2017-2018陕西省西安碑林区西工大附中初三周练(二)

合集下载

陕西省西安市西北工业大学附属中学2017-2018学年九年级二模数学试题(解析版)

陕西省西安市西北工业大学附属中学2017-2018学年九年级二模数学试题(解析版)

陕西省西安市西北工业大学附属中学2018届九年级二模数学试题第一部分(选择题,共30分)一、选择题(每小题3分,共10小题,计30分)1.4的平方根是()A. 4B. ±4C. ±2D. 2【答案】C【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±2)2=4,∴4的平方根是±2.故选:D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.一个几何体的三视图如图所示,这个几何体是()A. 三菱柱B. 三棱锥C. 长方体D. 圆柱体【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.下列计算正确的是()A. a²+a²=a4B. (-a2)3=a6C. (a+1)2=a2+1D. 8ab2÷(-2ab)=-4b【答案】D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A. 30°B. 60°C. 50°D. 40°【答案】A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.5.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A. 2B. -2C. ±2D. -【答案】B【解析】【分析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.6.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是9A. B. 15 C. D. 9【答案】C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,则AB===,故选:C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.7.点是一次函数图象上一点,若点在第一象限,则的取值范围是().A. B. C. D.【答案】B【解析】试题解析:把点代入一次函数得,.∵点在第一象限上,∴,可得,因此,即,故选B.8.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD 与QR相交于S点,则四边形RBCS的面积为()A. 8B.C.D.【答案】D【解析】【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.9.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A. 3:1B. 4:1C. 5:2D. 7:2【答案】A【解析】【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【详解】连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=AC=3,∴DO=5,∴DF=5-3=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==3.故选:A.【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.10.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-,x=0时,y=3,x=1时,y=,∴,解得∴abc<0,故正确;(2)∵y=-x2+x+3,∴对称轴为直线x=-=,所以,当x>时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.第二部分(非选择题,共90分)二、填空题(每小题3分,共4小题,计12分)11.分解因式:8x²-8xy+2y²= _________________________ .【答案】2【解析】【分析】提取公因式2,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a2±2ab+b2=(a±b)2.【详解】8x2-8xy+2y²=2(4x2-4xy+y²)=2(2x-y)2.故答案为:2(2x-y)2【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.12.已知一个正六边形的边心距为,则它的半径为______.【答案】2【解析】试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.解:如图所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos 30°=÷=2;故答案为:2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.13.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.【答案】4【解析】【分析】连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=4,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=4,∴k=4.故答案为:4.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF 为菱形,若点P是AE上一个动点,则PF+PB的最小值为___________。

精品解析:【全国百强校】陕西省西安市西北工业大学附属中学2018届九年级二模英语试题(原卷版)

精品解析:【全国百强校】陕西省西安市西北工业大学附属中学2018届九年级二模英语试题(原卷版)

2018 西工大附中二模听力部分(略)笔试部分III. 完形填空第一节阅读下面短文,按照句子结构的语法性和上下文连贯的要求,从各小题所给的四个选项中选一个最佳答案,使短文连贯完整。

AWhen I was about 13, I had an enemy. She was a girl ___1___ liked to point out my shortcomings ( 缺点). Sometimes she said I was lazy. Sometimes she said I wasn’t a good student. Sometimes she said I ___2___ too much. At last, I became very angry. I ran to my father.My father listened to me ___3___ , and then he asked, “Are the things she said true or not? Go and make a list of everything she said and mark the points that are true. Then pay no attention to ___4___ things she said.”I returned to my room and did ___5___ my father told me. To my ___6___ , I found that about half the things were true. I brought the list back to my father. He ___7___ to take the list. “That’s just for you,” he said. “When something said about you is true, you’ll find it will be ___8___ to you. Listen to them all, ___9___ hear the truth from your own deep heart and do what you think is right.Many years have passed. The situation often appears in my mind. In our life, we often meet with some trouble and we often go to someone for ___10___ which we will treasure all life!1. A. what B. who C. which D. whom2. A. talk B. was talking C. talked D. talks3. A. quietly B. quickly C. excitedly D. happily4. A. other B. the other C. another D. any5. A. like B. as C. likes D. according to6. A. relief B. sadness C. surprise D. happiness7. A. agreed B. liked C. wanted D. refused8. A. useless B. helpful C. terrible D. harmful9. A. but B. and C. so D. or10. A. advices B. messages C. suggestions D. help第二节阅读下面一篇短文,理解大意,然后从各小题所给的四个选项中选出一个最佳答案,使短文连贯完整。

陕西省西安市西工大附中九年级第二次适应性训练数学试题

陕西省西安市西工大附中九年级第二次适应性训练数学试题

(第2题图)(第4题图)DABCFE(第7题图)西安市中考西工大附中第二次适应性训练数 学第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.-|3|-=( ) A .3B .3-C .13D .13-2.由两个紧靠在一起的圆柱组成的几何体如图所示,则它的俯视图 是( )A .两个内切的圆B .两个相交的圆C .两个外切的圆D .两个外离的圆 3.下列运算中,正确的是( ) A. 020= B. 144-=-C. 39±=D. 201211-=-4.如图,△AB′C′是由Rt△ABC 绕点A 顺时针旋转90°而得到的. 若∠BAC =90°,∠B =60°,则∠CC′ B′ 的度数是( )A .15° B.25° C .30° D .45°5.下列关于正比例函数y =k 2x (k 是常数,k ≠0)的图象, 说法正确的是( )A .是一条抛物线B .经过一、二象限C .过点(1k,k ) D .当k<0时,y 随着x 增大而减小6.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ) A .3,3 B .3,5 C .2,2 D .2,37.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的 延长线于点E ,则下列结论错误..的是( )BCDA(第9题图)图5—2PQM (第10题图)ABDEP QDEAABDEA.ED EA =DF AB B.DE BC =EF FB C. BC DE =BF BE D.BF BE =BC AE8.平面直角坐标系中,将抛物线y=12- (x+)(x+)+4平移,使其与x 轴交于两点,且此两点的距离为4个单位,则平移方式为( )A .向上平移2个单位B .向下平移2个单位C .向上平移4个单位D .向下平移4个单位 9.如图,在Rt ABC △中,C ∠=90°,AB =10,若以点C CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( ) A .3B .5C .52D .610.如图,位于x 上方且平行于x 轴的线段PQ ,分别与反比例 函数2y x =-、y 轴、4y x=的图象交于P 点、M 点、Q 点,连 接OP 、OQ ,则下列结论: ①MQ =2PM ;②△OPQ 的面积为6; ③当∠POQ =90°时,OM 的长48OQ 最短时,OP 3其中正确的结论的个数为( ) A .1B .2C .3D .4第II 卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算232(3)a a -⋅-= .12.如图,AB ∥CD ,∠B =40°,∠D =70°,则∠E 的大小为 .13.点A 的坐标为(2,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B 的坐标为 . 14.如图所示,在梯形ABCD 中,AD ∥BC , 作CE ⊥AB 于点E ,恰好CE 平分∠BCD ,且BE =2AE ,若梯形ABCD 的面积为15,则四边形AECD 的面积为___________.15.某公司在2010年的盈利额为150万元,预计2012年的盈利额将达到216万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2011年的盈利额为 万元.16.如图,在边长为10的菱形ABCD 中,对角线BD =16.点E 是AB 的中点,P 、Q 是BD 上的动点,且始终保持PQ =2.则四边形AEPQ 周长的最小值为___________.第五次...人口普查中该市常住人口 学历状况扇形统计图38%小学高中32%初中17%其他3%大学第六次...人口普查中该市常住人口 学历状况条形统计图365518049人数(万人)大学高中初中小学其他10060801201401601804020三、解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)先化简再求值:244()33x x x x x --÷---,其中x 为不大于3的正整数.18.(本题满分6分)如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连结BE ,过C 点作CF ⊥BE 于F .求证:BF =AE .19.(本题满分7分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出).请根据统计图,解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少? (3)据国家统计局4月28日通报第六次全国人口普查结果显示:我国大陆总人口为1339724852人.如果把该市作为一个样本,请估计在第六次全国人口普查中全国大学学历的人数.(结果保留三位有效数字,用科学计数法表示)FE DCBA(第18题图)20.(本题满分8分)如图,小刚同学在南州广场上观测新华书店楼房墙上的电子屏幕CD,点A是小刚的眼睛,测得屏幕下端D处的仰角为30°,然后他正对屏幕方向前进了6米到达B处,又测得该屏幕上端C 处的仰角为45°,延长AB与楼房垂直相交于点E,测得BE=21米,请你帮小刚求出该屏幕上端与下端之间的距离CD.(结果精确到0.1米. 参考数据:2≈1.414,,3≈1.732)21.(本题满分8分)秋冬北方严重干旱,凤凰社区饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W(元),试写出W关于与x的函数关系式,怎样安排调运方案才能是每天的总运费最省?22.(本题满分8分)小明和小刚做游戏.游戏采用五张分别写有1、2、3、4、5的卡片.这些卡片,除数字外,其它完全相同.游戏规则是:将这五张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,再从剩下的四张卡片中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若若这个两位数是3的倍数时,小刚胜;否则,小明胜.你认为这个游戏公平吗?若不公平,对谁有利?请运用概率知识进行说明.23.(本题满分8分)如图,AC 是⊙O 的直径,过点A 作直线MN ,使∠BAM = 12 ∠AOB ,(1)求证:MN 是⊙O 的切线;(2)延长CB 交MN 于点D ,若AC =13,BC =12,求AD 的长。

