神经网络模型应用实例
在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
神经网络的实际应用举例

神经网络的实际应用举例神经网络是模拟人类神经系统机制的计算模型。
它可以从大量数据中自主学习,分析和识别复杂的模式,被应用到许多领域,包括计算机视觉、语音识别、自然语言处理等。
下面介绍神经网络在实际应用中的几个典型案例:一、机器翻译机器翻译是指将一种语言的文本转换成另一种语言的文本。
以Google Translate为例,通过神经网络,将大量的双语数据进行学习和模型的训练,实现了高质量的机器翻译。
神经网络通过提取出源语言文本中的特征,转换成语义空间的向量,在目标语言中寻找最相似的向量,并根据这些向量生成目标语句。
同时,还可以实现实时的语音翻译功能。
二、人脸识别人脸识别技术在安全监控、智能家居等领域广泛使用。
以人脸识别门禁为例,首先通过摄像头捕捉到人脸图像,然后提取特征,将人脸图像转换成向量。
接着,将向量输入神经网络,通过模型识别出人脸的身份信息,最后与数据库中保存的人脸信息进行比对,从而判断身份是否匹配。
三、自动驾驶自动驾驶技术是当前人工智能技术最具代表性的一个领域。
以谷歌无人驾驶汽车为例,通过激光雷达、相机、雷达和GPS等传感器收集周围环境信息,并通过神经网络进行深度学习,实现对环境信息的感知和处理。
然后,结合交通规则和路况等条件,进行行驶决策,开展自主驾驶。
四、医疗影像分析医疗影像分析需要对大量医学图像进行处理和分析,如CT、MRI等。
因此,对于快速准确地分析疾病信息非常重要。
以肺癌识别为例,通过神经网络可以对肺部影像进行分割和预处理,提取肺结节的特征,进而诊断是否为恶性肿瘤。
综上,神经网络的实际应用非常广泛,除了上面所提到的应用领域外,还可以应用在音视频处理、推荐系统等领域,为我们带来越来越多的便捷和效率。
神经网络的选择:CNN、RNN和Transformer的应用场景

神经网络的选择:CNN、RNN和Transformer的应用场景随着人工智能技术的不断发展,神经网络模型的种类也越来越多,其中比较常见的则是CNN、RNN和Transformer。
这三种模型各自具有不同的优缺点,适用于不同的应用场景。
下面将分别介绍它们的特点和优缺点,以及典型应用场景。
一、CNN模型CNN(Convolutional Neural Network)是一种经典的卷积神经网络,主要用于图像、语音等数据的任务。
其主要结构包括卷积层、池化层和全连接层。
CNN通过滤波器获取不同的特征信息,以此提取图像的局部特征,然后通过池化层将图像的空间维度缩小,再经过多个卷积和池化层的堆叠,最后通过全连接层实现分类。
CNN模型的优点在于它能够处理大规模的高维数据,特别是图像数据。
它通过卷积和池化的方式,可以提取图像的局部特征,具有较好的位置不变性。
同时,由于卷积核的共享和池化的下采样,能够大大减少模型的参数数量,从而减少过拟合的风险。
CNN模型的缺点在于它不能处理序列数据,比如自然语言文本。
这是因为CNN模型的卷积和池化操作缺少序列维度的概念,无法挖掘序列数据中的时序和上下文信息。
典型应用场景:图像识别、目标检测、人脸识别等。
二、RNN模型RNN(Recurrent Neural Network)是一种递归神经网络,主要用于处理序列数据,如自然语言文本。
其主要特点在于它考虑了数据之间的时序关系,通过引入一个状态变量,将上一个时间步的状态传递给下一个时间步,以此建立长短时记忆模型。
RNN模型的优点在于它能够处理序列数据,具有记忆的能力,能够从历史数据中挖掘出数据之间的时序和上下文关系。
同时,RNN模型可以处理任意长度的输入序列,非常适合处理自然语言文本和语音数据。
RNN模型的缺点在于它容易出现梯度消失和梯度爆炸问题,这是由于递归过程中梯度的连乘效应导致的。
这个问题可以通过一些改进的技术来解决,如LSTM和GRU。
机器学习中的目标检测与卷积神经网络模型参数调优方法及实践应用案例

机器学习中的目标检测与卷积神经网络模型参数调优方法及实践应用案例目标检测是机器学习领域中一个重要的任务,它被广泛应用于计算机视觉、图像处理、自动驾驶等众多领域。
而在目标检测的方法中,卷积神经网络(Convolutional Neural Networks,简称CNN)是目前被广泛使用和研究的深度学习模型。
在机器学习中,模型参数调优是十分关键的一步,它决定了模型的性能和泛化能力。
而调优卷积神经网络模型参数,尤其是用于目标检测的模型参数,是一个挑战性的任务。
本文将介绍一些常用的调优方法,并结合一个实践应用案例进行讲解。
在目标检测任务中,常用的卷积神经网络模型有Faster R-CNN、YOLO、SSD 等。
这些模型包含了许多参数,如学习率、批量大小、网络结构等。
在调优这些参数前,首先需要了解模型的性能指标和训练数据。
对于目标检测的性能指标,常见的有精确度(Precision)、召回率(Recall)和F1-score。
