四层电梯PLC控制设计
基于PLC的四层电梯控制系统的设计

基于PLC的四层电梯控制系统的设计基于PLC的四层电梯控制系统的设计摘要:电梯作为现代建筑中必不可少的交通工具之一,其安全性和效率对于人们的出行具有重要意义。
本文基于可编程逻辑控制器(PLC),设计了一个四层电梯控制系统。
通过对电梯的需求分析,提出了相应的设计方案,具体包括控制系统的硬件和软件设计。
同时,利用PLC的优势,优化了电梯的运行效率,提升了乘坐体验。
关键词:PLC,电梯控制,需求分析,优化1. 引言电梯作为一种重要的垂直交通工具,广泛应用于建筑物中,极大地方便了人们的出行。
电梯控制系统的安全性和效率对于人们的出行体验至关重要。
本文通过引入可编程逻辑控制器(PLC)来设计一个四层电梯控制系统,以提高电梯的安全性和效率。
2. 需求分析在设计四层电梯控制系统之前,首先需要进行需求分析。
通过调研和用户调查,我们得知以下需求:(1)电梯运行效率高:用户希望电梯能够快速响应并迅速运行,减少等待时间。
(2)电梯安全可靠:用户希望电梯在运行中能够保证乘客的安全,防止发生意外事故。
(3)操作简单方便:用户希望电梯的操作界面简单易懂,乘坐过程中操作简易,无需复杂的指导。
3. 硬件设计在硬件设计方面,我们选择了PLC作为电梯控制系统的主控设备。
PLC具有稳定可靠、易于扩展和调试等优点,非常适合作为电梯控制系统的核心。
除了PLC,还需要配备电梯按钮、传感器、电机等硬件设备。
4. 软件设计在软件设计方面,我们采用了PLC的编程软件进行控制逻辑的设计。
首先需要进行电梯运行状态的检测,包括电梯的楼层位置、电梯内外按钮的触发状态等。
根据这些状态信息,通过编写逻辑代码进行判断和控制。
我们设计了几个重要的控制功能:(1)电梯呼叫功能:通过采集电梯外部按钮的触发状态,判断乘客的呼叫方向和楼层位置,实现电梯的召唤功能。
(2)电梯运行控制功能:根据电梯当前的运行状态和目标楼层,通过编写逻辑代码,控制电梯的运行方向和楼层停靠。
(3)乘客安全保护功能:在电梯运行过程中,通过传感器检测电梯门的状态,确保乘客的安全,避免夹伤等意外情况的发生。
基于PLC的四层电梯控制系统的设计

基于PLC的四层电梯控制系统的设计一、本文概述随着现代建筑技术的飞速发展,电梯作为高层建筑的重要交通工具,其性能稳定性和安全性受到了广泛的关注。
可编程逻辑控制器(PLC)作为一种先进的工业控制设备,因其具有编程灵活、可靠性高、易于维护等优点,被广泛应用于各种工业控制领域。
近年来,基于PLC的电梯控制系统已成为电梯技术发展的重要趋势。
本文旨在探讨基于PLC的四层电梯控制系统的设计。
文章首先介绍了电梯控制系统的基本构成和原理,然后详细阐述了PLC控制系统的硬件和软件设计,包括PLC的选型、输入输出模块的设计、控制程序的编写等。
文章还分析了电梯控制系统的安全保护措施,如故障自诊断、紧急制动等,以确保电梯运行的安全性和可靠性。
通过本文的研究,旨在为电梯控制系统的设计和优化提供理论支持和实践指导,推动电梯技术的创新和发展,满足现代高层建筑对电梯性能和安全性的更高要求。
本文也希望为从事电梯控制系统研究和开发的工程师和技术人员提供有益的参考和借鉴。
二、电梯控制系统需求分析电梯控制系统的需求分析是设计过程中的重要环节,它涉及对电梯运行特性、功能需求、安全性、稳定性以及人机交互等方面的全面考量。
在四层电梯控制系统的设计中,我们需要关注以下几个方面:电梯运行特性分析:四层电梯通常服务于低层建筑,其运行特性相对简单。
需求分析中需考虑电梯的升降速度、加速度、减速度等参数,以及在不同楼层间的快速、准确、平稳运行。