陕西省西安市碑林区西北工业大学附中九年级(上)第二次模拟物理试卷

陕西省西安市碑林区西北工业大学附中九年级(上)第二次模拟物理试卷

陕西省西安市碑林区西北工业大学附中九年级(上)第二次模拟物理试卷一、单项选择:(共8小题)1.(2分)以下估计数据合理的是()A.短跑运动员比赛速度可达到36km/hB.成人一只手掌的宽度约25cmC.人体的正常体温35℃﹣42℃D.家用普通白炽灯正常工作电流约2A2.(2分)下列对冬季户外温泉游泳的描述中正确的是()A.温泉泳池上方的大量“白气”是由于汽化形成的B.人在温泉池中觉得暖和是利用热传递来改变人体内能的C.游泳圈从温泉池中取出后变瘪是因为圈内空气发生了液化D.温泉池边树枝上的“白霜”是由水蒸气凝固形成的3.(2分)水是一种资源,也是一种能源。

古代劳动人民巧妙地利用水来开山采石;冬季,在白天给石头打一个洞,再往洞里灌满水并封实,待晚上降温,水结冰后石头就裂开了(冰的密度比水的小).下列有关说法正确的是()A.石头裂开后密度减小B.石头裂开后密度增大C.该方法利用水结冰后质量变大,体积增大而使石头裂开D.该方法利用水结冰后质量不变,体积增大而使石头裂开4.(2分)如图所示,是最新设计的无人机,配备一个摄像头,远程计算机通过这个摄像头可以控制它的飞行,使它能够在适合的地方着陆。

下列说法中错误的是()A.当飞机受平衡力的时候是处于静止状态或匀速直线运动状态B.电子马达相当于一个电动机,它是根据电磁感应的原理制成的C.当机翼产生的升力大于飞机受到的重力时,无人机就能升空D.无人机直立栖息在树枝上时,树枝对无人机的支持力和无人机对树枝的压力是一对相互作用力5.(2分)2016年4月24日,被命名为首个“中华航天日”,是为了纪念1970年4月24日我国东方红一号卫星首次成功发射升空。

