中考数学解题方法反证法专题

合集下载

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析反证法是一种常用的数学证明方法,在初中数学解题中也经常会用到。

它通过假设逆命题为真,然后从中推导出矛盾的结论,从而证明原命题为真。

下面我们将分析反证法在初中数学解题中的运用。

反证法常用于证明命题的唯一性。

在证明某个数是质数的时候,可以假设该数不是质数,即可以被其他数整除。

然后我们通过列举除数的范围进行验证,如果不存在除数,那么原命题成立,证明了该数是质数。

这种证明方法常用于判断某个数的因数是否唯一、判断直线与曲线的交点是否唯一等问题。

反证法也可以用于证明不存在性。

有一个命题是证明某个等式无解。

我们可以假设存在解,然后通过推导得出矛盾的结论,从而证明原命题是无解的。

这种证明方法常用于证明二次方程无实根、函数无零点等问题。

反证法还可以用于证明命题的充分性。

充分性就是指当条件成立时,结论一定成立。

要证明一个三角形是等边三角形,可以假设它不是等边三角形,然后通过反证法推导出一个矛盾的结论,从而证明原命题的充分性。

这种证明方法常用于证明对称图形的性质、证明等腰三角形的性质等。

在初中数学解题中,反证法是一种常用的证明方法,它可以简化证明过程,减少演绎的步骤。

但是反证法也有其局限性,它只能证明命题的唯一性、不存在性和充分性,对于必要性的证明并不适用。

在运用反证法解题时,我们要注意问题的具体情况,合理选择证明方法。

反证法在解题过程中也需要较高的逻辑思维能力和数学素养,需要我们熟练掌握一些基本的数学概念和技巧。

反证法在初中数学解题中是一种常用的证明方法,可以帮助我们证明问题的唯一性、不存在性和充分性。

熟练掌握反证法的运用,可以提高我们解题的效率和准确性。

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析

反证法在初中数学解题中的运用分析
反证法是一种常用的数学证明方法,它的基本思想是通过假设待证命题的反面,然后推导出矛盾的结论,从而证明待证命题是成立的。

在初中数学中,反证法常常用于解题过程中,它具有简洁明了、直观易懂的特点,能够帮助学生提升数学思维能力和解题能力。

一、直接反证法
直接反证法是最基本的反证法思想,它主要用于证明一些简单的命题。

我们要证明一个命题P成立,可以先假设命题P的反面¬P成立,然后推导出矛盾的结论,从而得出¬P不成立,因此P成立。

在初中数学解题中,直接反证法常常用于证明几何命题。

要证明两条直线平行,可以先假设这两条直线不平行,然后推导出两条直线相交,从而得出矛盾的结论。

这两条直线一定是平行的。

在初中数学解题中,间接反证法常常用于证明一些数学定理。

要证明勾股定理成立,可以先假设勾股定理不成立,然后推导出一个与已知条件和数学推理规律相矛盾的结论,从而得出勾股定理成立。

三、反例法
在初中数学解题中,反例法常常用于证明一些不成立的数学命题。

要证明“所有素数都是奇数”,可以举出反例2,从而说明这个命题不成立。

中考数学十大解题思路之反证法

中考数学十大解题思路之反证法

中考数学十大解题思路之反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解 C.至少有三个解 D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数 D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )A.a<b B.a≤b C.a=b D.a≥b[答案] B[解析]“a>b”的否定应为“a=b或a<b”,即a≤b.故应选B.6.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( ) A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.7.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°[答案] C[解析] 用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.8.用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中()A.有两个角是直角B.有两个角是钝角C.有两个角是锐角D.一个角是钝角,一个角是直角[答案] A[解析] 用反证法证明“一个三角形中不能有两个角是直角”,应先设这个三角形中有两个角是直角.9.