功能需求定义:电梯控制系统应具备基本的楼层呼叫、内部指令登记、自动定向、平层停靠等功能。
同时,为了满足用户的不同需求,可能需要加入一些额外的功能,如紧急停止按钮、消防模式、自动关门、超载提示等。
安全性要求:电梯作为载人载物的垂直交通工具,其安全性至关重要。
需求分析中需明确电梯的安全标准,包括防止电梯超速、坠落、夹人夹物等安全措施,以及紧急情况下的救援和自救功能。
稳定性要求:电梯控制系统的稳定性对于保证电梯长期稳定运行具有重要意义。
《2024年基于PLC的四层电梯控制系统的设计》范文

《基于PLC的四层电梯控制系统的设计》篇一一、引言随着现代建筑的高度和复杂性不断增加,电梯作为垂直交通的重要工具,其安全性和效率性显得尤为重要。
本文将详细介绍一种基于PLC(可编程逻辑控制器)的四层电梯控制系统的设计,该系统旨在提高电梯的运行效率、安全性和用户体验。
二、系统概述本系统采用PLC作为核心控制器,通过编程实现对四层电梯的逻辑控制、信号处理和安全保护等功能。
系统包括电梯轿厢、厅门、控制系统、电源系统等部分,能够实现电梯的上下行、开关门、信号响应等基本功能。
三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,能够满足电梯控制系统的需求。
2. 传感器:包括位置传感器、门状态传感器、超载传感器等,用于检测电梯的状态和信号,为控制系统提供输入信息。
3. 执行器:包括电机、电磁铁等,根据控制系统的指令执行开关门、上下行等操作。
4. 电源系统:为整个电梯控制系统提供稳定的电源,确保系统的正常运行。
四、软件设计1. 编程语言:采用梯形图或指令表等编程语言,实现电梯的逻辑控制和信号处理。
2. 控制逻辑:根据电梯的实际需求,设计合理的控制逻辑,包括上下行控制、开关门控制、信号响应等。
3. 安全保护:通过设置各种安全保护措施,如超载保护、防撞保护、紧急制动等,确保电梯的安全运行。
4. 故障诊断:通过故障诊断程序,对电梯的故障进行检测和定位,方便维护和检修。
五、系统功能1. 上下行控制:根据乘客的需求和电梯的实际情况,自动或手动控制电梯的上下行。
2. 开关门控制:通过传感器检测门的状态和乘客的需求,自动控制电梯的开关门。
3. 信号响应:通过接收来自厅外的召唤信号和内部指令信号,实现电梯的响应和调度。
4. 安全保护:通过设置各种安全保护措施,确保电梯在运行过程中的安全性和稳定性。
5. 故障诊断与维护:通过故障诊断程序对电梯进行检测和定位,方便维护和检修。
同时,提供详细的维护记录和报告,以便对电梯的运行状态进行评估和优化。
四层电梯plc控制课程设计

四层电梯plc控制 课程设计一、课程目标知识目标:1. 理解PLC(可编程逻辑控制器)的基本原理和功能,掌握其在电梯控制系统中的应用;2. 学习并掌握四层电梯的基本控制要求,包括楼层指示、呼梯、选层、平层、停层等功能的实现;3. 掌握利用PLC进行电梯控制系统的编程与调试。
技能目标:1. 能够运用所学知识,设计并实现四层电梯的PLC控制程序;2. 培养学生动手实践能力,能够进行电梯控制系统的安装、调试与故障排查;3. 提高学生团队协作和沟通能力,能在项目实践中发挥个人特长,共同完成任务。
情感态度价值观目标:1. 激发学生对自动化控制技术的兴趣,培养其探索精神;2. 培养学生严谨的科学态度,注重实际操作与理论相结合;3. 增强学生的安全意识,使其在实践过程中养成良好的操作习惯。
分析课程性质、学生特点和教学要求,将课程目标分解为以下具体学习成果:1. 学生能够阐述PLC的基本原理和功能,并说明其在电梯控制系统中的应用;2. 学生能够编写四层电梯PLC控制程序,并进行安装、调试与故障排查;3. 学生能够在团队项目中发挥个人特长,与团队成员共同完成电梯控制系统的设计与实现;4. 学生能够遵循安全操作规程,养成良好的实践操作习惯。
