3>mt对于∀t∈[1,5]恒成立⇔m<t++1(1≤t≤5)恒成立,∵t++1≥2+1,当且仅当t=,即t=时取“=”,∴m<2+1.19.分析:(1)a=2时,把不等式﹣3<f(x)<5化为不等式组﹣3<x2﹣4x<5,求出解集即可;(2)由二次函数的图象与性质,讨论a>0时|f(x)|≤5在x∈[0,M(a)]上恒成立时,M(a)最大,此时对应的方程f(x)=±5根的情况,从而求出M(a)的解析式;(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0,分类讨论,利用y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.解:(1)当a=2时,函数f(x)=x2﹣4x,∴不等式﹣3<f(x)<5可化为﹣3<x2﹣4x<5,解得,∴不等式的解集为(﹣1,1)∪(3,5);(2)∵a>0时,f(x)=x2﹣2ax=(x﹣a)2﹣a2,∴当﹣a2<﹣5,即a>时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=﹣5的较小的根,即M(a)=a﹣;当﹣a2≥﹣5,即0<a≤时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=5的较大的根,即M(a)=a+;综上,M(a)=.(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0.①若t=0,则a≥t+1,且f(x)min =f(a)=﹣4,或f(x)min=f(2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,a=﹣2不合题意,舍去.当f(2)=4﹣4a=﹣4时,a=2,②若t+2=2a,则a≤t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2a﹣2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,若a=2,t=2,符合题意;若a=﹣2,则与题设矛盾,不合题意,舍去.当f(2a﹣2)=﹣4时,a=2,t=2.综上所述,a=2,t=0和a=2,t=2符合题意.20.分析:(1)根据不等式f(x)>b的解集知对应方程的实数根,由根与系数的关系求出a、b 的值;(2)a=3时问题转化为mx≤2对于任意的实数x∈[﹣1,1]都成立,讨论m的取值情况,从而求出m的取值范围.解:(1)因为f(x)=﹣3x2+a(6﹣a)x+12,不等式f(x)>b的解集为(0,3),所以0和3是一元二次方程3x2﹣a(6﹣a)x﹣12+b=0的两实数根,所以,解得a=3,b=12;(2)当a=3时,f(x)=﹣3x2+9x+12,不等式f(x)≥﹣3x2+(m+9)x+10可化为﹣3x2+9x+12≥﹣3x2+(m+9)x+10,即mx≤2对于任意的实数x∈[﹣1,1]都成立;m=0时,mx=0≤2显然成立;m>0时,mx≤2化为x≤,即≥1,解得m≤2,即0<m≤2;m<0时,mx≤2化为x≥,即≤﹣1,解得m≥﹣2,即﹣2≤m<0;综上知,m的取值范围是[﹣2,2].21.分析:(1)求出集合B的取值范围,根据p是q的必要非充分条件,即可求得m的取值范围(2)由若∀x∈A,得不等式的定义域,解关于m的不等式,即可求得m的取值范围.解:(1)B={x|x2﹣2mx+m2﹣1≤0}={x|(x﹣m+1)(x﹣m﹣1)≤0}⇒{x|m﹣1≤x≤m+1}.由p是q的必要非充分条件知:B⫋A,∴,解得0≤m≤1.(2)由∀x∈A,都有x2+m≥4+3x,得m≥﹣x2+3x+4,x∈[﹣1,2],令y=﹣x2+3x+4=﹣(x﹣)2+,x∈[﹣1,2],∴当x=时,y取最大值为,∴m≥.22.分析:(1)对k分类讨论,利用一元二次不等式的解法可得结论;(2)由等差中项的性质可得关于a,b的等式,再利用基本不等式即可得结论解:(1)由f(x)<kx,可得x2﹣x+k<kx,即(x﹣k)(x﹣1)<0,当k=1时,不等式的解集为∅;当k<1时,不等式的解集为(k,1);当k>1时,不等式的解集为(1,k).(2)若f(2)是f(a)与f(b)的等差中项,则2(2+k)=(a2﹣a+k)+(b2﹣b+k),整理得a2+b2﹣(a+b)=4,∴4=a2+b2﹣(a+b)=(a+b)2﹣(a+b)﹣2ab≥(a+b)2﹣(a+b)﹣2()2,解得﹣2≤a+b≤4,所以a+b的取值范围为[﹣2,4].。
高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学二次函数的综合问题人教版【本讲教育信息】一. 教学内容:二次函数的综合问题二. 教学重难点:含有参数的或在给定区间上的二次函数问题,讨论可化为二次函数的问题及二次函数与方程,不等式的综合问题。