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°[答案] D[解析] 用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.10.在证明“在△ABC中至少有两个锐角”时,第一步应假设这个三角形中()A.没有锐角B.都是直角C.最多有一个锐角D.有三个锐角[答案] C[解析] 用反证法证明同一三角形中至少有两个锐角时,应先假设同一三角形中最多有一个锐角.11.用反证法证明:“一个三角形中至多有一个钝角”时,应假设()A.一个三角形中至少有两个钝角B.一个三角形中至多有一个钝角C. 一个三角形中至少有一个钝角D.一个三角形中没有钝角[答案] A[解析] 从结论的反面出发进行假设,证明“一个三角形中至多有一个钝角”,应假设:一个三角形中至少有两个钝角.12.用反证法证明:在四边形中,至少有一个角不小于90°,应先假设()A.四边形中有一个内角小于90°B.四边形中每一个内角都小于90°C.四边形中有一个内角大于90°D.四边形中每一个内角都大于90°[答案] B[解析] 用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.13.用反证法证明“一个三角形中至少有两个锐角”时,下列假设正确的是()A.假设一个三角形中只有一个锐角B.假设一个三角形中至多有两个锐角C.假设一个三角形中没有一个锐角D.假设一个三角形中至少有两个钝角[答案] D[解析] 用反证法应先假设“一个三角形中最多有一个锐角”或者假设一个三角形中至少有两个钝角.14.用反证法证明命题“三角形中最多有一个角是直角或钝角”时,下列假设正确的是()A.三角形中最少有一个角是直角或钝角B. 三角形中没有一个角是直角或钝角C.三个角全是直角或钝角D.三角形中有两个(或三个)角是直角或钝角[答案]D[解析] 假设正确的是:假设三角形中有两个(或三个)角是直角或钝角.二,填空题1.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.2.用反证法证明命题“a,b是自然数N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.3.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.[答案]③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.4.若a∥b,b∥c,证明a∥c.用反证法证明的第一步是假设a与c不平行5.“对角线不互相平分的四边形不是平行四边形”,这个命题用反证法证明应假设对角线不互相平分的四边形是平行四边形6.用反证法证明“三角形中最多有一个是直角或钝角”时应假设三角形中至少有两个是直角或钝角7.用反证法证明“四边形的四个内角不能都是锐角”时,应首先假设四边形的四个内角都是锐角.8.用反证法证明:“多边形的内角中锐角的个数最多有三个”的第一步应该是:假设多边形的内角中锐角的个数最少是4个.9.用反证法证明命题“三角形中最多有一个是直角”时,可以假设为三角形中最少有两个角是直角.10.用反证法证明“在△ABC中,至少有一个内角小于或等于60°”时,第一步是假设△ABC中,每一个内角都大于60°.11.用反证法证明命题“一个三角形的三个内角中,至多有一个钝角”的第一步应假设一个三角形的三个内角中,至少有两个钝角.12.“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设等腰三角形的两底都是直角或钝角.三、解答题1.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.证明:用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.2.用反证法证明:等腰三角形两底角必为锐角.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.②设等腰三角形的底角∠B,∠C都是钝角,则∠B+∠C>180°,而∠A+∠B+∠C=180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角3.用反证法证明:一条线段只有一个中点.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又AM=AB=AN=AB,这与AM<AN矛盾,所以一条线段只有一个交点4.用反证法证明:“在一个三角形中,外角最多有一个锐角”.证明: 假设三角形中的外角有两个角是锐角.根据三角形的外角与相邻的内角互补,知:与这两个角相邻的两个内角一定是钝角,大于90°,则这两个角的度数和一定大于180度,与三角形的内角和定理相矛盾.因而假设错误.故在一个三角形中,外角最多有一个锐角.。

