曲线拟合的最小二乘法论文
最小二乘法曲线拟合毕业设计论文(含源文件)

毕业设计(论文)题目最小二乘法原理,VC++实现及应用毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
最小二乘法拟合曲线在工程中的应用.docx

最小二乘法拟合曲线在工程中的应用摘要:应用MATLAB数值逼近的方法到工程实际中。
本文介绍了MATLAB中最小二乘法相关函数的使用方法。
关键字:最小二乘法MATLAB曲线拟合工程应用1引言:工程实验中常遇到一些相关数据的分析处理,并要求拟合曲线以便反映数组规律和扩大应用范围。
工程实验中,常常会取得一些相关数据,这些数据往往来自与施工密切相关的测量或试验中,比如用拉伸法测暈金属丝杨氏模暈实验中金属丝长度与舷码总质暈存在线性关系,又如预应力千斤顶与油表的配套校验中,油表读数与千斤顶实际张拉力又有一种关系,这些原始数据一般是5组以上。
2方法原理介绍现实中通过测量或试验取得的各组数据其本身不可避免地带有测试误差,如果构造一个较为简单的插值法P(x)来逼近真实函数f(x),当个别数对误差影响较大时就会引起插值函数发生严重波动,从而影响逼近精度,因为插值法要求插值函数通过插值节点,即P(x7) = f(x y),j = 0,1,这时候,为尽可能减小测试误差对逼近精度的影响,我们可以用另一种方法构造一个经验公式,使得该公式在每一个节点上所求得的结果与原测试结果的差的平方和最小,即曲线拟合的误差最小,精度最高,这就是最小二乘法原理,用定义表述为:设有n对数据石、x t (j = 0,1,••- ,n),通过这些数据找一个m次P(x) = a0 +a1x+ ••• + a m x m (m < n),适当选取系数使得詆%"…,%)= -力]'为最小值,则称p(x)为最小二乘拟合多项式,或称x、yZ间的经验公式。
3仿真结果分析比较(1)求解张拉千斤顶与油表读数的回归方程预应力千斤顶与油表的配套校验中,分级张拉数据可达到5〜20组,而张拉力与油表读数实际为线性关系,一般只需两组数据便可确定其关系式,但数据越多,回归方程越真实,越精确。
此时采用最小二乘法可使每一组数据参与回归。
经验公式:y=ax+b某千斤顶校验数据见下表(z7)MATLAB 程序:x=[0 100 300 500 700 900 1100]; y=[0 11 11.2 18.4 25.1 32.2 39.0]; plot(x,y;o,);xlabelC标准压力值(kN)*);ylabelf 油表读数(MPa)');4035200 400600800 1000 1200标准压力值(kN)从图中可以看出第二组数据偏离直线,误差较大,回归时舍君亥组数据,取n=6组。
最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合是一个重要的数值分析方法,它是通过最小二乘法对样本点与直线或曲线之间的关系进行拟合和分析,从而估算出一个函数的一组参数。
最小二乘法曲线拟合是一种经典的数值分析方法,可以用来拟合函数和曲线,估算出参数,预测数据,分析函数,优化模型,甚至可以分析复杂多变量函数。
最小二乘法曲线拟合的核心方法是使用最小二乘法把拟合的曲线拟合到观察到的数据,通过求解方程的最小二乘法,把一系列的观察数据点拟合为最小二乘法曲线,计算出拟合曲线的最佳系数,满足拟合效果的最佳拟合曲线。
最小二乘法曲线拟合的核心目标是通过计算拟合曲线的最小均方误差(SSE)、平均均方误差(MSE)、最大均方误差(MAXE)等方法,使拟合曲线与观察数据点之间的差距最小,从而求解出最佳拟合曲线系数。
最小二乘法曲线拟合具有很强的解析性,可以用数学计算方法快速求解,可以满足各种不同应用场景的需求,因而被广泛应用于科学研究、工程设计、市场分析等领域。
最小二乘法曲线拟合最常见的应用场景有:根据观察数据拟合和估计函数的参数;分析函数的性质;优化模型的能力;预测数据等等。
当应用最小二乘法拟合函数时,首先需要把观察数据用直线或曲线拟合,然后使用极小化残差平方和的方法,来求解参数,这是一个典型的最优化问题,利用一般最优化算法来求解,如梯度下降算法、牛顿法等。
此外,在应用最小二乘法曲线拟合的过程中,还可以考虑几种情况,比如样本数据受到误差的影响,具有某种偏差性;偏差是否服从正态分布;样本数据的分布是否同分布;拟合曲线的拟合是否收敛,参数计算是否准确等等。
总之,最小二乘法曲线拟合是一种重要的数值分析方法,可以用来拟合函数和曲线、估算参数、预测数据、优化模型等。
在应用最小二乘法曲线拟合时,需要考虑一些影响因素,比如样本数据受到误差的影响、偏差是否服从正态分布等,因此,它是一种有效的数值分析方法。
实验3 曲线拟合的最小二乘法

