2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)和答案
2020年西安市西工大附中高考数学模拟试卷(理科)(3月份)(含答案解析)

2020年西安市西工大附中高考数学模拟试卷(理科)(3月份)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素个数为()A. 2B. 3C. 4D. 62.若复数z=a−2i在复平面内对应的点在直线x+y=0上,则|z|=()2A. 2B. √2C. 1D. 2√23.自古以来“民以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确的是()A. 2010~2016年全国餐饮收入逐年增加B. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个C. 2010~2016年全国餐饮收入同比增量最多的是2015年D. 2016年全国餐饮收入比2010年翻了一番以上4.执行如图所示的程序框图,则输出的结果是()A. 14B. 15C. 16D. 175.设a=0.512,b=0.914,c=log0.3,则a,b,c的大小关系是().5A. a >c >bB. c >a >bC. a >b >cD. b >a >c6. 从正方形四个顶点中任取2个点,则这2个点间的距离大于该正方形边长的概率为( ) A. 16 B. 13 C. 12 D. 237. 我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球.嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆.若第一次变轨前卫星的近地点到地心的距离为m ,远地点到地心的距离为n ,第二次变轨后两距离分别为2m 、2n(近地点是指卫星距离地面最近的点,远地点是距离地面最远的点),则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率( )A. 不变B. 变小C. 变大D. 无法确定8. 如图,在直三棱柱ABC −A 1B 1C 1中,∠ACB =90°,CA =CB =CC 1=1,则直线A 1B 与平面BB 1C 1C 所成角的正弦值为( )A. √22B. √155C. √33D. √639. 已知函数f(x)=sinωx (ω>0)的图象关于点(2π3,0)对称,且f(x)在[0,π4]上为增函数,则ω=( ) A. 32 B. 3 C. 92 D. 610. 已知函数f(x)=e x ,g(x)=a √x(a ≠0),若函数y =f(x)的图象上存在点P(x 0,y 0),使得y =f(x)在点P(x 0,y 0)处的切线与y =g(x)的图象也相切,则a 的取值范围( )A. (0,1]B. (0,√2e]C. (1,√2e]D. (1√2e ,2e) 11. 已知双曲线C :x 2a 2−y 2b 2=1(a,b >0)的左焦点为F ,过点F 作圆O :x 2+y 2=14b 2的切线,切点为M ,且交双曲线C 右支于点N.若FN ⃗⃗⃗⃗⃗⃗ =2FM ⃗⃗⃗⃗⃗⃗ ,则双曲线C 的渐近线方程为( )A. 3x ±y =0B. x ±3y =0C. 2x ±y =0D. x ±2y =012. 已知函数g (x )(x ∈R )是偶函数,且g(2+x)=g(2−x),当x ∈[0,2]时,g(x)=1−x ,则方程g(x)=11−|x |在区间[−10,10]上的解的个数是( ).A. 8B. 9C. 10D. 11二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,m),a⃗+b⃗ =(1,2),若a⃗//(a⃗+3b⃗ ),则实数m=________.14.设(1−2x)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,则代数式a1+2a2+3a3+4a4+5a5+6a6+7a7的值为________.15.数列{a n}中,若a n+a n+1=7n+5,n∈N∗,则a1+a100=______ .16.如图,在正方体ABCD−A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN//平面B1BDD1.三、解答题(本大题共7小题,共82.0分)17.△ABC中,AB=3,AC=5,D是边BC上的点,AB⊥AD,sinC⋅tan∠ADC=−33.70(1)求cos B;(2)求△ABC的面积.18.如图,在三棱柱ABC−A1B1C1中,AC⊥平面BCC1B1,AC=1,BC=√3,BB1=2,∠B1BC=30°.(1)证明:B1C⊥平面ABC.(2)求二面角B1−A1C−C1的余弦值.19.设顶点在原点,焦点在x轴上的抛物线过点P(2,4),过P作抛物线的动弦PA,PB,并设它们的斜率分别为k PA,k PB.