【典型例题】[例1] 求函数)(a x x y --=在]1,1[-∈x 上的最大值。
解:函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;(2)a ≤-22≤;(3) 2>a 时的草图。
由图易知:⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a af a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a a a a y 最大[例2] 已知函数)()1()(2R m m x m x x f ∈++-=(1)设A 、B 是ABC ∆的两个锐角,且A tan 、B tan 是方程04)(=+x f 的两个实根,求证:5≥m ;(2)当3≥m 时,函数)(sin αf 的最大值是8,求m 的值。
证明:(1)方程04)(=+x f 即为04)1(2=+++-m x m x依题意,得⎪⎩⎪⎨⎧>+=⋅>+=+≥+-+=∆04tan tan 01tan tan 0)4(4)1(2m B A m B A m m ⎪⎩⎪⎨⎧->->≥-≤⇒4153m m m m 或5≥⇒m(2)∵ 4)1()21(sin sin )1(sin )(sin 222+-++-=++-=m m m m m f αααα ∵ 3≥m 而221≥+m ∴ 当1sin -=α时,)(sin αf 取得最大值22+m 由题意知822=+m ∴ 3=m[例3] 已知函数c bx x x f ++=2)((b 、R c ∈,2-≥c ),c x f x F -=)()(,当]2,2[-∈x 时,恒有0)(≤x f ,且对于任意实数1x 、2x ,总有)()(2121x x F x x F -++)]()([221x F x F +=,求函数)(x f 的解析式。
解:由bx x x F +=2)(,得F (0)=0在)]()([2)()(212121x F x F x x F x x F +=-++中,令01=x ,x x -=2 得)]()0([2)()(x F F x F x F -+=+- ∴ )()(x F x F -= ∴ )(x F 是偶函数因此0=b ∴ c x x f +=2)( 又)(x f 在]2,2[-上恒有0)(≤x f所以0)2()2(≤=-f f ,即02≤+c ,亦即2-≤c 又 2-≥c ∴ 2-=c ,故)(x f 22-=x[例4] 已知二次函数)(x f 满足条件1)0(=f 及x x f x f 2)()1(=-+(1)求)(x f ;(2)求)(x f 在区间]1,1[-上的最大值和最小值 解:(1)设c bx ax x f ++=2)(,由1)0(=f ,可知1=c∵ b a ax c bx ax c x b x a x f x f ++=++-++++=-+2)(])1()1([)()1(22 故由x x f x f 2)()2(=-+得22=a ,0=+b a 因而1=a ,1-=b 所以1)(2+-=x x x f (2)43)21(1)(22+-=+-=x x x x f ∵]1,1[21-∈,所以当21=x 时,)(x f 的最小值为43 当1-=x 时,)(x f 的最大值为3)1(=-f[例5](1(2(3解:(1)根据函数图象得⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤+-=2520,6512016,741p p p p q(2)设月利润为W (万元),则⎪⎪⎩⎪⎪⎨⎧≤<--+-≤≤--+-=--=2520,8.6)16)(651(2016,8.6)16)(741(8.6)16(p p p p p p q p W当2016≤≤p 时,2.2)22(412+--=p W 故20=p 时,2.1max =W当2520≤<p 时,3)23(512+--=p W ,故23=p 时,3max =W ∴ 当售价定为23元/件时,月利润最多为3万元。
(3)设最早n 个月后还清转让费,则583≥n ,20≥n ∴ 企业乙最早可望20个月后还清转让费。
[例6] 是否存在常数R k ∈,使函数)2()2()(24k x k x x f -+-+=在]1,(--∞上是减函数且在)0,1[-上是增函数?解法1:设2x t =,则原函数转化为)2()2()()(2k t k t t h x f -+-+==那么问题就等价于是否存在常数R k ∈,使函数)2()2()(2k t k t t h -+-+=在]1,0(上是减函数且在),1[∞+上是增函数,根据二次函数的性质知,只需122=--k,故4=k 解法2:任取121-≤<x x ,则)()(12x f x f - ))(2(21224142x x k x x --+-= )2)((21222122k x x x x -++-= )2)()((21221221k x x x x x x -++-+=由)(x f 在]1,(--∞上是减函数可知,对任意的121-≤<x x (*)0<恒成立 所以有022122>-++k x x 恒成立,即22122++<x x k 恒成立 ∵ 121-≤<x x ∴ 421122122=++>++x x 因此,当4≤k 时,(*)0<恒成立即当4≤k 时,函数)(x f 在]1,(--∞上是减函数 仿上可得当4≥k 时,函数)(x f 在)0,1[-上是增函数故存在常数4=k ,使函数)2()2()(24k x k x x f -+-+=在]1,(--∞上是减函数,且在)0,1[-上是增函数。