实验三曲线拟合的最小二乘法1、实验目的:在科学研究与工程技术中,常常需要从一组测量数据出发,寻找变量的函数关系的近似表达式,使得逼近函数从总体上与已知函数的偏差按某种方法度量能达到最小而又不一定过全部的点。
这是工程中引入最小二曲线拟合法的出发点。
充分掌握:1.最小二乘法的基本原理;2.用多项式作最小二乘曲线拟合原理的基础上,通过编程实现一组实验数据的最小二乘拟合曲线。
2、实验要求:1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;2)编写上机实验程序,作好上机前的准备工作;3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);4)分析和解释计算结果;5)按照要求书写实验报告;3、实验内容:1) 给定数据如下:x :0.15,0.4,0.6 ,1.01 ,1.5 ,2.2 ,2.4,2.7,2.9,3.5 ,3.8 ,4.4,4.6 ,5.1 ,6.6,7.6;y :4.4964,5.1284,5.6931 ,6.2884 ,7.0989 ,7.5507 ,7.5106,8.0756,7.8708,8.2403 ,8.5303 ,8.7394,8.9981 ,9.1450 ,9.5070,9.9115;试作出幂函数拟合数据。
2) 已知一组数据:x :0,0.1,0.2 ,0.3 ,0.4 ,0.5 ,0.6,0.7,0.8,0.9 ,1y :-0.447,1.978,3.28 ,6.16 ,7.08 ,7.34 ,7.66,9.56,9.48,9.30 ,11.2;试用最小二乘法求多项式函数,使与此组数据相拟合。
4、题目:曲线拟合的最小二乘法5、原理:从整体上考虑近似函数同所给数据点(i=0,1,…,m)误差(i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑2—范数的平方,因此在曲线拟常采用误差平方和来度量误差(i=0,1,…,m)的整体大小.。
数值分析曲线拟合的最小二乘法实验报告

数值分析曲线拟合的最小二乘法实验报告数值分析曲线拟合的最小二乘法实验报告篇一:数值分析设计曲线拟合的最小二乘法曲线拟合的最小二乘法一、目的和意义在科学实验的统计方法研究中,往往要从一组实验数据?xi,yi??i?0,1,2,?,m?中,寻找自变量x与因变量y之间的函数关系y?F?x?。
由于观测数据往往不准确,因此不要求y?F?x?经过所有点?xi,yi?,而只要求在给定点xi上误差而只要求所在所有给定点xi上的误差?i?F(xi)?yi ?i?0,1,2,?,m?按某种标准最小。
若记????0,?1,?2,?,?m?,就是要求向量?的范数如果用最大范数,计算上困难较大,通常采用欧式范数?最小。
2T 作为误差度量的标准。
F?x?的函数类型往往与实验的物理背景以及数据的实际分布有关,它一般含有某些待定参数。
如果F?x?是所有待定参数的线性函数,那么相应的问题称为线性最小二乘问题,否则称为非线性最小二乘问题。
最小二乘法还是实验数据参数估计的重要工具。
这是因为这种方法比其他方法更容易理解,即使在其他方法失效的情况下,用最小二乘法还能提供解答,而且从统计学的观点分析,用该方法求得各项估计具有最优统计特征,因此这一方法也是系统识别的重要基础。
线性最小二乘问题可以借助多元微分学知识通过求解法方程组得到解答。
用最小二乘法求拟合曲线时,首先要确定S?x?的形式。
这不单纯是数学问题,还与所研究问题的运动规律以及所得观测数据?xi,yi?有关;通常要从问题的运动规律以及给定数据描图,确定S?x?的形式,并通过实际计算选出较好的结果。
为了使问题的提法更有一般性,通常把最小二乘法中的? 22 都考虑为加权平方和22 ? ????xi???S?xi??f?xi??? i?0 m 2 这里??xi??0是?a,b?上的加权函数,它表示不同点?xi,f?xi?处的数据比重不同。
?二、计算方法在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量y与时间t的拟合曲线。
基于最小二乘原理的分段曲线拟合法

