中考数学考试:十大常见解题方法

合集下载

九年级数学解题方法十技巧

九年级数学解题方法十技巧

九年级数学解题方法十技巧
1. 理解问题:在解决数学问题之前,要先读懂题目,理解问题所要求的内容和解决的方法。

2. 给出有序的步骤:将问题分解为一系列有序的步骤,然后逐步解决。

这样可以避免混淆,更容易找到正确的答案。

3. 画图解决问题:有些问题用图形表示会更直观,可以画图帮助理解和解决问题。

4. 列方程求解:将问题用代数方程表示,然后通过求解方程来解决问题。

5. 利用类比和模型:将问题与已知或熟悉的问题进行类比,然后利用类似的模型或方法来解决新问题。

6. 运用逻辑推理:在问题中运用逻辑思考和推理,根据已知条件和问题要求,得出解决问题的方法或结论。

7. 刻意练习:通过大量练习不同类型的题目,提高解题的技巧和能力。

8. 问题分析与求关键:将问题分解为更小的子问题,然后关注问题中最关键的部分来解决。

9. 反向思考:尝试从问题的解决方法中逆向思考或反向推导,找到解决问题的不同方法。

10. 注重检查和复查:在解题过程中要反复检查和复查答案,确保结果的准确性,特别是在多步骤解题中更为重要。

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

例题:用配方法解方程x2+4x+1=0,经过配方,得到( )A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。

【解】将方程x2+4x+1=0,移向得:x2+4x=-1,配方得:x2+4x+4=-1+4,即(x+2) 2=3;因此选D。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例题:若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3),即x2+mx-3=(x-1)(x+3),∴x2+mx-3=(x-1)(x+3)=x2+2x-3,∴m=2;因此选B。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)

数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。

刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。

首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。

摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。

对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。

2、答卷顺序“三先三后”。

在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。

我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。

在做题的时候我们要遵循“三先三后”的原则。

首先是“先易后难”。

这点很容易理解,就是我们要先做简单题,然后再做复杂题。

当全部题目做完之后,如果还有时间,就再回来研究那些难题。

当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。

也就违背了我们的原意。

其次是“先高后低”。

这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。

这样能够拿到更多的总得分。

并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。

最后是“先同后异”。

这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。

3、做题原则“一快一慢”。

这里所谓的“一快一慢”指的是审题要慢,做题要快。

题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。

中考数学里常用的几种经典解题方法

中考数学里常用的几种经典解题方法

中考数学里常用的几种经典解题方法 1、配方法所谓配方,就是把一个【解析】式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和【解析】式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

中考数学常考题型解题方法总结(超详细)

中考数学常考题型解题方法总结(超详细)