二、教学内容1. PLC基本原理:介绍PLC的组成、工作原理、编程语言及常用指令;2. 电梯控制系统:分析电梯控制系统的基本要求,包括楼层指示、呼梯、选层、平层、停层等功能;3. PLC控制程序设计:以四层电梯为例,讲解控制程序的设计步骤和方法;- 梯形图编程:介绍梯形图的绘制方法,引导学生学会使用PLC编程软件;- 逻辑控制:讲解电梯运行过程中的逻辑控制关系,如楼层判断、呼梯响应等;- 程序调试:教授程序调试方法,培养学生解决实际问题的能力;4. 实践操作:组织学生进行电梯控制系统的安装、调试与故障排查,巩固所学知识;- 安装:介绍电梯控制系统的硬件连接,指导学生进行实际操作;- 调试:教授调试方法,培养学生分析问题和解决问题的能力;- 故障排查:模拟电梯故障,指导学生进行排查和修复。
基于plc的四层电梯控制系统设计课设

基于plc的四层电梯控制系统设计课设电梯是现代城市中不可或缺的交通工具之一。
电梯的安全性、效率以及舒适性对于居民的生活质量有着重要的影响。
因此,电梯的控制系统必须设计得稳定可靠,能够满足不同场景的需求。
本文将介绍一种基于PLC的四层电梯控制系统设计,旨在提高电梯的运行效率和安全性。
一、电梯控制系统的组成电梯控制系统由电梯主机、电梯控制器、电梯按钮、电梯门机和电梯轿厢组成。
电梯主机负责电梯的上下运行,电梯控制器负责控制电梯的运行和安全保护,电梯按钮负责控制电梯的上下运行和开关门,电梯门机负责开关电梯门,电梯轿厢则负责承载乘客。
二、PLC的基本原理PLC(Programmable Logic Controller)是一种用于工业自动化控制的计算机控制系统。
它可以接收来自传感器、执行器和其他外部设备的输入信号,进行逻辑处理,然后输出控制信号以控制设备的运行。
PLC具有高速、可靠、稳定、灵活等特点,是工业控制中最常见的控制器之一。
三、四层电梯控制系统的设计1.硬件设计本设计采用三菱FX3U-32MT/DSSPLC作为控制器,控制器通过模拟量输入模块FX2N-4AD和模拟量输出模块FX2N-4DA与电梯主机、电梯门机和电梯按钮进行通信。
同时,为了保证电梯的安全性,本设计还采用了光电开关、限位开关、紧急停止按钮等多种安全保护装置。
2.软件设计本设计采用GX Developer软件进行编程设计。
为了保证电梯的安全性和运行效率,本设计采用了以下几种控制策略:(1)电梯轿厢的定位控制:当电梯轿厢到达某一层时,通过限位开关检测位置信号,控制电梯轿厢停止在正确的位置上。
(2)电梯的上下控制:当乘客按下电梯按钮时,PLC接收到信号后,控制电梯轿厢上下运动。
在电梯轿厢到达目标楼层时,PLC控制电梯门机打开门,乘客进出电梯。
(3)电梯的安全保护控制:当电梯出现异常情况时,如电梯超载或者电梯门未关闭,PLC会立即停止电梯的运行,并通过报警装置提醒乘客注意安全。
四层电梯模型PLC控制系统设计

四层电梯模型PLC控制系统设计一、简介电梯是现代化城市中人们最常用的交通工具之一。
在现代化城市中,高楼大厦林立,电梯运行安全、有效,对于人们的生产、生活起着极为重要的作用。
随着科技发展和社会进步,智能电梯在实际应用中发挥着更加重要的作用。
本文主要介绍一款基于PLC控制器的四层电梯模型控制系统的设计思路及其实现步骤。
二、电梯模型结构本电梯模型是由四层组成的,每层都有两扇门,总共有8扇门。
电梯的驱动装置由电动机、减速器、曲柄连杆机构和导轨组合而成。
在运行时,电动机通过减速器带动曲柄连杆机构运动,使电梯台与轿厢上下移动。