初中数学中的反证法例谈

初中数学中的反证法例谈

初中数学中的反证法例谈反证法是数学证明中非常常用的一种方法,在初中数学中也经常会遇到一些需要使用反证法来证明的问题。

以下是几个反证法的例子:1. 证明所有正整数都是奇数或偶数。

假设存在一个既不是奇数也不是偶数的正整数,那么这个正整数既不满足奇数的定义也不满足偶数的定义,与假设矛盾。

因此,所有正整数都是奇数或偶数。

2. 证明根号2是无理数。

假设根号2是有理数,那么可以表示为一个分数,即根号2 =a/b,其中a和b都是整数,且a和b互质。

将这个等式两边平方得2 = a^2 / b^2,即a^2 = 2b^2。

因为2是质数,所以a必须是2的倍数,那么就可以表示为a = 2c(c是整数)。

带入到a^2 =2b^2中得到(2c)^2 = 2b^2,即4c^2 = 2b^2或2c^2 = b^2。

这意味着b也是2的倍数,与a和b互质的条件矛盾。

因此,根号2是无理数。

3. 证明当正整数n不是完全平方数时,√n是无限不循环小数。

假设√n是有限循环小数,即可以表示为a/b(a和b都是整数,且a和b互质),那么可以得到n = a^2/b^2。

因为n不是完全平方数,所以a和b必须互质,且a和b至少有一个是奇数。

假设a是奇数,那么a^2是奇数,b^2是偶数,所以a^2/b^2是一个无限不循环小数。

同理,如果b是奇数,也可以推出a^2/b^2是一个无限不循环小数。

因此,当正整数n不是完全平方数时,√n是无限不循环小数。

这些例子展示了在初中数学中应用反证法的常见情形,可以巩固理解反证法在解决数学问题时的重要作用。

《初中数学反证法》课件

《初中数学反证法》课件
《初中数学反证法》PPT 课件
本PPT课件详细介绍了初中数学中的反证法。内容包括反证法的定义和原理, 反证法在数学中的应用,反证法的基本步骤,以及使用反证法解决数学问题 的示例。
反证法例题解析
数学概念和定理
使用反证法解决常见的数学概念和定理问题。
步骤示例
演示如何运用反证法来解决具体问题。
深入探索
探讨反证法在不同数学领域中的应用。
3
学习建议
分享一些学习反证法的有效方法和技巧。
练习题和答案解析
1 提供练习
给出一些练习题,让学生巩固对反证法的理解。
2 答案解析
提供详细的答案解析,帮助学生检查和纠正错误。
3 挑战题目
提供一些有挑战性的题目,激发学生的思考和探索欲望。
解题技巧
分享一些解题技巧和经验。
反证法的优势和限制
数学推理的优势
反证法在数学推理中的重要作 用。
限制和注意事项
使用反证何促进思维的创 新。
常见误解和常见问题
1
常见错误和误解
学生在学习反证法时可能容易犯的常见错误和误解。
2
问题解答
解答学生常见问题和困惑,帮助他们更好地理解和应用反证法。

初中数学反证法

初中数学反证法

初中数学反证法在初中数学的学习中,我们会接触到各种各样的解题方法,其中反证法是一种独特而富有魅力的方法。

它就像是数学世界中的“逆向思维魔法”,常常能帮助我们在看似无解的困境中找到出路。

反证法,顾名思义,就是先假设命题的结论不成立,然后通过一系列的推理,得出与已知条件、定理、公理等相互矛盾的结果,从而证明原命题的结论是正确的。

这种方法听起来似乎有点绕,但其实只要我们深入理解,就能发现它的巧妙之处。

为了更好地理解反证法,让我们来看一个简单的例子。

假设要证明“在一个三角形中,最多只能有一个直角”。

我们先假设在一个三角形中可以有两个或三个直角。

如果有两个直角,那么三角形的内角和就会超过 180 度,这与三角形内角和是 180 度这个定理相矛盾。

同样,如果有三个直角,内角和更是远远超过 180 度,这显然是不可能的。

所以,我们的假设是错误的,从而得出在一个三角形中最多只能有一个直角的结论。

再比如,证明“根号 2 是无理数”。

如果假设根号 2 是有理数,那么它可以表示为一个既约分数 p/q(p、q 为整数,且互质),即根号 2 =p/q,两边平方得到 2 = p^2/q^2,即 p^2 = 2q^2。