近年来,我国的航空航天技术飞速发展。

2013年12月2日发射的嫦娥三号探测器,开启了我国对月球的实地探索之旅。

目前我国实地探测月球的主角是“玉兔号月球车”,其设计质量140kg,能源为太阳能,能够耐受月球表面真空、强辐射、零下180℃到零上150℃极限温度等极端环境。

2017-2018学年最新陕西省西安市中考数学第二次模拟试题及答案解析一

2017-2018学年最新陕西省西安市中考数学第二次模拟试题及答案解析一

2018年陕西省西安市中考数学二模试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.3.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a64.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.45.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣46.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值等于()A.B.﹣2 C.﹣D.27.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.8.观察下列图形规律:当n=( )时,图形“•”的个数和“△”的个数相等A .9B .7C .6D .59.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连接BE ,FE ,则∠EBF 的度数是( )A .45°B .50°C .60°D .不确定10.已知抛物线y=﹣x 2+x+6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .B .C .D .二、填空题(共4小题,每小题3分,计12分) 11.方程x 2=﹣x 的解是 .12.已知点A (x 1,y 1),点B (x 2,y 2)都在反比例函数y=的图象上,若x 1•x 2=﹣3,求y 1•y 2的值.13.请从以下两个小题中任意选一题作答A .如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当AD=2,BF=3时正方形CDEF 的面积是 .B .比较大小.(填“>”“<”或“=”)14.如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,△PMN 的周长最小值为 .三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.16.先化简,再求值:,其中x=+1.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为度;②课外阅读时间的中位数落在(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m ,第一次在D 处测得旗杆顶端A 的仰角为60°,第二次向后退12m 到达E 处,又测得旗杆顶端A 的仰角为30°,求旗杆AB 的高度.(结果保留根号)21.在A 、B 两地之间有汽车站C 站(如图1),客车由A 地驶向C 站,货车由B 地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (2)客、货两车何时相遇?22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x ,按表格要求确定奖项. 奖项 一等奖 二等奖 三等奖 |x| |x|=4 |x|=3 1≤|x|<3 (1)用列表或画树状图的方法求出甲同学获得一等奖的概率; (2)是否每次抽奖都会获奖,为什么?23.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径的⊙O 交AC 于点D ,过点D 的切线交BC 于E .(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.若一个数的相反数是3,则这个数是( )A .﹣B .C .﹣3D .3【考点】相反数.【分析】两数互为相反数,它们的和为0. 【解答】解:设3的相反数为x . 则x+3=0, x=﹣3. 故选:C .2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选A .3.下列计算正确的是( ) A .a+2a=3a 2B .a •a 2=a 3C .(2a )2=2a 2D .(﹣a 2)3=a 6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解. 【解答】解:A 、a+2a=3a ,故本选项错误; B 、a •a 2=a 3,故本选项正确; C 、(2a )2=4a 2,故本选项错误; D 、(﹣a 2)3=﹣a 6,故本选项错误. 故选B .4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为( )A .1B .2C .3D .4 【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE ∥BC ,∴,即,解得:EC=2, 故选:B .5.若x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,则a 的值为( ) A .1或4 B .﹣1或﹣4 C .﹣1或4 D .1或﹣4 【考点】一元二次方程的解.【分析】将x=﹣2代入关于x 的一元二次方程x 2﹣ax+a 2=0,再解关于a 的一元二次方程即可.【解答】解:∵x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根, ∴4+5a+a 2=0, ∴(a+1)(a+4)=0, 解得a 1=﹣1,a 2=﹣4,故选:B .6.若正比例函数y=kx 与y=2x 的图象关于x 轴对称,则k 的值等于( )A .B .﹣2C .﹣D .2【考点】一次函数图象与几何变换.【分析】根据关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.则两个解析式的k 值应互为相反数.【解答】解:两个解析式的k 值应互为相反数, 即k=﹣2, 故选B .7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.【考点】切线的性质;锐角三角函数的定义.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,∴sin∠ADP=,故选:D.8.观察下列图形规律:当n=()时,图形“•”的个数和“△”的个数相等A.9 B.7 C.6 D.5【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“•”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3〓1;n=2时,“•”的个数是6=3〓2;n=3时,“•”的个数是9=3〓3;n=4时,“•”的个数是12=3〓4;∴第n个图形中“•”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“•”的个数和“△”的个数相等.故选D.9.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定【考点】全等三角形的判定与性质;正方形的性质.【分析】过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.【解答】解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,∵E 是BF 的垂直平分线EM 上的点, ∴EF=EB ,∵E 是∠BCD 角平分线上一点,∴E 到BC 和CD 的距离相等,即BH=EI ,Rt △BHE 和Rt △EIF 中,,∴Rt △BHE ≌Rt △EIF (HL ), ∴∠HBE=∠IEF ,∵∠HBE+∠HEB=90°, ∴∠IEF+∠HEB=90°, ∴∠BEF=90°, ∵BE=EF ,∴∠EBF=∠EFB=45°. 故选:A .10.已知抛物线y=﹣x 2+x+6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .B .C .D .【考点】抛物线与x 轴的交点.【分析】令y=0,则﹣x 2+x+6=0,由此得到A 、B 两点坐标,由D 为AB 的中点,知OD 的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD 即可.【解答】解:令y=0,则﹣x 2+x+6=0, 解得:x 1=12,x 2=﹣3∴A 、B 两点坐标分别为(12,0)(﹣3,0) ∵D 为AB 的中点, ∴D (4.5,0), ∴OD=4.5,当x=0时,y=6, ∴OC=6,∴CD==.故选:D .二、填空题(共4小题,每小题3分,计12分) 11.方程x 2=﹣x 的解是 0或﹣1 .【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x ,将原式化为左边是两式相乘,右边是0的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x 2+x=0x (x+1)=0x=0或x=﹣1.12.已知点A (x 1,y 1),点B (x 2,y 2)都在反比例函数y=的图象上,若x 1•x 2=﹣3,求y 1•y 2的值.【考点】反比例函数图象上点的坐标特征.