三、PLC控制器简介PLC是可编程逻辑控制器(Programmable Logic Controller)的缩写,是一种常用的工业自动控制设备。
PLC控制器通常被视为一种微型计算机,利用它可以控制配线板、电机驱动器、传感器以及执行器等设备。
在实际应用中,PLC控制器经常用于实现工业生产线、机器人、灯光控制等自动化控制。
四、电梯模型PLC控制系统设计1. 运行模式设计电梯系统分为以下四种运行模式:1)等待运行模式:当电梯未响应任何按键时,电梯处于等待运行模式。
2)开门运行模式:当电梯到站后,本层的门打开,之后允许乘客进入。
3)运行模式:当电梯到达目的楼层时,电梯停止运行。
4)关门运行模式:电梯在速度变慢时,门关闭,并准备继续下一次运行。
2. 系统架构设计电梯模型PLC控制系统主要采用以下组件:1)按键模块:包括所有电梯按钮(上、下、数字键等)。
2)状态显示模块:包括所有电梯运行的状态指示器。
3)PLC控制器:用于控制电梯系统的运行模式、运动方向、电梯状态等参数。
3. 系统流程设计电梯系统包含以下步骤:1)接受相关按钮输入:当乘客按下电梯上、下按钮或目标楼层,按键模块会向PLC控制器发送信号。
2)检测电梯状态:PLC控制器会定期检测电梯状态(包括楼层高度、运动方向、运动状态等)。
3)控制电梯运行模式:PLC控制器根据其内部程序逻辑,控制电梯进入等待运行模式、开门运行模式、运行模式和关门运行模式。
PLC四层楼电梯控制系统设计

PLC四层楼电梯控制系统设计摘要:随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。
PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。
本文介绍了利用可编程控制器编写的一个四层电梯的控制系统,检验电梯PLC控制系统的运行情况。
实践证明,PLC可编程控制器和MCGS组态软件结合有利于PLC控制系统的设计、检测,具有良好的应用价值。
关键词PLC ;4层楼电梯控制电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。
多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯等。
在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。
据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。
当今世界,电梯的使用量已成为衡量现代化程度的标志之一。
追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。
当时有个叫阿基米德的人设计出--人力驱动的卷筒式卷扬机。
1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。
1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。
1900年还出现了第一台自动扶梯。
1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。
1955年出现了小型计算机(真空管)控制电梯。
1962年美国出现了速度达8米/秒的超高速电梯。
1963年一些先进工业国只成了无触点半导体逻辑控制电梯。
1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。
1971年集成电路被应用于电梯。
第二年又出现了数控电梯。