由此可知 p^2 是偶数,因为只有偶数的平方才是偶数,所以 p 也是偶数。

不妨设 p = 2m,代入上式得到 4m^2 = 2q^2,即 2m^2 = q^2,这又说明 q 也是偶数。

但是 p、q 都是偶数,这与 p、q 互质矛盾。

所以,假设不成立,根号 2 是无理数。

反证法的应用范围非常广泛。

在几何证明中,当直接证明某个结论比较困难时,反证法常常能发挥意想不到的作用。

比如在证明“过直线外一点,有且只有一条直线与已知直线平行”时,就可以使用反证法。

假设过直线外一点有两条直线与已知直线平行,然后通过一系列的推理,会得出与平行公理相矛盾的结论,从而证明原命题的正确性。

在代数中,反证法也有很多用武之地。

例如,证明方程 x^5 + x 1=0 只有一个正实数根。

初中数学反证法简单例子

初中数学反证法简单例子

初中数学反证法简单例子初中数学中的反证法是一种常用的证明方法,通过假设所要证明的命题不成立,然后推导出与已知事实相矛盾的结论,从而证明原命题一定成立。

下面我们来列举一些初中数学中常用的反证法的简单例子。

1. 命题:不存在任意两个不相等的正整数,使得它们的和等于它们的积。

假设存在两个不相等的正整数a和b,满足a + b = ab。

由于a和b不相等,不妨设a > b,那么有a > a/2 > b。

根据不等式性质,我们可以得到2a > a + b = ab,即2 > b。

但是正整数b不可能小于2,与假设矛盾。

因此,不存在任意两个不相等的正整数满足该条件。

2. 命题:存在一个无理数x,使得x的平方等于2。

假设不存在这样的无理数x,即对于任意实数x,x的平方不等于2。

那么我们可以考虑一个特殊的实数y,即y = √2。

根据无理数定义,√2不是有理数,因此是一个无理数。

而根据假设,y的平方不等于2,即y^2 ≠ 2。

然而,这与y = √2相矛盾。

因此,存在一个无理数x,使得x的平方等于2。

3. 命题:对于任意正整数n,2n不等于n的平方。

反证法证明:假设存在一个正整数n,使得2n = n^2。

可以将等式两边同时除以n,得到2 = n。

然而,这与n是一个正整数相矛盾。

因此,对于任意正整数n,2n不等于n的平方。

4. 命题:对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。

反证法证明:假设存在一个正整数n,使得n^2 + 3n + 2 = m^2,其中m是一个正整数。

可以将等式变形为n^2 + 3n + 2 - m^2 = 0。

这是一个关于n的二次方程,可以使用求根公式解得n = (-3 ± √(9 - 8(2 - m^2))) / 2。

由于n是一个正整数,因此根号内的值必须为正整数。

然而,当m取不同的正整数值时,根号内的值不可能为正整数,因此假设不成立。

因此,对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。

【初中数学】初中数学学习解题方法之反证法

【初中数学】初中数学学习解题方法之反证法

【初中数学】初中数学学习解题方法之反证法
【—学习解题方法之反证法】反证法在解答证明题目中会经常用到,同学们认真学习下面的解题方法。

反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

对于反证法解题方法的讲解,相信可以很好的帮助同学们的学习工作,希望同学们认真学习,并很好的做好备战考试的工作。

感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学解题方法反证法专题
在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬
反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个.
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知
条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.
至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的
情况.
一、基本定理或初始命题的证明
在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多.
例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行.
证明假设命题的结论不成立,即“直线a与b相交”.
不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°.
这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°.
这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.
所以,直线a与b不相交,即a与b平行.
二、存在性问题的证明
在数学中,证明“存在”的问题很多,这种情况下,往往使用反证法.
例2已知△ABC的三边满足b=(a+b)/2,求证:△ABC中至少有两个角不超过60°.
证明设至少有两个角超过60°,
因为∠A+∠B+∠C=180°,
所以△ABC中至多有两个角超过60°,
即所设等价于“△ABC中有两个角超过60°”
我们不妨设∠A>60°、∠C>60°,
则cosA<1/2、cosC<1/2.
由余弦定理:c2=b2+a2-2bacosC>b2+a2-ba,(1)
a2=b2+c2-2bccosA>b2+c2-bc.(2)
(1)+(2)得2b2<ba+bc,即b故假设错误,即:△ABC中至少有两个角不超过60°.
三、无限性命题的证明
在求证的命题中含有“无穷”、“无限”等概念时,从正面证明往往无从下手,这时,我们常使用反证法.
例3求证:2是无理数.
证明假设2不是无理数,即2是有理数,那么它就可以表示成两个整数之比,设2=qp,p≠0,且整数
p,q互素,
则2p=q.所以,2p2=q2.(1)
故q2是偶数,q也必然为偶数.
不妨设q=2k,代入①式,则有2p2=4k2,即p2=2k2,所以,p也为偶数.
p和q都是偶数,它们有公约数2,这与p,q互素相矛盾.
这样,2不是有理数,而是无理数.
四、否定性命题的证明
例4求证:若n为自然数,则n2+n+2不能被15整除.
证明假设n2+n+2能被15整除,则n2+n+2必然能被5整除,
所以n2+n+2的尾数必然为5或0,又因为
n2+n+2=n(n+1)+2为偶数,
所以n2+n+2的尾数必然为0,即n2+n=n(n+1)的尾数,必然为8.
对任意自然数n,n(n+1)的尾数均不为8,所以假设错误.
即:若n为自然数,则n2+n+2不能被15整除.
五、所求证命题为不等式
例4已知:如图2所示△ABC中,∠A = 90°,
AD ⊥BC 于D ,求证:AD + BC > AB + AC.证明:假设AD + BC AB + AC例5在△ABC中,AB=AC,P为△ABC内一点,
且∠PAB>∠PAC.求证:∠APB<∠APC.
证明如图2,假设∠APB>∠APC.
因为AB=AC,∠PAB>∠PAC,
则有:∠PAB+∠APB>∠PAC+∠APC,
因此∠ABP<∠ACP.
因为∠ABC=∠ACB,所以∠PBC>∠PCB,PC>PB.
在△APB和△APC中,AB=AC,AP=AP,PC>PB,所以∠PAB<∠PAC,这与已知条件相矛盾,故假设不真.
所以∠APB<∠APC.
关于常用反证法求解的命题,我们主要总结了五类,对于这几类命题,反证法一般较为有效.但是必须指出:对于不同的题目,往往有不同的求解方法,对这些题目,甚至会有极个别的更为简捷的方法,但由于没有一定的普遍性,此处不再一一列出.。

相关文档
最新文档