【分析】因为A 、B 都在反比例函数的图象上,可知x 1y 1=6,x 2y 2=6,把已知x 1•x 2=﹣3代入可求得y 1•y 2的值.【解答】解:∵A 、B 都在反比例函数的图象上,∴x 1y 1=6,x 2y 2=6,∴x 1y 1x 2y 2=36且x 1•x 2=﹣3,∴y 1•y 2=﹣12.13.请从以下两个小题中任意选一题作答A .如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当AD=2,BF=3时正方形CDEF 的面积是 6 .B .比较大小 > .(填“>”“<”或“=”)【考点】正方形的性质;实数大小比较.【分析】A 、首先设正方形CDEF 的边长为x ,易得△ADE ∽△ACB ,然后由相似三角形的对应边成比例,求得答案;B 、首先求得的近似值,继而比较大小,即可求得答案.【解答】解:A 、设正方形CDEF 的边长为x ,则DE=CF=CD=x ,BC=CF+BF=3+x ,AC=AD+CD=2+x ,∴DE ∥BC ,∴△ADE ∽△ACB ,∴,∴,解得:x=〒,∴DE=,∴正方形CDEF的面积是:6;B、∵≈=0.618,=0.5,∴>.故答案为:A、6,B、>.14.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为 6 .【考点】轴对称-最短路线问题.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6,故答案为:6三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得x>3,由②得x>1,故不等式组的解集为:x>3.16.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】把括号里式子进行通分,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===x(x﹣1)当x=+1时原式=(+1)(+1﹣1)=3+.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.【考点】作图—复杂作图;切线的性质.【分析】直接过作AB的垂线进而得出D点位置,进而作出⊙C.【解答】解:作AB的垂线,交AB于点D,作⊙C,交AC于点E.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为36°度;②课外阅读时间的中位数落在1~1.5 (填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【分析】(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数〓频率即可得出答案.【解答】解:(1)总人数=30〔25%=120人;(2)①a%==10%,∴对应的扇形圆心角为360°〓10%=36°;②总共120名学生,中位数为60、61,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800〓30%=240人.19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.【解答】(1)证明:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D.又∵AE=CG,AH=CF,∴BE=DG,BF=DH,在△BEF与△DGH中,∴△BEF≌△DGH(SAS),∴EF=GH.又由(1)知,△AEH≌△CGF,∴EH=GF,∴四边形EFGH是平行四边形,∴HG∥EF,∴∠HGE=∠FEG,∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠HEG=∠HGE ,∴HE=HG ,∴四边形EFGH 是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m ,第一次在D 处测得旗杆顶端A 的仰角为60°,第二次向后退12m 到达E 处,又测得旗杆顶端A 的仰角为30°,求旗杆AB 的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由∠AFC 为△AFG 的外角,利用外角性质得到∠AGF=∠FAG ,利用等角对等边得到AF=GF=ED ,在直角三角形ACF 中,利用锐角三角函数定义求出AC 的长,由AC+BC 求出AB 的长即可.【解答】解:∵∠AFC=60°,∴∠AFG=120°,∵∠CGA=30°,∴∠GAF=30°,∴FA=FG=ED=12m ,∴AC=AF •sin60°=6(m ),∵BC=FD=1,∴AB=AC+BC=(6+1)m .21.在A 、B 两地之间有汽车站C 站(如图1),客车由A 地驶向C 站,货车由B 地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式;(2)客、货两车何时相遇?【考点】一次函数的应用.【分析】(1)由图2得出点D的坐标,由速度=路程〔时间可得出货车的速度,再由时间=AC两地两地距离〔速度得出货车从C地到A地的时间,设直线DP的解析式为y2=kx+b (k≠0),由D、P点的坐标利用待定系数法即可得出结论;(2)设直线EF的函数解析式为y1=mx+n(m≠0),结合起点终点的坐标利用待定系数法即可求出直线EF的函数解析式,联立直线DP和EF的函数解析式得出方程组,解方程组即可得出结论.【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60〔2=30(千米/时),∴货车行驶360千米所需时间为360〔30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是3时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.23.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)在直角三角形ABC中,根据锐角三角函数的概念以及勾股定理计算它的三边.再根据相似三角形的判定和性质进行计算.【解答】(1)证明:连接BD,∵AB是直径,∠ABC=90°,∴BC是⊙O的切线,∠BDC=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE.故DE=BC.(2)解:由(1)知,BC=2DE=4.在Rt△ABC中,AB=BCtanC=4〓=2,AC==6.∵∠ADB=∠ABC=90°,∠A=∠A,∴△ABD∽△ACB.∴,∴=.解得AD=.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A 、C 两点坐标代入抛物线y=﹣x 2+bx+c ,运用待定系数法即可求出b ,c 的值;(2)先求得M 的坐标,进而求出点D 的坐标,然后将D (t+2,4)代入(1)中求出的抛物线的解析式,即可求出t 的值;(3)由于t=8时,点B 与点D 重合,△ABD 不存在,所以分0<t <8和t >8两种情况进行讨论,在每一种情况下,当以A 、B 、D 为顶点的三角形与△PEB 相似时,又分两种情况:△BEP ∽△ADB 与△PEB ∽△ADB ,根据相似三角形对应边的比相等列出比例式,求解即可.【解答】解:(1)∵抛物线y=﹣x 2+bx+c 过点A (0,4)和C (8,0),∴,解得.故所求b 的值为,c 的值为4;(2)∵∠AOP=∠PEB=90°,∠OAP=∠EPB=90°﹣∠APO ,∴△AOP ∽△PEB 且相似比为==2, ∵AO=4,∴PE=2,OE=OP+PE=t+2,又∵DE=OA=4,∴点D 的坐标为(t+2,4),∴点D 落在抛物线上时,有﹣(t+2)2+(t+2)+4=4,解得t=3或t=﹣2,∵t >0,∴t=3.故当t 为3时,点D 落在抛物线上;(3)存在t,能够使得以A、B、D为顶点的三角形与△AOP相似,理由如下:①当0<t<8时,如图1.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(4﹣t),整理,得t2+16=0,∴t无解;若△POA∽△BDA,同理,解得t=﹣2〒2(负值舍去);②当t>8时,如图2.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(t﹣4),解得t=8〒4(负值舍去);若△POA∽△BDA,同理,解得t无解.综上可知,当t=﹣2+2或8+4时,以A、B、D为顶点的三角形与△AOP相似.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)①根据题意直接画出图形得出即可;②利用对称的性质以及等角对等边的性质,进而得出答案;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:,进而利用勾股定理得出答案.【解答】解:(1)①如图1所示:②如图2,连接AE,由对称得,∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(2)如图2,连接AE,由对称得∠PAB=∠PAE=α,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=α,∴∠EAD=90°+2α,∴∠ADF==45°﹣α.(3)如图3,连接AE、BF、BD,由对称可知,EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,在Rt△BDF中,BF2+FD2=BD2,在Rt△ABC中,BD=AB,∴EF2+FD2=2AB2.2016年6月7日。