1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。
基于PLC的四层电梯控制系统设计

基于PLC的四层电梯控制系统设计1. 系统概述:基于PLC的四层电梯控制系统,是一种实时、高效、安全的电梯控制系统。
该系统主要由电梯控制器、PLC、控制终端、电动机等组成,并且采用了PLC控制技术,通过对电梯行驶方向、位置等参数的监测,实现电梯的精确定位和控制。
2. 系统设计:2.1 系统组成该电梯控制系统主要由以下组成部分:(1)PLC主控制器PLC主控制器是整个系统的核心部分,它通过处理外部输入信号和用户操作,决定电梯的运行状态和控制命令,并且实现对电梯各个位置的定位控制。
(2)控制终端控制终端通过PLC主控制器和电动机之间的连接,实现对电梯的控制和监测。
同时,它也是用户与电梯系统进行交互的主要界面。
(3)电动机及驱动系统电动机及驱动系统是电梯的动力来源,它通过PLC主控制器的控制,实现电梯的运行和停止。
(4)传感器传感器主要用于感知电梯的运行状态和位置信息,提供全面准确的数据给PLC主控制器,从而实现对电梯状态的精确控制。
2.2 系统设计方案该系统的工作流程如下:(1)当乘客按下外部调用电梯按钮之后,PLC控制器将读取外部输入信号,并根据该信号处理动作逻辑。
(2)PLC控制器将根据上一步的逻辑,决定电梯是否需要停靠来接乘客,并自主决定电梯行驶的方向。
(3)当电梯到达指定楼层后,PLC控制器将接收并处理内部请求信号,并决定是否停止开门,如果需要停止开门,电梯门会打开等待乘客上下。
(4)当乘客确认自己所需电梯,PLC就会自动判断该乘客应该搭乘哪部电梯,并通过相应的操作将乘客送到目的地。
(5)当电梯到达目的地时,PLC控制器将再次接收到请求信号,并将按照相应的逻辑,进行停靠、开关门等操作。
3. 系统特点:3.1 可靠性高该系统采用PLC控制技术,能够对电梯系统进行全面监测和控制,并能够实时判断电梯的状态,确保电梯系统的可靠性和安全性。
3.2 操作简单该系统使用简单,并且每层楼都配有电梯调用按钮和控制终端,乘客可以轻松调用电梯,同时也可以方便地选择自己所需的目的地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编程控制器应用实训报告四层电梯控制1、四层电梯控制功能要求采用PLC 构成四层简易电梯电气控制。
电梯的上、下行由一台电动机拖动,电动机正转为电梯上升,反转为下降。
一层有上升呼叫按钮和指示灯,二层又上层呼叫按钮和指示灯以及下降呼叫按钮和指示灯,三层又上升呼叫按钮和指示灯以及下降呼叫按钮和指示灯,四层有下降呼叫按钮和指示灯;电梯开门和关门按钮,关门限位由行程开关检测。
⒈ 开始时,电梯处于任意一层。
⒉ 当有外呼梯信号到来时,轿厢响应该呼梯信号,到达该楼层并停止运行,轿厢门打开,延时3s 后自动关门。
⒊ 当有内呼梯信号到来时,轿厢响应该呼梯信号,到达该楼层并停止运行,轿厢门打开,延时3s 后自动关门。
⒋ 轿厢运行(轿厢上升或下降)过程中,任何反方向的外呼梯信号均不响应。
但如果反向外呼梯信号前方再无其它内外呼梯信号时,则电梯响应该外呼梯信号。
⒌ 电梯应具有最远反向外呼梯响应功能。
⒍ 电梯未平层或运行时,开门按钮和关门按钮均不起作用。
电梯平层或轿厢停止运行时,按开门按钮则轿厢门打开,按关门按钮则轿厢门关闭。
2、电器元件选型及其计算设计要求:电梯可载重12人即1000kg 、电梯自重1000kg 、电梯上下行速v=0.5m/s 。
可求的:总载重mg=2000kg 。
