七年级数学竞赛讲座:第五讲 方程组的解法

合集下载

二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)

二元一次方程组的解法-代入消元法(课件)七年级数学下册(人教版)
解这个方程,得 y=20
把y=20代入③,得 x=28
所以这个方程组的解是
x 28

y 20
答:篮球队有28支、排球队有20支参赛.
=1−
1.用代入法解方程组
时,代入正确的是(
)
− 2 = 4
C
A.x-2-x=4
B.x-2-2x=4
2.用代入法解方程组
2
A.3x=2×
3
所以原方程组的解是
y 105
转化
x+(x+10)=200
x=95
y=105
求方程组解的过程叫做解方程组.
将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.
把二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出
来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.
这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组的一般步骤:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未
知数用含有另一个未知数的式子表示出来;
第二步:把此式子代入没有变形的另一个方程中,可得一个一元一次方程;
第三步:解这个一元一次方程,得到一个未知数的值;
第四步:回代求出另一个未知数的值;

y 3x 1 0
解:由② ,得 y=3x+1



把③代入①,得 2x+3x+1=0
解这个方程,得 x=1
把x=1代入③,得 y=4
x 1
所以这个方程组的解是
y 4
本题还有其它
做法吗?
例2.用代入法解方程组

[精华]1.未知数比方程个数多的方程组解法

[精华]1.未知数比方程个数多的方程组解法

初中数学竞赛专题选讲(1)未知数比方程个数多的方程组解法一、内容提要在一般情况下,解方程或方程组,未知数的个数总是与方程的个数相同的,但也有一些方程或方程组,所含的未知数的个数多于方程的个数,包括在列方程解应用题时,引入的辅助未知数.解这类方程或方程组,一般有两种情况:一是依题意只求其特殊解,如整数解,或几个未知数的和(积)等,无需求出所有的解;二是在实数范围内,可运用其性质,增加方程或不等式的个数. 例如,利用取值范围,非负数的性质等.二、例题例1. 在实数范围内,解下列方程或方程组:①0211122=++--+-y x x x ; ②x 2+xy+y 2-3x -3y+3=0;③⎩⎨⎧=-=++4222z xy z y x解:① 根据在实数范围内,二次根式被开方数是非负数,分母不等于零.得不等式组 ⎪⎩⎪⎨⎧≠-≥-≥-01010122x x x解得x 2=1而x ≠1, ∴⎩⎨⎧-=-=21y x② 整理为关于x 的二次方程,利用方程有实数根,则判别式 △≥0.x 2+(y -3)x+(y 2-3y+3)=0.∵x 是实数, ∴△≥0.即( y -3)2-4(y 2-3y+3)≥0 .解得 (y -1)2≤0 .而(y -1)2≥0. ∴y=1.∴⎩⎨⎧==11y x 是原方程的解.③消去一元后,利用实数平方是非负数性质.由①得z=2-x -y .代入②得2xy -(2-x -y)2-4=0.整理配方,得(x -2)2+(y -2)2=0.∵相加得0的两个数,只有是互为相反数.而 x, y 是实数,∴(x -2)2≥0,(y -2)2≥0.∴满足等式的条件只能是:⎩⎨⎧=-=-0202y x .∴方程组的解是 ⎪⎩⎪⎨⎧-===222z y x本题在消去z 后,也可以仿②,写成关于 x 的二次方程,用判别式求解.例2. 一个自然数除以4余1,除以5余2,除以11余4,求适合条件的最小自然数.分析:本题有多种解法:①交集法, ②设三元,消去一元,用二元一次方程求整数解,③设二元,求二元一次方程的整数解.解法一:除以4余1的自然数集合:{1,5,9,13,17,21,…37…};除以5余2的自然数集合:{2,7,12,17,…37…};除以11余4的自然数集合:{4,15,26,37,…}.三个集合的公共元素中最小的自然数是37.解法二:设所求的自然数 为4a+1或5b+2 或11c+4 (a,b,c 都是自然数).