2017年陕西省西安市西工大附中初中毕业数学学业考试模拟试题(含解析)

2017年陕西省西安市西工大附中初中毕业数学学业考试模拟试题(含解析)

2017年陕西省西工大附中初中毕业数学学业考试模拟试题一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.在数-3,0,1,3中,其中最小的是(A)A.-3B.0C.1D.32.如图是由长方体和正四棱锥组成的几何体,该几何体的俯视图是(C)第1题图3.计算(-2a2b3)4的结果是(A)A.16a8b12B.8a8b12C.-8a8b12D.-16a8b124.如图,直线a∥b,△ABC为等腰直角三角形,∠BAC=90°,则∠1的度数是(C)第4题图A.22.5°B.36°C.45°D.90°【考查内容】平行线的性质.【解析】∵△ABC为等腰直角三角形,∠BAC=90°,∴∠B=45°,∵a∥b,∴∠1=∠B=45°.5.正比例函数y=(k-1)xk2-k-1的图象经过第二、四象限,那么k为(A)A.k=-1B.k=2C.k=-1或k=2D.不能确定【考查内容】正比例函数图象的性质.【解析】∵正比例函数y=(k-1)xk2-k-1的图象经过第二、四象限,∴k2-k-1=1,且k-1<0,解得,k=2(不合题意,舍去),k=-1.6.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,且BE=2AE,已知AD=33,tan∠BCE=33,那么CE等于(D)第6题图A.23B.23-2 C.52D.4 3 【考查内容】解直角三角形.【解析】∵tan∠BCE=33,∴∠BCE=30°,∴∠B=60°,又∵在Rt△ABD中,AD=33,∴BD=3,AB=6,∵BE=2AE,∴BE=4,AE=2,在Rt△BEC中,BE=4,∠BCE=30°,∴CE=4 3.7.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则4x+2<kx+b<0的解集为(B)第7题图A.x<-2 B.-2<x<-1C.x<-1 D.x>-1【考查内容】一次函数与一次不等式的关系.【解析】∵经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(-1,-2),直线y=kx+b与x轴的交点坐标为B(-2,0),又∵当x<-1时,4x+2<kx+b,当x>-2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为-2<x<-1.8.如图,AB∥CD,CE∥BF,A、E、F、D在同一直线上,BC与AD交于点O,且OE =OF ,则图中有全等三角形的对数为( B )第8题图A .2B .3C .4D .5【考查内容】全等三角形的判定.【解析】①∵CE ∥BF ,∴∠OEC =∠OFB ,又∵OE =OF ,∠COE =∠BOF ,∴△OCE ≌△OBF ; ②∵△OCE ≌△OBF ,∴OC =OB , ∵AB ∥CD ,∴∠ABO =∠DCO ,又∵∠COD =∠AOB ,∴△AOB ≌△DOC ; ③∵△AOB ≌△DOC ,∴AB =CD , ∵AB ∥CD ,CE ∥BF ,∴∠ABF =∠ECD , 又∵CE =BF ,∴△CDE ≌△BAF . 故图中有全等三角形3对.9.如图,圆O 中,AO =5,弦AB 长为8.C 为弦AB 所对优弧上的一点,求∠C 的正切值( D )第9题图A .45B .35C .34D .43【考查内容】圆周角定理.【解析】过点O 作OD ⊥AB 于点D , ∵OA =OB ,∴∠AOD =12∠AOB ,AD =12AB =12×8=4,∴OD =OA 2-AD 2=52-42=3, ∵∠C =12∠AOB ,∴∠C =∠AOD ,∴tan ∠C =tan ∠AOD =AD OD =43.10.二次函数y =a (x -3)2+4(a ≠0)的图象在1<x <2这一段位于x 轴的上方,在5<x <6这一段位于x 轴的下方,则a 的值为( B )A .1B .-1C .2D .-2【考查内容】二次函数的性质. 【解析】∵y =a (x -3)2+4(a ≠0), ∴抛物线的对称轴为x =3.又∵当1<x <2时,函数图象位于x 轴的上方, ∴当4<x <5时,函数图象位于x 轴的上方. 又∵当5<x <6时,函数图象位于x 轴的下方, ∴当x =5时,y =0.∴4a +4=0. ∴a =-1.二、填空题(共4小题,每小题3分,计12分) 11.不等式-2x +4<x -8的解集是 x >4 . 【考查内容】解一元一次不等式. 【解析】移项得:-2x -x <-8-4, 合并同类项得:-3x <-12, 系数化为1得:x >4.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A .一个多边形从一个顶点向其余各顶点连接,对角线有27条,则这个多边形的边数为__30__.【考查内容】多边形的对角线. 【解析】设多边形的边数为n . 根据题意得:n -3=27.解得:n =30.B .用科学计算器计算:(结果保留三位有效数字):847-5sin20°=__53.1__. 【考查内容】科学计算器的使用. 【解析】847-5sin20°≈53.1.13.如图,直线y =kx +1与反比例函数y =9x 在第一象限交于点A ,过点A 作x 轴,y轴的垂线,垂足为B ,C ,OBAC 是正方形,则一次函数与x 轴交点坐标是 (-32,0) .第13题图【考查内容】反比例函数与一次函数的交点问题. 【解析】∵四边形ABOC 为正方形, ∴AB =AC ,设A 点坐标为(a ,a ), 把A (a ,a )代入y =9x 得a 2=9,解得a 1=3,a 2=-3(舍去), ∴A 点坐标为(3,3),把A (3,3)代入y =kx +1得3k +1=3,解得k =23,∴直线的解析式为y =23x +1,把y =0代入得23x +1=0,解得x =-32.∴一次函数与x 轴交点坐标为(-32,0).14.如图,长方形ABCD 中,AB =6,BC =4,在长方形的内部以CD 边为斜边任意作Rt △CDE ,连接AE ,则线段AE 长的最小值是__2__.第14题图 第14题答图【考查内容】矩形的性质,最值问题.【解析】如答图,取CD 的中点F ,连接AF ,当EF 最长时则AE 最短,则DF =12×6=3.在长方形ABCD 中,AD =BC =4,由勾股定理得:AF =AD 2+DF 2=42+32=5, ∵F 是Rt △CDE 斜边CD 的中点, ∴EF =12CD =12×6=3,∴AE =AF -EF =5-3=2,即线段AE 长的最小值是2.三、解答题(共11小题,计78分,解答应写出过程) 15.(本题满分5分)计算:(12)-1+|1-2|-27tan30°.【考查内容】实数的运算. 【解析】(12)-1+|1-2|-27tan30°=2+2-1-33×33=1+2-3 =2-2.(5分)16.(本题满分5分)解方程:1x -2+3=1-x 2-x .【考查内容】解分式方程.【解析】去分母得:1+3x -6=x -1, 解得:x =2,经检验x =2是增根,故分式方程无解.(5分)17.(本题满分5分)在圆上作出所有的点C ,使△ABC 为等腰三角形.(尺规作图,不写作法,保留作图痕迹)第17题图【考查内容】尺规作图 【解析】如答图所示:(5分)第17题答图18.(本题满分5分)某市“创城办”为了解该市市民参加社会公益活动情况,随机抽查了部分市民一个月参加社会公益活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:第18题图请根据图中提供的信息,回答下列问题:(1)求a的值,并补全条形统计图;(2)请直接写出在这次抽样调查中,众数和中位数分别是多少?(3)如果该市市民约有200000人,请你估计参加“公益活动时间不少于7天”的市民有多少人.【考查内容】统计图的认识.【解析】(1)扇形统计图中a=1-40%-20%-25%-5%=10%,被调查的总人数=240÷40%=600(人),所以8天的人数=600×10%=60(人);补全条形统计图如答图所示:(2分)第18题答图(2)众数是5,中位数是6;(3分)(3)200000×(25%+10%+5%)=80000(人).所以估计参加“公益活动时间不少于7天”的市民有80000人.(5分) 19.(本题满分7分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.第19题图求证:AE=BD.【考查内容】全等三角形的判定与性质.【解析】∵△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,∴EC=CD,AC=CB,∠ACB-∠ACD=∠ECD-∠ACD.∴∠ACE=∠BCD. (3分)∴△ACE≌△BCD. (4分)∴AE=BD. (7分)20.(本题满分7分)如图所示,小明为测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m时,他的眼睛、标杆的顶端和树顶端在同一直线上.已知小明身高1.6m ,求树的高度.第20题图【考查内容】相似三角形的应用.