kw v p 105.0*10*2000mg ===有功.设电动机效率%90=η.P=有功p /η=10kw/0.9=11kw.取额定电压V U N 380=.功率因数85.0cos =ϕ.则有A COS U P I N N 2085.0*380*3110003===ϕ。
然后根据此电机的额定电流选出继电器、熔断器和热继电器等数据。
(1) 熔断器额定电流约为电机额定电流的1.8-2.1倍; (2) 断路器额定电流约为电机额定电流的1.5倍;(3) 热继电器的额定电流约为电机额定电流的0.95-1.05倍; (4) 固体中间继电器的额定电流约为电机额定电流的6-7倍; (5) 交流接触器额定电流约为电机额定电流的2.5倍;(6) 铜芯电线一般为每平方毫米载流量4-6A 之间,线路长时取小值,线路短时取大值。
(7)电机选择额定功率为3KW 的电机。
电气设备明细表3、四层电梯控制电路3.1、四层电梯控制上下行主电路L1L2L3~~图中:KM12、KM13为电动机正、反转接触器,用以实现电梯上、下行控制,当KM12接通时,电机正转,实现电梯上行;当KM13接通时,电机反转,实现电梯下行。
3.2、四层电梯门电机控制电路原理四层电梯门电机开关门控制+-MKM15KM14KM14KM15 MKM14KM15R1R2门电机为它励直流电机,如上图所示,KM14、KM15控制其正、反转。
KM14接通时,电流由电枢左端流向右端,电机正转实现电机开门;KM15接通时,电流由电枢右端流向左端,电机反转实现电机关门。
当开门和关门到位时,由开门限位信号和关门限位信号使得KM14和KM15打开,电机停止运行。
4、程序流程图5、四层电梯实物平面图6、输入/输出端口的分配序号名称输入点序号名称输出点一层内呼I0 0一层内呼指示Q21二层内呼I1 1二层内呼指示Q32三层内呼I2 2三层内呼指示Q43四层内呼I3 3四层内呼指示Q57、四层电梯控制PLC接线图下图中,由PLC的I/O端口的“Q12”输出的信号控制电梯上行;由PLC的I/O端口的“Q13”输出的信号控制电梯上行。
当“Q12”输出为1时,KM12线圈得电,使KM12常开触点闭合,KM12常闭触点打开,上行回路接通,电机正转,实现电梯上行控制。
当“Q13”接通时,KM13线圈得电,使KM13常开触点闭合,KM13常闭触点打开,下行回路接通,电机反转,实现电梯下行控制。
同时,KM12常闭触点和KM13常闭触点形成互锁,使得两个回路不能同时接通,防止短路。
当电梯有要停层时,“Q12”和“Q13”均输出为0,电梯停止上下行,实现了电梯的停层。
电梯采用PLC控制,控制信号逻辑梯形图见后面的PLC 控制程序。
PLC控制电路如下:I0I1I2I3I4I5I6I7I8I9I10I11I12I13I14I15I16I17I18I19 COM1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q12Q13Q14Q15COM6KM12KM13KM13KM12KM14KM15KM15KM14上行下行开门关门一层内呼指示二层内呼指示三层内呼指示四层内呼指示一层外呼指示上二层外呼指示下二层外呼指示上三层外呼指示上Q11四层外呼指示下一层内呼二层内呼三层内呼四层内呼一层外呼上二层外呼下二层外呼上三层外呼下三层外呼上四层外呼下开门开关关门开关一层平层二层平层三层平层四层平层开门限位关门限位电梯上升极限位电梯下降极限位三层外呼指示下COM0COM2COM3COM4COM5FR8、PLC中梯形图程序4楼下呼信号指示:3楼上呼信号指示:2楼上呼信号指示:2楼下呼信号指示:1楼上呼信号指示:M37--M40:当某一层同时出现停层和需保持的反向呼信号时,电梯停层后,使该楼层的反向呼信号指示保持不灭。