得方程组 ⎩⎨⎧+=++=+)2(41114)1(2514c a b a由(1)得 a=41415++=+b b b .设k b =+41(k 为正整数), 那么 b=4k -1, a=5k -1. 由(2)得 c=117911720113)15(41134-+=-=--=-k k k k a .要使1179-k 为整数,k 取最小正整数2.这时c=3 (也可求得b=7, a=9), 所求自然数 是37.解法三:设所求的自然数为x, 则41-x ,52-x , 114-x 都是自然数.∵41-x >52-x >114-x .∴41-x +114-x -52-x 也是自然数.设y=41-x +114-x -52-x .去分母,得 200y=31x -47.x=31163173147200+++=+y y y .y 取最小正整数5,能使31163+y 为整数.∴x=37, 即最小的自然数是37.例3. 有甲,乙,丙三种货物.若购买甲3件,乙7件,丙1件共需3.15元;若购买甲4件,乙10件,丙1件共需4.20元.问购买甲、乙、 丙各1件共需几元?(1985年全国初中数学联赛题)解:设甲,乙,丙每件分别为x, y, z 元.根据题意,得⎩⎨⎧=++=++)2(20.4104)1(15.373z y x z y x ( 依题意只要求出x+y+z 的值)(1)×3-(2)×2:x+y+z=1.05(元).答:买甲、乙、 丙各1件共需1.05元.例4. 甲、乙两车分别从A 、B 两站同时出发,相向而行,当甲车走完全程的一半时,乙车距A 站24公里;当乙车走完全程的一半时,甲车距B 站15公里.求A 、B 两站的距离.解:设A 、B 两站的距离为x 公里,并引入辅助未知数V 甲,V 乙分别表示甲、乙两车的速度. 根据题意,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=)2(215)1(242乙甲乙甲V x V x V x V x( 这方程组可同时消去两个辅助未知数.)∵ 方程(2)左、右不等于零 ∴(1)÷(2)得224152x x x x-=-.解得, x=40;或 x=12 (不合题意 舍去).答:A 、B 两站的距离为40公里.三、练习1. 甲,乙,丙,丁,戊做一件工程,甲,乙,丙合作需7.5小时,甲,丙戊合作需5小时,甲,丙,丁合作需6小时,乙,丁,戊合作需4小时.问五人合作需几小时?2. 服装厂向百货商店购买甲、乙两种布,共付42.9元,售货员收款时发现甲、乙两种布单价对调了,退给厂方1.6元,厂方把这1.6元又买 了甲、乙两种布各1尺.问服装厂共买布几尺?3. 两只船分别从河的两岸同时对开,速度保持不变,第一次相遇时,距河的一岸700米,继续前进到达对岸后立即返回,第二次相遇时,距河的另一岸400米,求河的宽.4. 游泳运动员自闽江逆流而上,在解放大桥把水壶丢失,继续前游20分钟才发现,于是返回追寻,在闽江大桥处追到,已知两桥相距1000米,求水流的速度.5. 已知长方形的长和宽均为整数,且周长的数值与面积的数值相等.问这长方形的长和宽各是多少?6. 有一队士兵,若排成3列纵队,则最后一行只有1人;若排成5列纵队,则最后一行只有7. 人;排成7列纵队,则最后一行只有6人.问这队士兵最少是几人?7. 求下列方程的实数解:①311221=++-+-y x x② 5x 2+6xy+2y 2-14x -8y+10=0③ (x 2+1)(y 2+4)=8xy④ 052312=+-+-+y x y x8. 一件工程,如果甲单独完成所需的时间是乙,丙合做,完成这件工程所需时间的a 倍;如果乙单独完成所需的时间是甲,丙合做,完成这件工程所需时间的b 倍.(其中b>a>1),那么丙单独完成所需的时间是甲,乙合做,完成这件工程所需时间的多少倍?(1990年泉州市初二数学双基赛题 )9. 甲,乙两车从东站,丙,丁两车从西站,同时相向而行.甲车行120公里遇丙车,再行20公里遇丁车;乙车在离西站126公里处遇丙车,在中途遇丁车.求东西两站的距离.10. 三辆车A ,B ,C 从甲到乙.B 比C 迟开5分钟,出发后20分钟追上C ;A 比B 迟开10分钟,出发后50分钟追上C.求A 出发后追上B 的时间.11. 学生若干人住宿,如果每间4人,有20人没房住;如果每间8人,则有一间不满也不空.求学生人数.12.一只船从甲码头顺水航行到乙码头用5小时,由乙码头逆水航行到甲码头需7小时。

人教版七年级数学下册《三元一次方程组的解法》PPT (2)

人教版七年级数学下册《三元一次方程组的解法》PPT (2)