精确度是指被检索到的相关样本在所有检索到的样本中的比例,召回率是指被检索到的相关样本占所有相关样本的比例,F1-score是精确度和召回率的调和平均数。
训练数据则需要包含正样本和负样本的标签,用于模型的训练和评估。
针对模型参数调优,一种常用的方法是网格搜索(Grid Search)。
网格搜索将给定参数范围的所有组合都进行尝试,并通过交叉验证选择最佳的参数组合。
这种方法的优点在于简单直观,但其缺点是计算资源消耗大且耗时。
另一种常用的方法是随机搜索(Random Search)。
与网格搜索相比,随机搜索通过设置参数的分布范围,在参数空间中随机选择参数组合进行尝试。
这种方法相对于网格搜索更加高效,而且能够在有限的计算资源下得到较好的结果。
除了这些传统的调优方法,还有一些高级的优化算法也被广泛使用。
其中一种是贝叶斯优化(Bayesian Optimization),它通过构建模型来推断参数的性能,并选择最优的参数组合进行优化。
BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。
BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。
每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。
BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。
具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。
3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。
6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。
BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。
下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。
我们训练集中包含一些房屋信息和对应的价格。
1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。
2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。
3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。
4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。
BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
神经网络模型在医学影像分析中的应用

神经网络模型在医学影像分析中的应用近年来,随着科技的不断进步和发展,医学影像分析已经成为了医学领域中最重要的一个方向之一。
利用计算机技术进行医学影像分析,可以大大提高医生们诊断疾病的准确性和速度。
而神经网络模型就是其中非常重要的一种技术手段。
神经网络模型是一种模拟人脑神经元之间相互作用的计算模型,可以自动适应数据的变化,发现数据之间的联系,并对数据进行分类和预测。
在医学影像分析中,神经网络模型可以利用卷积神经网络(Convolutional Neural Networks,CNN)的架构进行图像分类、定位和诊断等任务。
一、神经网络模型在医学影像分析中的应用1、肺癌识别肺癌是一种常见的恶性肿瘤,早期诊断可以有效提高治疗效果。
利用卷积神经网络来实现肺部CT影像的诊断,可以大大提高肺癌诊断的准确性。
比如,利用一种名为“DeepLung”的神经网络模型,可以准确地识别出肺部CT图像上的恶性结节,其准确率高达90%以上。
2、心脏疾病诊断利用卷积神经网络可以处理心脏MRI图像,对心脏进行分割、定位和诊断。
比如,可以利用一种名为“3D U-Net”的神经网络模型,对整个心脏进行分割,并定位出心脏病变的位置,可以帮助医生们更快速地诊断心脏病。
3、眼科疾病诊断神经网络模型也可以应用于眼科的医学影像分析中。
比如,利用一种名为“RetinaNet”的神经网络模型,可以诊断糖尿病视网膜病变的程度,并帮助医生们制定更为准确的治疗方案。
二、神经网络模型优势相比于传统的医学影像分析方法,神经网络模型具有以下优势:1、自我学习和自我适应能力更强。
神经网络可以不断地接受新的数据输入,并根据新的数据进行计算和分析,不断地提高诊断和判断的准确性。
2、速度更快。
神经网络可以同时处理多个数据输入,同时进行计算和分析,大大缩短了分析时间。
3、可扩展性更强。
神经网络可以很容易地进行扩展和优化,可以针对不同的医学场景进行不同的训练和优化。