【解析】过点A 作AN ∥BD 交CD 于N ,交EF 于M ,如答图,第20题答图∵人、标杆、树都垂直于地面,∴∠ABF =∠EFD =∠CDF =90°, (2分)∴AB ∥EF ∥CD ,∴∠EMA =∠CNA , ∵∠EAM =∠CAN ,∴△AEM ∽△ACN , (4分) ∴EM CN =AMAN,∵AB =1.6m ;EF =2m , BD =27m ,FD =24m ,∴2-1.6CN =27-2427,解得:CN =3.6m ,则树的高度为3.6+1.6=5.2m.(7分)21.(本题满分7分)某校组织部分学生分别到A 、B 两公园参加植树活动,已知到A 公园每人需往返车费2元.平均每人植树5棵,到B 公园每人需往返车费3元,平均每人植树3棵,且到A 公园的学生比到B 公园的学生多5人.设到A 公园的学生x 人,在公园共植树y 棵.(1)求y 与x 之间的函数关系;(2)若往返车费总和不超过300元,求y 的最大值? 【考查内容】一次函数的运用. 【解析】(1)由题意,得 y =5x +3(x -5), y =8x -15;(3分)(2)设往返车费的总和为w 元,由题意,得 w =2x +3(x -5)=5x -15.∵w ≤300,∴5x -15≤300,∴x ≤63.(4分)∵y =8x -15,k =8>0,∴y 随x 的增大而增大,∴当x =63时,y 最大=489, ∴y 的最大值为489.(7分)22.(本题满分7分)某电脑公司现有A ,B ,C 三种型号的电脑和D ,E 两种型号的打印机.某校要从其中选购一台电脑和一台打印机送给山区小学.(1)写出所有选购方案(利用树状图或列表法表示);(2)已知A 、D 是甲厂生产的产品,B 、C 、E 是乙厂生产的产品.如果(1)中各种选购方案被选中的可能性相同,那么选中全套甲厂生产的产品的概率是多少?【考查内容】列表法或树状图法求概率. 【解析】(1)画树状图,如答图:第22题答图有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(4分)(2)∵根据树状图可知所有情况数为6种,选中全套甲厂生产的产品A ,D 的情况为1种,∴P (选中A ,D )=16.(7分)23.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E .第23题图(1)求证:点E 是边BC 的中点; (2)求证:BC 2=BD ·BA .【考查内容】切线的性质,相似三角形的判定与性质. 【解析】(1)连接OD .∵DE 为切线, ∴∠EDC +∠ODC =90°;∵∠ACB =90°,∴∠ECD +∠OCD =90°. (2分)又∵OD =OC ,∴∠ODC =∠OCD , ∴∠EDC =∠ECD ,∴ED =EC ; ∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°, ∴∠B =∠BDE , ∴ED =BE .∴EB =EC ,即点E 为边BC 的中点;(4分) (2)∵AC 为直径,∴∠ADC =∠ACB =∠BDC =90°, (6分)又∵∠ABC =∠CBD , ∴△ABC ∽△CBD , ∴AB BC =BCBD,∴BC 2=BD ·BA . (8分)24.(本题满分10分)已知:关于x 的二次函数y =x 2+bx +c 经过点(-1,0)和(2,6). (1)求b 和c 的值.(2)若点A (n ,y 1),B (n +1,y 2),C (n +2,y 3)都在这个二次函数的图象上,问是否存在整数n ,使1y 1+1y 2+1y 3=310,若存在,请求出n ;若不存在,请说明理由.(3)若点P 是二次函数图象在y 轴左侧部分上的一个动点,将直线y =-2x 沿y 轴向下平移,分别交x 轴、y 轴于C 、D 两点,若以CD 为直角边的△PCD 与△OCD 相似,请求出所有符合条件点P 的坐标.【考查内容】二次函数综合探究.【解析】(1)把(-1,0)和(2,6)代入y =x 2+bx +c 中,得⎩⎪⎨⎪⎧ 1-b +c =0,4+2b +c =6,解得⎩⎪⎨⎪⎧b =1,c =0.(2分)(2)假设存在,由题意:y 1=n 2+n ,y 2=(n +1)2+(n +1),y 3=(n +2)2+(n +2), ∵1y 1+1y 2+1y 3=310. ∴1n (n +1)+1(n +1)(n +2)+1(n +2)(n +3)=310,∴1n -1n +1+1n +1-1n +2+1n +2-1n +3=310. ∴1n -1n +3=310.第24题答图整理得n 2+3n -10=0, 解得n =2或-5.经过检验n =2和-5是分式方程的解. ∴存在n =2或-5使1y 1+1y 2+1y 3=310成立.(5分)(3)如答图,当D 为直角顶点时,由图象可知不存在点P ,使得△PCD 为直角三角形,当C 为直角顶点,CD 为直角边时,作PE ⊥OC 于E .设直线y =-2x 向下平移m 个单位,则直线CD 解析式为y =-2x -m , ∴点D 坐标(0,-m ),点C 坐标(-m2,0),∴OD =m ,OC =m2,∴OD =2OC ,∵△PCD 与△COD 相似, ∴CD =2PC 或PC =2CD .(7分)①当CD =2PC 时, ∵∠PCD =90°,∴∠PCE +∠DCO =90°,∠DCO +∠CDO =90°, ∴∠PCE =∠CDO ,∵∠PEC =∠COD =90°, ∴△COD ∽△PEC . ∴CD PC =OD EC =CO PE =2,∴EC =m 2,PE =m4, ∴点P 坐标(-m ,-m4),代入y =x 2+x ,得-m 4=m 2-m ,解得m =34或m =0(舍去),∴点P 坐标为(-34,-316).(8分)②PC =2CD 时,由CD PC =OD EC =CO PE =12,∴EC =2m ,PE =m ,∴点P 坐标(-52m ,-m ),代入y =x 2+x ,得-m =254m 2-52m ,解得m =625或m =0(0舍去),∴点P 坐标为(-35,-625).综上点P 为(-34,-316)或P 为(-35,-625).(10分)25.(本题满分12分)(1)如图1,边长为4的等边△OAB 位于平面直角坐标系中,将△OAB 折叠,使点B 落在OA 的中点处,则折痕长为__2__;(2)如图2,矩形OABC 位于平面直角坐标系中,其中OA =8,AB =6,将矩形沿线段MN 折叠,点B 落在x 轴上,其中AN =13AB ,求折痕MN 的长;问题解决:(3)如图3,四边形OABC 位于平面直角坐标系中,其中OA =AB =6,CB =4,BC ∥OA ,AB ⊥OA 于点A ,点Q (4,3)为四边形内部一点,将四边形折叠,使点B 落在x 轴上,问是否存在过点Q 的折痕,若存在,求出折痕长,若不存在,请说明理由.图1 图2 图3第25题图【考查内容】四边形的综合.第25题答图1【解析】(1)如答图1中,B 的对称点B ′,折痕为MN ,MN 交BB ′于H . ∵△ABO 是等边三角形,OB ′=B ′A , ∴BB ′⊥OA ,又∵BB ′⊥MN , ∴MN ∥OA ,∵BH =HB ′, ∴BM =OM ,BN =NA ,∴MN 是△ABC 的中位线,∴MN =12OA =2;(3分)(2)如答图2中,B 的对称点B ′,折痕为MN ,MN 交BB ′于H . ∵AN =13AB =2,∴NB =NB ′=4,在Rt △ANB ′中,AB ′=42-22=23, ∴OB ′=8-23,∴点B ′(8-23,0),∵B (8,6),∴BB ′中点H (8-3,3),∵点N 坐标(8,2),设直线NH 的解析式为y =kx +b ,则有⎩⎨⎧8k +b =2,(8-3)k +b =3,解得⎩⎨⎧k =-33,b =2+833.∴直线NH 解析式为y =-33x +2+833, (6分)图2 图3第25题答图 ∴点M 坐标(0,2+833),∴MN =82+(833)2=1633,(7分)(3)存在.理由:如答图3中,延长BQ 交OA 于B ″,连接AQ ,过点Q 作MN ∥OA ,交OC 于M ,交AB 于N .∵Q (4,3),∴N (6,3), ∴BN =AN ,QB =QB ″,(8分)作BB ″的垂直平分线PF ,交OC 于P ,交AB 于F ,此时B 、B ″关于直线PF 对称,满足条件,在Rt △ABB ″中,∵∠BAB ″=90°,BQ =QB ″,∴AQ =QB , ∴此时B 、A (B ′)关于直线MN 对称,满足条件. ∵C (2,6),∴直线OC 解析式为y =3x , ∵NM ∥OA ,BN =NA ,∴CM =OM , ∴点M (1,3),∴MN =5, 由题知△QFN ∽△BB ″A , ∴QN BA =NFB ″A, 又∵QN =2,BA =6,B ″A =4, ∴NF =43,∴F A =3-43=53,∴F (6,53),Q (4,3),设直线PF 的解析式为y =kx +b ,代入F 、Q 点得⎩⎪⎨⎪⎧53=6k +b ,3=4k +b ,解得⎩⎨⎧k =-23,b =173,∴直线PF 的解析式为y =-23x +173,(10分)由⎩⎪⎨⎪⎧y =-23x +173,y =3x , 解得⎩⎨⎧x =1711,y =5111.∴点P (1711,5111),F (6,53),∴PF =(1711-6)2+(5111-53)2=491333, 综上所述,折痕的长为5或491333. (12分)。