题型 1 消元法在解三元一次方程组中的应用
1.解下列方程组:
x-2y+z=0 ①
(1)
3x+y-2z=0 ② 7x+6y+7z=100 ③
x+z-3=0 ① (2) 2x-y+2z=2 ②
x-y-z=-3 ③
解:(1)①+②×2,得7x-3z=0.④
①×3+③,得10x+10z=100,
即x+z=10.⑤
2.在等式y=ax2+bx+c中,当x=-2时,y=-1;当 x=0时,y=2;当x=2时,y=0.求a,b,c的值.
解:把x=-2,y=-1;x=0,y=2;
x=2,y=0分别代入等式y=ax2+bx+c,

4a-2b+c=-1
c=2
解得
4a+2b+c=0
a=-5
b=
1 4
8
c=2
即a,b,c的值分别为-5 ,1,2.
84
题型 3 构建三元一次方程组模型在非负数中的应用
3.已知|x-8y|+2(4y-1)2+3|8z-3x|=0,求x+y+z的 值.
x-8y=0
解: 由题意得 4y-1=0 x=2 8z-3x=0
解得
1
y= 4
z= 3 故x+y+z4=2+ 1+ 3=3.
44
题型 4 三元一次方程组的解在求字母值中的应用
知识点 2 三元一次方程组的解法
4.解三元一次方程组的基本思路是:通过“__代__入____” 或“__加__减__”进行消元,把“三元”转化为“__二__元___”, 使解三元一次方程组转化为解__二__元__一__次__方__程__组__, 进而再转化为解___一__元__一__次__方__程___.
请同学们以《我……》为题目写下你的想法。

初一数学方程与不等式解法总结解决方程的技巧分享

初一数学方程与不等式解法总结解决方程的技巧分享

初一数学方程与不等式解法总结解决方程的技巧分享数学中的方程与不等式是我们初中数学学习中的重要内容,通过解方程与不等式可以帮助我们解决各种实际问题。

然而,对于初一学生而言,方程与不等式的解题可能会比较困难。

因此,本文将总结初一数学中解决方程与不等式的技巧,以帮助同学们更好地理解与掌握这一知识点。

一、方程解法总结1. 一元一次方程的解法一元一次方程是最简单的方程类型,形如ax + b = 0。

解一元一次方程的基本步骤如下:- 将方程变形为ax = -b的形式;- 通过移项将x的系数化为1;- 利用等式两边相等的性质,解得x = -b/a的结果,即为方程的解。

2. 一元一次方程的应用一元一次方程在日常生活中有很多应用,如解决购物价格折扣、人物行走速度等问题。

在应用题中,我们需要:- 定义未知数及其含义;- 根据题目中给出的信息列出方程;- 解方程求得未知数的值;- 根据问题进行解释与回答。

3. 一元二次方程的解法一元二次方程形如ax^2 + bx + c = 0,其中a、b、c为常数且a ≠ 0。

解一元二次方程的步骤如下:- 利用配方法,将方程变形为(a·x + b/2a)^2 = (b^2 - 4ac)/4a^2的形式;- 开方并使用平方根的正负解得两个方程;- 通过解两个方程,得出方程的两个根。

4. 一元二次方程的判别式与解的情况一元二次方程的判别式D = b^2 - 4ac可以用来判断方程根的性质:- 若D > 0,方程有两个不相等的实数根;- 若D = 0,方程有两个相等的实数根;- 若D < 0,方程无实数根。

二、不等式解法总结1. 一元一次不等式的解法一元一次不等式是最简单的不等式类型,形如ax + b > c或ax + b < c。

解一元一次不等式的基本步骤如下:- 将不等式变形为ax > c - b或ax < c - b的形式;- 通过移项将x的系数化为1;- 根据不等式的方向确定解的范围。

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)
所以x=2,y=4,z=10.
所以x=9,y=12,z=15.
=2
因此,这个方程组的解为 = 4
= 10
=9
因此,这个方程组的解为 = 12
= 15
考点解析
重点
例5.在等式y=ax2+bx+c中,当x=-1时,y=1;当x=2时,y=22;当x=3和x=5时,
y的值相等.求a,b,c的值.
(2)在(1)的情况下,运费最少是_____元.
解:(1)设甲型车有x辆,乙型车有y辆,
丙型车有z辆.
+ + = 16
根据题意,得
5 + 8 + 10 = 120
5
消去z,得5x+2y=40.所以x=8- y.
2
考点解析
重点
(1)为了节约运费,可以调用甲、乙、丙三种车型参与运送,每辆车均满载,
8 + = 0
③与④组成方程组
+ =7
= −1
解这个方程组,得
=8
把a=-1,b=8代入①,得-1-8+c=1,解得c=10.
所以a,b,c的值分别为-1,8,10.
迁移应用
1.已知 − +
1