基于最小二乘原理的分段曲线拟合法是一种常用的曲线拟合方法,它可以将曲线分成若干段,每一段都用一个简单的函数模型来拟合数据点,从而得到整条曲线的拟合结果。
本文将介绍基于最小二乘原理的分段曲线拟合法的原理、算法和应用,并探讨该方法的优缺点和改进方向。
1. 基本原理基于最小二乘原理的分段曲线拟合法的基本原理是将整条曲线分成若干段,每一段用一个简单的函数模型来拟合数据点。
假设有n个数据点(xi, yi),我们希望用一个分段函数模型y=f(x)来拟合这些数据点。
分段函数模型可以表示为:y = f1(x), x∈[x1, x2]y = f2(x), x∈[x2, x3]...y = fk(x), x∈[xk, xn]其中f1(x), f2(x), ..., fk(x)分别是每一段的函数模型。
我们的目标是找到使得拟合误差最小的分段函数模型,即最小化残差平方和:minimize Σ(yi - fi(xi))^2, i=1, 2, ..., n2. 算法基于最小二乘原理的分段曲线拟合法的算法通常采用迭代优化的方法来求解。
具体步骤如下:(1)初始化分段点,可以均匀地将曲线分成若干段,或者根据数据点的分布情况来选择分段点;(2)对每一段的函数模型进行参数估计,可以用最小二乘法或其他优化方法来求解每一段的最佳参数;(3)计算拟合曲线的残差平方和;(4)根据残差平方和的大小来更新分段点,可以合并相邻的段或者分割某一段;(5)重复步骤(2)-(4),直到满足停止条件为止。
3. 应用基于最小二乘原理的分段曲线拟合法在实际中有着广泛的应用。
在工程领域中,分段曲线拟合可以用来对传感器采集的数据进行平滑处理和趋势分析;在经济学领域中,可以用来对经济指标的变化趋势进行拟合和预测。
4. 优缺点基于最小二乘原理的分段曲线拟合法有着一些优点和缺点。
其优点在于可以较好地拟合非线性曲线,并且可以灵活地调整分段点来适应数据的变化。
然而,该方法也存在一些缺点,例如对初始分段点的选择敏感,容易陷入局部最优解,且对噪声数据比较敏感。
基于最小二乘法的曲线拟合及其在Matlab中的应用

基于最小二乘法的曲线拟合及其在Matlab中的应用【摘要】物理量之间的函数关系的确定在实际研究工作中有很重要的作用。
目前我们用于曲线拟合的方法主要是三次多项式插值法,抛物线加权平均法,张力样条函数插值法等,但这些方法计算量大。
本文结合最小二乘法的基本原理,利用最小二乘方法进行曲线拟合,计算过程简便。
首先介绍了最小二乘法拟合的基本原理,然后介绍了用Matlab实现曲线拟合以得到函数关系的方法和步骤,最后举例详细介绍了该方法的应用。
【关键词】最小二乘法;Matlab;曲线拟合1.引言在现代科学研究中,物理量之间的相互关系通常是用函数来描述的。
有些函数关系是由经典理论分析推导得出的,这些函数关系为我们进一步的分析研究工作提供了理论基础。
在现实的科学研究过程中,有一些问题很难由经典理论推导出物理量的函数表达式,或者此推导出的表达式也十分复杂,不利于进一步的分析,但又很希望能得到这些量之间的函数关系,这时就可以利用曲线拟合的方法,用实验数据结合数学方法得到物理量之间的近似函数表达式。
Matlab是Math Works公司推出的一种科学计算软件,是集数值计算、符号运算及出色的图形处理、程序语言设计等强大功能于一体的科学计算语言。
应用Matlab处理既克服了最小二乘法计算量大等缺点,又使繁琐、枯燥的数值计算变成种简单、直观的可视化操作过程,且能较准确地标记实验数据点和绘出拟合曲线。
2.最小二乘法拟合的基本原理曲线拟合又称函数逼近,是指对一个复杂函数,求出一个简单的便于计算的函数,要求使与的误差在某种度量意义下最小。
我们把近似值和测得值的差值称为残余误差。
即显然,残差的大小是衡量拟合好坏的重要标志。
经常采用的三种衡量的准则为:(1)使残差的最大绝对值最小:;(2)使残差的绝对值之和最小:;(3)使残差的平方和最小:。
分析上面的三种准则,准则(1)、(2)的提法都比较自然,但是由于含有绝对值,所以不利于实际计算,而按照准则(3)来确定参数,得到拟合曲线的方法称作曲线拟合的最小二乘法,它的计算比较简单,是工程实际当中常用的一种函数逼近的方法。
基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。
通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。
最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。
本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。
通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。
二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。
在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。
这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。
假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。
最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。
这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。
解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。