[例7] 已知函数xa x x x f ++=2)(2,),1[∞+∈x(1)当21=a 时,求函数)(x f 的最小值; (2)若对任意),1[∞+∈x ,0)(>x f 恒成立,试求实数a 的取值范围 解:(1)当21=a 时,221)(++=xx x f ,先证)(x f 在区间),1[∞+上为增函数(略) ∴ )(x f 在区间),1[∞+上的最小值为27)1(=f(2)解法1:在区间),1[∞+上,02)(2>++=xax x x f 恒成立 022>++⇔a x x 恒成立,1)1(222-++=++=a x a x x y 在),1[∞+上递增∴ 当1=x 时,a y +=3min于是当且仅当03min >+=a y 时,函数0)(>x f 恒成立,故3->a 解法2:2)(++=xax x f ,),1[∞+∈x ,当0≥a 时,函数)(x f 的值恒为正 当0<a 时,函数)(x f 递增,故当1=x 时,a x f +=3)(min 于是当且仅当03)(min >+=a x f 时,函数0)(>x f 恒成立 故30->>a ,综上,a 的取值范围是3->a[例8] 已知函数c bx ax x f ++=2)((c b a >>)的图象上有两点A (1m ,)(1m f )、B (2m ,)(2m f ),且满足0)1(=f ,0)()())()((21212=⋅+⋅++m f m f a m f m f a 。
(1)求证:0≥b(2)求证:)(x f 的图象被x 轴所截得的线段长的取值范围是)3,2[ 证明:(1)0)()()]()([21212=+++m f m f a m f m f a即0)]()][([21=++m f a m f a ∴ a m f -=)(1或a m f -=)(2∴ 1m 或2m 是a x f -=)( 即02=+++a c bx ax 的实根于是0≥∆即)(42c a a b +≥ ∵ 0)1(=f ∴ 0=++c b a 将b c a -=+代入上述不等关系,得042≥+ab b ,即0)4(≥+a b b ,又c b a >>∴ 必有0>a ,0<c (否则与0=++c b a 矛盾) ∴ 034>-=+c a a b ∴ 0≥b(2)设0)(2=++=c bx ax x f 两根为1x 、2x ,则一个根为1(∵ 0)1(=f ),另一根为a c ,∵ cb a >>且由上知0≥--=c a b ,∴ 0≥-->c a a ,∴ 12-≤<-ac,3||221<-≤x x【模拟试题】(答题时间:70分钟)一. 选择题:1. 设二次函数c bx ax x f ++=2)((0≠a ),如果)()(21x f x f =(其中21x x ≠),则)2(21x x f +等于( ) A. a b 2- B. ab- C. c D. a b ac 442-2. 二次函数ab c x b a x y 2)(222+++-=的图象的顶点在x 轴上,且a 、b 、c 为ABC ∆的三边长,则ABC ∆为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3. 已知函数54)(2+-=mx x x f 在区间),2[∞+-上是增函数,则)1(f 的范围是( ) A. 25)1(≥f B. 25)1(=f C. 25)1(≤f D. 25)1(>f4.5.6. 若32)1()(2++-=mx x m x f 为偶函数,则)(x f 在区间(5-,2-)上( ) A. 是增函数 B. 是减函数 C. 增减性随m 的变化而改变 D. 无单调性二. 填空:1. 已知函数)(|2|)(2R x b ax x x f ∈+-=,给出下列命题: ① )(x f 必为偶函数② 当)0(f )2(f =时,)(x f 的图象必关于直线1=x 对称 ③ 若02≤-b a ,则)(x f 在区间),[∞+a 上是增函数 ④ )(x f 有最大值b a -2 其中正确命题的序号是 。
2. 若3)2(2+++=x a x y ,],[b a x ∈的图象关于直线1=x 对称,则=b 。
3. 函数342++=x x y (]2,(--∞∈x )的反函数的定义域是 。