2
− +(x+2)2=20,则x+y+z=_____.
-5
2.已知单项式-8a3x+y+zb12cx+y+z与-2a42b2x-yc4x是同类项,求x,y,z的值.
自学导航
小明手头有12张面额分别为10元、20元、50元的纸币,共计220元,其中10
元纸币的数量是20元纸币数量的4倍.求10元、20元、50元纸币各多少张.

七年级数学—二元一次方程组的解法

七年级数学—二元一次方程组的解法

根据市场调查,某种消毒液的大瓶装 (500g)和小瓶装(250g),两种产品的销 2:5 售数量(按瓶计算)的比为 某厂每天 生产这种消毒液22.5吨,这些消毒液应该分 装大、小瓶两种产品各多少瓶?
解:设这些消毒液应该分装x大瓶、y小瓶。 ① 5 x 2 y 根据题意可 ② 列方程组: 500 x 250 y 22500000 5 由 ① 得: y x ③ 2 5 500 x 250 x 22500000 把 ③ 代入 ② 得: 2 x 20000 解得:x=20000
x+4y=13 x=13 - 4y
② ③
把y=2代入① 或②可以吗?
把③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16 -5y= -10 y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5 y=2
把求出的解 代入原方程 组,可以知 道你解得对 不对。
例2 学以致用
七年级数学下册(人教版)
8.2消元—二元一次方程组的解法
(第1课时)
不如好之者,
好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。 2、初步体会解二元一次方程组的基本思 想——“消元”。 3、通过对方程中未知数特点的观察和分析, 明确解二元一次方程组的主要思路是 “消元”,从而促成未知向已知的转化, 培养观察能力和体会化归的思想。
y 22 x 由①我们可以得到:
再将②中的y换为 22 x 就得到了③ ③是一元一次方程,相信大家都会解。那么 根据上面的提示,你会解这个方程组吗?
比较一下上面的 方程组与方程有 什么关系?
二元一次方程组中有两个未知数, 如果消去其中一个未知数,将二元一 次方程组转化为我们熟悉的一元一次 方程,我们就可以先解出一个未知数, 然后再设法求另一未知数.这种将未知 数的个数由多化少、逐一解决的思想, 叫做消元思想.

七年级数学二元一次方程组解法

七年级数学二元一次方程组解法
之间的函数关系式;
(2)若要使车间每天所获利润不低于24000元,你认
为至少要派多少名工人去制造乙种零件才合适?
课本P34 习题11.8 1,2
; 天臣娱乐,天臣娱乐官网,天臣娱乐开户,天臣娱乐注册 vgd69wjw
是好奇这是什么地方,心想会不会是还在做梦,于是捏了自己一把,发现是有痛觉的,但我又担心自己像盗梦空间那样,做梦 做得有真实的感受,于是开始抱着头摇来摇去的。小男孩见我不太正常,于是大喊着“玉儿姐姐”什么的。刚过没多久,门外 又进来一个人,是个女子,但在我眼中看来,年纪撑死就是个高中生。那女生穿着确实简朴,或者我从这木屋就该猜到,他们 并不是有钱人。我稍微从不可思议的穿越中(尽管我不确定是不是穿越)缓过一些神来,才开始有心思打量了一下这一男一女。 这小正太确实长得好可爱,又不缺乏秀气,长大之后肯定是高富帅;这女生长相略显平凡,但是也透漏出一种秀气,我想,大 概是她现在是素颜,没有任何打扮的模样吧。小男孩的衣服稍微比较鲜艳一点,也显得他比较活泼。他见他的姐姐来了,就跑 过去冲着她的耳朵说了些什么。这女生听后,把目光转向我,开口说道:“公子,身体可好了?”我这么一听,倒是听到了一 口流利的普通话,这让我有点小吃惊。这是,我略显慌张,抚了抚自己的喉咙,张口说道:“应该七七八八了吧?”“应该七 七八八?那是何解?”女子一脸疑惑的看着我。我又吃了一小惊,忙改口道:“就是说,我的身体好很多了。”“是这样啊。” 女子像完成了什么事情一样,说完舒了一口气。我一边纳闷这突如其来的改变,一边组织好想问的问题去问这女生。由于知道 我们语言并没什么阻碍,能正常交流,再加上我知道我的谈吐应该更文绉绉一点才会让她听懂,于是我便问道:“姑娘,能问 你几个问题吗?”“嗯。”我索性翻下床来,站到她身旁问起来,“你知道这是哪吗?这是什么年代?这是由皇帝来统治的 吗?”蓦地,又觉得自己问出一连串好夸张的问题,于是又感觉自己有点小失礼了。这时,这女生脸显现一片通红,我这才有 意识到,我刚才问问题的时候靠得她太近了。那也不能怪我,向来问别人问题,就应该靠近点好让对方挺清楚不是吗?“这是 南国,年代是吕王八年。”女子羞涩地回答道。我见状,先有礼貌的向这女生道个歉,说道:“姑娘,刚才失礼了,我只是还 没习惯说话却不靠近别人说啊。”话一讲完,又发现自己说了一些莫名其妙的话,这使我觉得,用这种方式谈吐,真突出一个 烦字啊。女子蓦地转过脸去,脸部抽搐了几下,想必是在偷笑吧。那也难怪,这样的言行是挺让这时代的人感到奇怪搞笑的 第001章 天不收地不留“我的妻,你在哪里?“恍惚间,一个磁性的男声不断在耳畔重复着如此