三、神经网络模型应用未来发展趋势随着医学影像数据的不断积累,神经网络模型在医学影像分析中的应用也将不断发展和完善。
卷积神经网络在交通流量预测中的应用案例

卷积神经网络在交通流量预测中的应用案例卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得巨大成功的深度学习模型。
它通过模拟人类视觉系统的工作方式,能够从图像中提取有用的特征,并进行分类、识别等任务。
然而,CNN不仅仅局限于图像处理领域,它在其他领域也有着广泛的应用,比如交通流量预测。
交通流量预测一直是城市交通管理的重要课题之一。
准确地预测交通流量可以帮助决策者优化交通信号灯控制、规划道路建设等,提高交通效率,减少拥堵。
传统的交通流量预测方法主要基于统计模型,如ARIMA、SARIMA等,这些方法需要手动选择特征和调整参数,且对数据的非线性关系建模能力有限。
近年来,随着深度学习的兴起,CNN被引入到交通流量预测中。
CNN通过学习交通数据中的空间和时间特征,能够更好地捕捉数据中的非线性关系,从而提高预测准确度。
下面我们将介绍一个卷积神经网络在交通流量预测中的应用案例。
某城市的交通管理部门希望能够准确地预测城市各个路段的交通流量,以便根据预测结果进行交通信号灯的优化调整。
为了实现这个目标,他们采集了大量的交通数据,包括每个路段每个时间段的车辆流量、速度等信息。
然后,他们使用这些数据来训练一个卷积神经网络模型。
首先,他们将交通数据按照时间和空间进行划分,构建一个三维的数据集。
其中,时间维度表示每个时间段,空间维度表示每个路段,第三个维度表示每个时间段每个路段的交通流量。
然后,他们将这个三维数据集作为输入,搭建了一个卷积神经网络模型。
该模型包含多个卷积层和池化层,用于提取数据中的空间和时间特征。
卷积层通过滑动窗口的方式,对输入数据进行卷积运算,提取不同尺度的特征。
池化层则用于降低数据维度,减少模型参数数量。
最后,通过全连接层和输出层,将提取到的特征映射到交通流量的预测结果。
在模型训练过程中,他们使用了交通数据集的一部分作为训练集,另一部分作为验证集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP 神经网络模型
近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.
目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann 等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart 等人提出了误差反向传递学习算法(即BP 算),实现了Minsky 的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如
Q x e x f /11
)(-+=
式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点j 的输入为net jk =
∑i
ik ij O
W
并将误差函数定义为∑=-=N k k k y y E 12
)(21
其中k y 为网络实际输出,定义E k =(y k -ŷk )2, jk k
jk E net ∂∂=
δ,且O jk =f (net jk
),于是
ik
jk
k ij jk jk k ij k O E W E W E net net net ∂∂=∂∂∂∂=∂∂=δjk O ik
当j 为输出节点时,O jk =ŷk
)net ()(net jk k k jk
k k k jk
f y y y y E '--=∂∂∂∂=
δ
(34.1)
若j 不是输出节点,则有
∑∑∑∑∑∑=∂∂=∂∂∂∂=∂∂∂∂=∂∂'∂∂=∂∂∂∂=∂∂=
m i m mj mk mj mk k
m i
ik mi jk mk k m jk mk
mk
k jk k jk jk
k
jk jk jk k jk k jk W W E O W O E O E O E f O E O O E E δδnet net net net )net (net net 因此
⎪⎩⎪⎨⎧=∂∂'=∑ik mk ij
k
m mj
mk jk jk O W E W f δδδ)net ( (34.2)
如果有M 层,而第M 层仅含输出节点,第一层为输入节点,则BP 算法为: 第一步,选取初始权值W 。
第二步,重复下述过程直至收敛:
a. a. 对于k =1到N
a ). 计算O ik , net jk 和ŷk 的值(正向过程);
b ). 对各层从M 到2反向计算(反向过程);
b. b. 对同一节点j ∈M ,由式(34.1)和(34.2)计算δjk ;
第三步,修正权值,W ij =W ij -μij W E ∂∂, μ>0, 其中∑∂∂=∂∂N
k ij k
ij
W E W E。
从上述BP 算法可以看出,BP 模型把一组样本的I/O 问题变为一个非线性优化问题,