中考常考题型解题方法一、科学计数法亿位后面有8位数,万位后面有4位数,先判断亿位和万位,再判断次数。

比如:1、110亿的亿位是“0”,所以“0”后面有8位,8+2=10,所以10110 1.110=⨯亿;2、1234.56亿的亿位是“4”,所以“4”后面有8位,8+3=11,所以111234.56 1.2345610=⨯亿;3、51.2万的万位是“1”,所以“1”后面有4位,4+1=5,所以551.2 5.1210=⨯万;二、无理数判断无理数是指无限不循环小数,有以下几种:1.π2.不能完全开方的数(例如等)3.直接看出无限不循环的数,例如“1.2345678..........”4.Sin45°、Sin60°、cos45°、cos30°、tan60°、tan30°三、中心对称、轴对称注意审题,题目有可能是:1、“以下既是中心对称又是轴对称的图形”2、“以下是中心对称但不是轴对称的图形”3、“以下不是中心对称但是轴对称的图形”4、“以下既不是中心对称也不是轴对称的图形”判断中心对称的方法,看每个点与中心的延长线有无经过对应的点不是中心对称是中心对称四、求多边形边数1.已知多边形内角和,求多边形边数?用内角和公式“(n-2)x180°=内角和”求n,n是指边数;2.已知正多边形(每个内角都相等)的一个内角度数,求多边形边数?先用180°-一个内角度数=一个外角度数,再用外角和360°÷一个外角度数=外角个数(边数);3.已知正多边形(每个内角都相等)的一个外角度数,求多边形边数?用外角和360°÷一个外角度数=外角个数(边数);例如:若一个多边形的每一个外角都等于,那么它是()A.四边形B.五边形C.六边形D.八边形360°÷=6*注意:填空题填“边形”时,要填中文“四、五、六、七等”,问边数时可以填数字“4、5、6等”,比如“边数为”五、二次函数多结论1.判断a、b、c 大小a:看抛物线开口方向,开口向上(a>0),开口向下(a<0);b:看对称轴在y 轴左边还是右边,结合a 一起判断,对称轴在y 轴左边时,a和b 同号,对称轴在y 轴右边时,a 和b 异号(“左同右异”);“左同右异”的原理是对称轴公式“2a b x =-”,当对称轴在左边时2ab x =-是负数,则a 和b 同号,当对称轴在右边时2a b x =-是正数,则a 和b 异号;c:看抛物线与y 轴的交点,因为抛物线2y ax bx c =++与y 轴相交时,交点坐标为(0,c),所以交于y 轴正半轴时c 为正,交于y 轴负半轴时c 为负;2.已知抛物线与x 轴的一个交点(1,0x )和对称轴,求另一个交点(2,0x )?用中点公式“122x x +=对称轴”求另一个交点坐标;例:已知抛物线与x 轴的一个交点(-1,0)和对称轴x=1,求抛物线与x 轴的另一个交点,21=12x -+ ,解得2x =3,则与x 轴的另一个交点为(3,0)*注:只要12x x 、是两个关于对称轴对称的点,就可以用中点公式,比如:A(3,4)和B(7,4)在抛物线上,求对称轴,因为纵坐标相等,所以A 和B 一定关于对称轴对称,对称轴37==52+3.判断“a+b+c>0”、“4a-2b+c>0”是否正确?①该题型先观察解析式2y ax bx c =++与“a+b+c”、“4a-2b+c”的联系,可以看出当x=1时,ya b c =++,当x=-2时,y 42a b c =-+;②再看图像x=1、x=-2时所对应的y 的大小(从图像判断x 所对应的y 是关键)由上图可看出当x=1时,y<0,所以y=a+b+c<0当x=-2时,y>0,所以y=4a-2b+c>04.判断“0a c -+>”、“-4b+c>0”是否正确。

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

中考数学十种最优科学答题技巧

中考数学十种最优科学答题技巧

中考数学十种最优科学答题技巧(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、合同协议、条据文书、策划方案、演讲致辞、人物事迹、学习资料、教学资源、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as work reports, contract agreements, policy documents, planning plans, speeches, character stories, learning materials, teaching resources, essay encyclopedias, and other materials. If you want to learn about different data formats and writing methods, please pay attention!中考数学十种最优科学答题技巧科学的答题技巧可以让你事半功倍,能够帮助考生在有限的考试时间内发挥出自己的能力水平。

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。

解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。

1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。

解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。

解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。

要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。

2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。

化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。

3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。

4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。

①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。

二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。

解答时必须计算准备,才不至于影响下一步的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学考试:十大常见解题方法
因式分解法
因式分解,就是把一个多项式化成几个整式乘积的方式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上引见的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如应用拆项添项、求根分解、换元、待定系数等等。

换元法
换元法是数学中一个十分重要而且运用十分普遍的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比拟复杂的数学式子中,用新的变元去替代原式的一个局部或改造原来的式子,使它简化,使效果易于处置。

判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不只用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研讨函数乃至几何、三角运算中都有十分普遍的运用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等复杂运用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的效果等,都有十分普遍的运用。

待定系数法
在解数学效果时,假定先判别所求的结果具有某种确定的方式,其中含有某些待定的系数,然后依据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学效果,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

结构法
在解题时,我们经常会采用这样的方法,经过对条件和结论的剖析,结构辅佐元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座衔接条件和结论的桥梁,从而使效果得以处置,这种解题的数学方法,我们称为结构法。

运用结构法解题,可以使代数、三角、几何等各种数学知识相互浸透,有利于效果的处置。

相关文档
最新文档