内呼1楼信号指示:内呼3楼信号指示:内呼4楼信号指示:M0--M3:1楼至4楼的连续平层信号,用于控制电梯的上行和下行的连续,以保证电梯运行时不会停在两楼层之间。
电梯位于1楼时的上行信号:电梯位于2楼时的上行信号:总上行信号:电梯位于4楼时的下行信号:电梯位于3楼时的下行信号:总下行信号:电梯上行信号记忆:电梯开始上行后优先执行之后的所有上行指令而不立即响应下行指令。
电梯下行信号记忆:电梯开始下行后优先执行之后的所有下行指令而不立即响应上行指令。
1楼停层信号:2楼停层信号:3楼停层信号:4楼停层信号:总停层信号:电梯运行中信号:同层电梯外呼开门信号:电梯门开起:电梯开门延时:使电梯到层停稳后3秒再开门。
关门后等待延时:电梯门关上后延时2秒再升降,以等待刚未来得及进电梯的乘员。
电梯门关闭:电梯门完全打开后延时3秒再开始关闭。
9、操作步骤1.接通电梯模型及PLC主机的电源,观察电梯模型、PLC主机供电是否正常,然后关闭电源开关。
2.将电梯模型中的:①电梯内按钮信号1、2、3、4、、、与PLC主机的I0、I1、I2、I3、I10、I11相连;②电梯外按钮信号1△、2▽、2△、3▽、3△、4▽与PLC主机的I4、I5、I6、I7、I8、I9相连;③1、2、3、4、与PLC主机的I19、I12、I13、I14、I15、I18相连;④电梯门限信号与PLC主机的I16、I17相连;⑤公共端I与PLC主机COM0、COM1相连.⑥电梯内部选择指示灯1、2、3、4与PLC主机的Q2、Q3、Q4、Q5相连;⑦电梯外部呼叫指示灯1△、2▽、2△、3▽、3△、4▽与PLC的Q6、Q7、Q8、Q9、Q10、Q11相连;⑧电梯行控上行、下行与PLC主机的Q12、Q13相连;⑨电梯门控开关,关门与PLC主机的Q14、Q15相连;⑩公共端II与PLC主机输出端的COM2、COM3、COM4、COM5、COM6相连.但不能与主机的供电相连既+24V相连.⑪检查无误后,重新开启电源,模型、PLC处于待机状态。
3.下载并运行程序,按动电梯模型中的内呼或外呼按钮,电梯模型按内、外呼叫指示控制要求正常运行。
10、结论与收获这次课程设计我通过对工程实例的模拟,熟练地掌握了PLC的编程和程序调试方法以及PLC的I/O连接,并掌握了四层电梯控制的PLC编程方法。
我设计的电梯能实现所有的控制要求。
通过两周的学习、设计,我在熟悉PLC编程调试的同时,更加巩固了课堂上的所学。
四层电梯PLC编程设计的关键在于如何判断电梯是否响应某楼层的呼叫信号而前往该层。
如某层向电梯发出外呼请求,或电梯内有内呼,则将产生对应的上行或下行信号,从而使电梯相应的上行或下行。
电梯到达所呼叫的楼层后,通过该楼层的平层信号控制呼叫信号指示灯的熄灭而使电梯停层。
在程序编写中,要时刻注意不同状态的互锁,如电机向上与向下的互锁,开门与关门的互锁。
同时一些信号的保持也是很重要的,如内呼叫、外呼叫等按钮,发出的信号都是一个上升沿,需要在产生输出后得到自保持。
特别需要注意的是反向呼叫信号的保持,当电梯到达呼叫楼层前的运行方向与该楼层的呼叫方向相反,且电梯运行方向前还有与电梯运行方向同向的其他呼叫信号时,该呼叫信号是需要保持的。
电梯到达呼叫楼层,停层后延时3秒电梯门自动开启。
电梯门完全打开后延时3秒电梯门自动开始关闭。
电梯门完全关闭后延时2秒,以等待刚未来得及进电梯的乘员。
之后电梯开始向下一个呼叫楼层运行。
在电梯再次运行前,按电梯内的电梯门开与关按钮可实现电梯门的即时开与关。
同时,按本楼层的任意外呼按钮可实现电梯门的即时打开。
此外,电梯运行方向的控制也需注意。
电梯开始上行后,需将此后的所有上行指令执行完毕再去执行下行指令,电梯开始下行后同理。