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题(解析版)

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题(解析版)

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题第一部分(选择题,共30分)一、选择题(每小题3分,共10小题,计30分)1.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A. -1B. -C.D. –π【答案】B【解析】【分析】根据两个负数,绝对值大的反而小比较.【详解】解:∵−>−1>−>−π,∴负数中最大的是−.故选:B.【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.2.在下列各平面图中,是圆锥的表面展开图的是()A. B. C. D.【答案】C【解析】【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选:C.【点睛】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.3.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A. B. C. D. ±【答案】D【解析】【分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.4.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A. 50°B. 55°C. 60°D. 65°【答案】C【解析】【分析】1、阅读题目,回想折叠的性质以及矩形的性质;2、首先根据矩形的对边平行可得:AD∥BC,然后根据平行线的性质可得:∠EFB=∠FED=60°;3、由折叠的性质可得:∠DEF=∠FED′,然后根据平角的知识计算即可.【详解】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠EFB=∠FED=60°.由折叠的性质知,∠DEF=∠FED′=60°,∴∠AED′=180°-2∠FED=60°.故选C.【点睛】本题考查了轴对称的概念和性质,矩形的性质和应用,属于简单题,利用轴对称的性质证明角相等是解题关键.5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A. 5B. ﹣1C. 2D. ﹣5【答案】B【解析】试题分析:设方程的里一个根为b,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.6.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A. 6B. 5C. 4D. 3【答案】C【解析】【分析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=BC=×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴,在中,,故选:C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.7.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A. y=2x+2B. y=2x-2C. y=-2x+2D. y=-2x-2【答案】B【解析】【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,4),∴,解得,∴直线AB的解析式为y=2x+4.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+4,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.8.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE,交OD于点F.若AB=2,∠ABC=60°,则AE的长为()A. B. C. D.【答案】C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故选:C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.9.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A. 5B.C.D. 7【答案】A【解析】【分析】连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,,再证明Rt△ABE∽Rt△ADC,得到,即2R==.【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D点,AC=5,DC=3,∴∠ADC=90°,∴AD=,∴在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴,即2R==;∴⊙O的直径等于.故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.10.已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A. b2 -4c +1=0B. b2 -4c -1=0C. b2 -4c +4 =0D. b2 -4c -4=0【答案】D【解析】【分析】抛物线的顶点坐标为P (−,),设A 、B 两点的坐标为A (,0)、B (,0)则AB =,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式.【详解】解:∵,∴AB ==,∵若S △APB =1∴S △APB =×AB ×=1,∴−××, ∴,设=s ,则,故s =2,∴=2,∴.故选:D .【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.第二部分 (非选择题,共90分)二、填空题(每小题3分,共4小题,计12分)11.若实数m 、n 在数轴上的位置如图所示,则(m+n )(m-n )________ 0,(填“>”、“<”或“=”)【答案】> 【解析】 【分析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.【详解】解:根据题意得:m<0<n,且|m|>|n|,∴m+n<0,m−n<0,∴(m+n)(m−n)>0.故答案为:>.【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.12.一个正四边形的内切圆半径与外接圆半径之比为:_________________【答案】【解析】【分析】如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD 的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA =OH即可解答.【详解】解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,则OH为正方形ABCD的内切圆的半径,∵∠OAB=45°,∴OA =OH,∴即一个正四边形的内切圆半径与外接圆半径之比为,故答案为:.【点睛】本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.13.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF 的面积为,则k的值_______。

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题(原卷版)

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题(原卷版)

陕西省西安市西北工业大学附属中学2018届九年级三模数学试题第一部分(选择题,共30分)一、选择题(每小题3分,共10小题,计30分)1.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是()A. -1B. -C.D. –π2.在下列各平面图中,是圆锥的表面展开图的是()A. B. C. D.3.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A. B. C. D. ±4.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A. 50°B. 55°C. 60°D. 65°5.已知关于x方程x2+3x+a=0有一个根为﹣2,则另一个根为()A. 5B. ﹣1C. 2D. ﹣56.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A. 6B. 5C. 4D. 37.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( ) A. y=2x+2B. y=2x-2C. y=-2x+2D. y=-2x-28.如图,菱形ABCD 的对角线相交于点O ,过点D 作DE∥AC, 且DE=AC ,连接CE 、OE ,连接AE ,交OD 于点F .若AB=2,∠ABC=60°,则AE 的长为( )A.B.C.D.9.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,BD=4,则⊙O 的直径等于( )A. 5B.C.D. 710.已知二次函数y=x 2+ bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A. b 2 -4c +1=0B. b 2 -4c -1=0C. b 2 -4c +4 =0D. b 2 -4c -4=0第二部分 (非选择题,共90分)二、填空题(每小题3分,共4小题,计12分)11.若实数m 、n 在数轴上的位置如图所示,则(m+n )(m-n )________ 0,(填“>”、“<”或“=”)12.一个正四边形的内切圆半径与外接圆半径之比为:_________________13.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF 的面积为,则k的值_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语文大练习(二)A.麾.下(huī)恣.睢(zì)诘.难(jié)重蹈覆辙.(zhé)B.旁骛.(wù)闾.左(lǚ)聒.噪(guō)一抔.黄土(pěng)C.睿.智(ruì)陨.落(yǔn)相契.(qiè)廓然无累.(lèi)D.扶掖.(yè)滞.留(zhì)别墅.(yě)徇.蕲以东(xún)2.词语书写无误的一项()A.脑羞成怒方枘圆凿断章取义谀词 B.狼狈不堪强聒不舍无与伦比嗤笑C.歇斯底里红妆素裹怀古伤今陨落 D.涕泗横流自之知明面面相觑弥留3.下列句子中没有语病的一项是()A.言行不一致的人,是一种极不好的习惯。

B.生活的最重要部分不是去生活,就是去对生活的思考。

C.充满功利色彩的教育,只能培养出只有小聪明而无大智慧。

D.一个连教育都得不到尊重的民族是很难屹立于世界民族之林。

4.下列各句中,加点的成语使用恰当的一句是()A.许多农民巧妙地将服装厂剪裁后废弃的布料做成帘子,当作蔬菜大棚的“棉被”,这真是一念之差....,变废为宝。

B.王大伯十分喜爱小动物,只要见到流浪的小猫小狗,他都要想办法把它们喂饱,有的人对此感到不解,他却乐此不...疲.。

C.身着盛装的表演者光着脚,微笑着,一边跳着傣族舞,一边向人们泼水致意,在场群众纷纷拍手称快....。

D.厂长动情地说:“为了扭转目前的不利局面,我们将采用一种新的对策,希望大家共同努力,功败垂成....,在此一举!”5.在下面语段横线上依次填入关联词语,最准确的一项是()在一定条件下,科学知识之所以正确是因为经过了实践的检验。

______条件变化了,原有的科学知识会被人们用新的实践去检验,______会被修改和发展成新的科学知识。

但人们之所以要不断学习______因为原有知识统统“过期变质”,______是因为新条件下产生的新知识能使人们的知识、思维和智慧更上了层楼。

A.如果从而并非而B.如果从而不仅而且C.虽然但是不仅而且D.虽然但是并非而6.下面对苏轼的《江城子·密州出猎》的不恰当的一项是()A.“左牵黄,右擎苍”一句,运用借代的修辞手法,塑造了词人出猎时左手牵黄犬,右手托着苍鹰豪迈潇洒的形象。

B.“锦帽貂裘,千骑卷平冈”一句,描写猎队武士的装束打扮,并以千骑飞驰的勇武气势来烘托亲率猎队的词人自己。

C.“持节云中,何时遣冯唐”一句,运用典故表达了诗人以冯唐自况,企盼有朝一日得到信任和重用,戍边杀敌,报效朝廷。

D.“西北望,射天狼”一句用代表“贪残侵掠”的天狼星暗喻数犯边境的辽河西夏,表达词人渴望抗敌戍边的雄心。

7.下列句子中,标点符号使用正确的一项是()A.人生在世,是追求纸醉金迷的物质享受?还是追求宁静淡泊的精神境界?B.歌曲“最炫民族风”具有浓郁的生活气息和民族特色,深受青少年喜爱。