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇

七年级数学二元一次方程组解法教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学二元一次方程组解法教案优秀7篇作为一位杰出的老师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲方程组的解法
二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.
例1解方程组
解将原方程组改写为
由方程②得x=6+4y,代入①化简得
11y-4z=-19.④
由③得
2y+3z=4.⑤
④×3+⑤×4得
33y+8y=-57+16,
所以y=-1.
将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以
为原方程组的解.
说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.
解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.
例2解方程组
解法1由①,④消x得
由⑥,⑦消元,得
解之得
将y=2代入①得x=1.将z=3代入③得u=4.所以
解法2由原方程组得
所以
x=5-2y=5-2(8-2z)
=-11+4z=-11+4(11-2u)
=33-8u=33-8(6-2x)
=-15+16x,
即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以
为原方程组的解.
解法3①+②+③+④得
x+y+z+u=10,⑤
由⑤-(①+③)得
y+u=6,⑥
由①×2-④得
4y-u=4,⑦
⑥+⑦得y=2.以下略.
说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.
例3解方程组
分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:
①+②得
x+u=3,⑥
②+③得
y+v=5,⑦
③+④得
z+x=7,⑧
④+⑤得
u+y=9.⑨
又①+②+③+④+⑤得
x+y+z+u+v=15.⑩
⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以
为原方程组的解.
例4解方程组
解法1①×2+②得
由③得
代入④得
为原方程组的解.
为原方程组的解.
说明解法1称为整体处理法,即从整体上进行加减消元或代入消
为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.
例5已知
分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.
①-②消去x得
①×3+②消去y得
①×5+②×3消去z得
例6已知关于x,y的方程组
分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得
2y=(1+a)-ax,③
将③代入②得
(a-2)(a+1)x=(a-2)(a+2).④
(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有
因而原方程组有唯一一组解.
(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原
方程组无解.
(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.
例7已知关于x,y的二元一次方程
(a-1)x+(a+2)y+5-2a=0,
当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.
解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组
将x=3,y=-1代入原方程得
(a-1)·3+(a+2)·(-1)+5-2a=0.
所以对任何a值
都是原方程的解.
说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.
解法2可将原方程变形为
a(x+y-2)-(x-2y-5)=0.
由于公共解与a无关,故有
例8甲、乙两人解方程组
原方程的解.
分析与解因为甲只看错了方程①中的a,所以甲所得到的解
4×(-3)-b×(-1)=-2.③
a×5+5×4=13.④
解由③,④联立的方程组得
所以原方程组应为
练习五
1.解方程组
2.若x1,x2,x3,x4,x5满足方程组
试确定3x4+2x5的值.
3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求
4.k为何值时,方程组
有唯一一组解;无解;无穷多解?
5.若方程组
的解满足x+y=0,试求m的值.。

相关文档
最新文档