它使用的是优化中最普通的梯度下降法。
如果把神经网络的看成输入到输出的映射,则这个映射是一个高度非线性映射。
设计一个神经网络专家系统重点在于模型的构成和学习算法的选择。
一般来说,结构是根据所研究领域及要解决的问题确定的。
通过对所研究问题的大量历史资料数据的分析及目前的神经网络理论发展水平,建立合适的模型,并针对所选的模型采用相应的学习算法,在网络学习过程中,不断地调整网络参数,直到输出结果满足要求。
第2节 DPS 数据处理系统操作步骤
在DPS 数据处理系统中,数据的输入格式是一行为一个样本,一列为一个变量,输入
节点(变量)放在数据块左边,输出节点(因变量)放在数据块右边,输完一个样本后再输下一个样本。
对于待识别(预测)的样本,不需要输入输出变量(因变量)。
数据输入完毕后,定义数据块。
如有待识别(预测)的样本,可在按下Ctrl键时再按下并拖动鼠标,将待预测的样本定义成第二个数据块。
在进行神经网络学习之前,系统出现如图34-2所示界面,这时需要你提供若干参数,各个参数取值的基本原则是:
图34-2 神经网络参数设置对话框
网络参数确定原则:
①、网络节点网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。
隐层节点选按经验选取,一般设为输入层节点数的75%。
如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点,即构成一个7-5-1 BP神经网络模型。
在系统训练时,实际还要对不同的隐层节点数4、5、6个分别进行比较,最后确定出最合理的网络结构。
②、初始权值的确定初始权值是不应完全相等的一组值。
已经证明,即便确定存在一组互不相等的使系统误差更小的权值,如果所设W ji的的初始值彼此相等,它们将在学习过程中始终保持相等。
故而,在程序中,我们设计了一个随机发生器程序,产生一组一
0.5~+0.5的随机数,作为网络的初始权值。
③、最小训练速率在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;但训练速率过大,会引起系统的振荡,因此,训练速率在不导致振荡前提下,越大越好。
因此,在DPS中,训练速率会自动调整,并尽可能取大一些的值,但用户可规定一个最小训练速率。
该值一般取0.9。
④、动态参数动态系数的选择也是经验性的,一般取0.6 ~0.8。
⑤、允许误差一般取0.001~0.00001,当2次迭代结果的误差小于该值时,系统结束迭代计算,给出结果。
⑥、迭代次数一般取1000次。
由于神经网络计算并不能保证在各种参数配置下迭代结果收敛,当迭代结果不收敛时,允许最大的迭代次数。
⑦、Sigmoid参数该参数调整神经元激励函数形式,一般取0.9~1.0之间。
⑧、数据转换。
在DPS系统中,允许对输入层各个节点的数据进行转换,提供转换的方法有取对数、平方根转换和数据标准化转换。
第3节应用实例
原始数据整理:本例令影响棉铃虫发生程度的因素指标集序列由麦田1代幼虫量、6月降水天数、5月积温、6月积温、5月相对湿度、5月降水天数和6月相对湿度等7个生态和生物因子构成,2代发生程度按照全国植保站颁发的标准分级,并规定发生程度重、偏重、中、偏轻和轻分别赋值为0.9、0.7、0.5、0.3和0.1。
在建立BP神经网络模型时,取1982~1991年的数据作为学习、训练样本,1992和1993年为试报样本。
在数据分析前将数据定义成数据块(图34-3).
图34-3 BP神经网络数据编辑定义示意图
进入BP神经网络训练时, 系统会显示如图34-3所示界面。
这时我们可按网络的结构确定网络的参数,这里输入层节点数为7,隐含层1层,最小训练速率取0.1,动态参数0.7,Sigmoid参数为0.9, 允许误差0.00001,最大迭代次数1000。
并对输入节点的数值进行标准化转换。
点击“确定”按钮后,设置隐层的神经元个数(这里取5),运行1000次后,样本误差等
学习样本的拟合值和实际观察值, 以及根据BP神经网络对1992、1993年2代棉铃虫发生程度进行预测的结果与实际值的比较列于表34-1。
结果表明,应用BP神经网络进行二代棉铃虫发生程度预测,不仅历史资料的拟合率高,而且2年的试报结果与实际完全符合。
表34-1 神经元网络训练结果及试报结果
年份1982 1983 1984 1985 1986 1987 训练输出值0.6997 0.8952 0.5004 0.3000 0.8900 0.1014 实际值0.7000 0.9000 0.5000 0.3000 0.9000 0.1000
年份1988 1989 1990 1991 1992 1993
训练输出值0.8862 0.5011 0.7026 0.8733 0.8955*
0.8985*
实际值0.9000 0.5000 0.7000 0.9000 0.9000 0.9000
*1992~1993年为试报结果。