C.她看上去十七、八岁,一副瘦骨伶仃的样子。

D.我生平最受用的有两句话:一是“责任心”;二是“趣味”。

8.依次填入下面一段文字横线处的语句,衔接最恰当的一组是()今天的日子很短,正在自己的脚下悄悄地流逝。

______,______。

______,______,______,______,经营好每一个今天就等天和明天。

①今天的事应该今天完成,不能推到明天②脚踏实地,全身心地经营好今天,才会有一个个实在的昨天③因此,面对今天,我们不要太多地怀念过去④接力棒交得好,才能走向辉煌的明天⑤如果总是站在今天望明天,结果明天也会悄悄地溜走⑥今天是昨天和明天的接力处A.⑤①⑥②④③B.⑤⑥①④③②C.⑥④③②①⑤D.⑥②③①④⑤9、主谓短语充当谓语的一项是:()A.他身材高大。

B.他的身材高大。

C.他有高大的身材。

D.身材高大的就是他。

10.从文学常识的角度看,作家、作品、作者朝代有误的一项是()A.《水浒传》施耐庵元末明初B.《西游记》吴承恩明代C.《三国演义》罗贯中元末明初D.《红楼梦》曹雪芹明代二、名著阅读(3分)11、《水浒传》中一百零八将个个都有一段精彩的故事,人人都有一个特征鲜明的外号。

请用一句话写出《水浒传》中你最熟悉的故事:__________________。

请写出的《水浒传》中你喜欢的一位好汉的外号:______并说出此外号表现出的人物特征:__________________。

三、解释加点词(共16分,每空1分)1.发闾左適.戍渔阳()2.为天下唱.()3.往往..语()4.固以.怪之矣()5.引喻失义.()6.陟罚臧否..()7.庶.竭驽钝()8.斟酌损益..()..()9.遂用猖獗10.抑.亦人谋也()11.思贤.如渴()12.故不错.意也()13.休.祲降于天()14.且秦灭.韩亡魏()15.安陵君因.使唐雎使于秦()四、默写(共12分,每空1分)1.亲小人,远贤臣,____________________。

2.当奖帅三军,北定中原,____________________,____________________。

3.____________________,童稚携壶浆。

4.____________________,____________________,念此私自愧,尽日不能忘。

5.____________________,赢得生前身后名。

6.____________________,五十弦翻塞外声。

7.____________________弓如霹雳弦惊。

8.____________________,载不动许多愁。

9.____________________,帘卷西风,人比黄花瘦。

10.江山如此多娇,____________________。

五、阅读理解(共42分)(一)激发“到此一游”的文明耻感(18分)①埃及卢克索神庙有着3000多年历史的浮雕上,刻划着汉字“丁××到此一游”。

近日,有人在微博上贴出这样一幅刺目的照片,发布者“无地自容”的心情,也成为很多网友的一致感受。

②“没到过卢克索,就不算到过埃及。

”神庙与汉字,两大文明竟以如此方式相遇,实在让人尴尬。

不管是真心喜爱、跟风模仿还是年幼无知、出于炫耀,这种行为不仅污损了人类文明的瑰宝,也为中国游客添了一笔不良记录。

③相对大多数中国游客的有序有礼,少数人的不良表现更容易被放在公共外交的聚光灯下。

不讲卫生、不遵守公共秩序、踩踏黄线、在飞机上争夺行李架空位……因为这些行为,中国游客甚至在国外一家市场调研机构的调查中,名列“最差游客榜”第二名。

当中国出境旅游人数从2000年的1000万人次快速增长至2012年的8300万人次,“每个人都是一部中国读本”,这句提醒更有特殊含义。

④“到此一游”的风波,理应成为反思文明素养的契机。

面对刻字,现场中国游客莫不感觉羞愧,甚至连导游也赶紧走开。

微博热议、媒体讨论中,惭愧、耻辱的情绪,谴责、反省的主调,也让人看到整个社会对文明素质的强烈吁求、一个国家文明意识的自我审思。

当事孩子的父母也主动联系媒体,流下忏悔泪水,坦言“孩子犯错误,主要责任在大人,是我们监护不到位,平时教育做得不好”,公开道歉。

未成年人犯错在所难免,应予以必要宽容并助其改正,但整个社会则应以此为镜、自我检视。

⑤的确,“到此一游”远涉重洋,也是国内不文明言行的不自觉“输出”。

从被刻字弄得遍体鳞伤的长城,到赫然出现在故宫大水缸上的涂划,都是孩子耳濡目染的“活教材”。

习惯了乱闯红灯,出了国可能也会“红绿色盲”;习惯了大声喧哗,在国外也难以主动调低音量。

从这个角度说,文明习惯的养成不分海内外,文明素养的提升,更需要每个人的日常践行。

⑥有人说,最好的“到此一游”,是把旅途中所有的美好都刻在心上。

而提升文明素养,也需在心上刻下这让人蒙羞的“到此一游”。

在拥堵的公路上随意并道时,在地铁的长队里加塞插队时,在逃票成功洋洋得意时,在网络空间掐架骂娘时,______________,__________,这几个字就该闪动警示之光,提醒你触碰到了文明的红线。

谨记“到此一游”激发的文明耻感,以此自戒自省,以此校言校行,整个社会的文明程度才能迈进一步。

⑦今日中国,吃饭穿衣已经不是问题,甚至海外奢侈品商店促销都会挂上汉语海报。

然而,很多人也感觉,“两手满当当,心中空荡荡”。

的确,现代化的过程中,怎能少了人的行为举止、思想意识的现代化?国务院会议倡导“健康文明旅游方式”,政府机构出台“文明行为指南”,这些都让人看到,在社会管理者那里,文明素养、人的素质,已越来越成为“发展的必修课”。

⑧同样是神庙,雅典阿波罗神庙的一块石板上,刻着这样的铭文:认识你自己。

反思埃及神庙刻字事件,以此为契机省察自我文明素养,才能在国际交往中赢得尊敬,更让我们在文明复兴之路上“递进一层”。

(选自2013.5.27《人民日报》)11.作者针对“到此一游”这类不文明现象,提出的核心观点是什么?(4分)_____________________________________________________________________________ 12.第③段中作者说“‘每个人都是一部中国读本’,这句提醒更有特殊含义。

”“特殊含义”应该怎么理解?(6分)_____________________________________________________________________________ 13.第⑤段画线句子运用了什么论证方法?论证了什么观点?(4分)_____________________________________________________________________________ 14.阅读第六段根据上下文在横线处再补写两个事例,反思我们身边的不文明行为,并以此为镜,自戒自省。

(2分)_____________________________________________________________________________ (二)文言文阅读(20分)永之氓咸善游。

一日,水暴甚,有五、六氓,乘小船绝湘水。

中济,船破,皆游。

其一氓尽力而不能寻常。

其侣曰:“汝善游最也,今何后为?”曰:“吾腰千钱,重,是以后。

”曰:“何不去之?”不应,摇其首。

有顷益怠。

已济者立岸上,呼且号曰:“汝愚之甚,蔽之甚,身且死,何以货为?”又摇其首。

遂溺死。

吾哀之。

且若是,得不有大货之溺大氓者乎?1.解释加点词的含义。

(8分)(1)尽力而不能寻常..()(2)乘小船绝.湘水()(3)吾腰.千钱()(4)身且.死()2.下例各句中的“而”的用法不同于其它三项的是(2分)()A.而安陵以五十之地存者B.受地于先王而守之C.其一氓尽力而不能寻常D.人不知而不愠3.将下列句子翻译成现代汉语。

相关文档
最新文档