(1)求抛物线的方程;(2)若k PA+k PB=0,求证直线AB的斜率为定值,并求出其值;(3)若k PA⋅k PB=1,求证直线AB恒过定点,并求出其坐标.20.《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布N(μ,σ2),并把质量差在(μ−σ,μ+σ)内的产品为优等品,质量差在(μ+σ,μ+2σ)内的产品为一等品,其余范围内的产品作为废品处理.优等品与一等品统称为正品.现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:(1)根据频率分布直方图,求样本平均数x;(同一组中的数据用该组区间的中点值代表)(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数x作为μ的近似值,用样本标准差s作为σ的估计值,求该厂生产的产品为正品的概率;参考数据:若随机变量ξ服从正态分布N(μ,σ2),则:P(μ−σ<ξ≤μ+σ)≈0.6827,P(μ−2σ<ξ≤μ+2σ)≈0.9545,P(μ−3σ<ξ≤μ+3σ)≈0.9973⋅(3)假如企业包装时要求把3件优等品球和5件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件数为X,求随机变量X的分布列及期望值.21.已知函数f(x)=(x−1)lnx+ax2+(1−a)x−1.(1)当a=−1时,判断函数的单调性;(2)讨论f(x)零点的个数.22. 将参数方程{x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程.23. 已知函数f(x)=|2x −a|+|2x +3|,g(x)=|3x −2|.(1)解不等式g(x)<|2x +1|;(2)若对任意的x 1∈R ,任意的x 2∈[0,1],使得f(x 1)≥g(x 2)成立,求实数a 的取值范围.【答案与解析】1.答案:C解析:本题考查交集中元素个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题. 利用交集定义求出A ∩B ={(1,7),(2,6),(3,5),(4,4)}.由此能求出A ∩B 中元素的个数. 解:∵集合A ={(x,y)|x ,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},∴A ∩B ={(x,y)|{y ≥x x +y =8,x,y ∈N ∗}={(1,7),(2,6),(3,5),(4,4)}. ∴A ∩B 中元素的个数为4.故选:C .2.答案:B解析:利用复数代数形式的乘除运算化简,再由z 对应的点在直线x +y =0上列式求得a ,则答案可求. 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题. 解:因为复数z =a−2i 2=a 2−i ,所以复数z =a−2i 2在复平面内对应的点的坐标为(a 2,−1),由复数z =a−2i 2在复平面内对应的点在直线x +y =0上,可得a 2−1=0⇒a =2,z =1−i ,|z|=√12+(−1)2=√2,故选B .3.答案:B解析:本题考查条形图的性质的基础知识,是基础题.2010~2016年全国餐饮收入同比增量超过3000亿元的年份有2015年和2016年,共两年.解:由条形数得:在A中,2010~2016年全国餐饮收入逐年增加,故A正确;在B中,2010~2016年全国餐饮收入同比增量超过3000亿元的年份有2015年和2016年,共2个,故B错误;在C中,2010~2016年全国餐饮收入同比增量最多的是2015年,故C正确;在D中,2016年全国餐饮收入比2010年翻了一番以上,故D正确.故选B.4.答案:C解析:本题考查程序框图,理解程序的功能是解题的关键.根据程序框图,,当n=14时,,所以到n=15得到S<−3,因此将输出n=15+1=16.故选C.5.答案:D解析:本题考查了指数函数性质与对数运算,比较大小,属于基础题.解:a=0.512=0.2514,b=0.914>0.2514>0,c=log50.3<0,所以b>a>c.故选D.6.答案:B解析:解:从正方形ABCD四个顶点中任取2个点,有AB,BC,CD,DA,AC,BD共有6种结果,若这2个点间的距离大于该正方形边长,则为AC,BD,2个结果,则对应的概率P=26=13,利用列举法分别列举出对应事件的个数,结合古典概型的概率公式进行求解即可.本题主要考查概率的计算,利用列举法是解决本题的关键.7.答案:A解析:本题考查椭圆离心率的计算,考查学生的计算能力,比较基础.利用离心率公式,分别求出离心率,即可得出结论.解:由题意,第一次变轨前有:a−c=m,a+c=n,则2a=m+n,2c=n−m,∴e=ca =n−mn+m,第二次变轨后有:a′−c′=2m,a′+c′=2n,则2a′=2(m+n),2c′=2(n−m),∴e′=c′a′=n−mn+m,∴e=e′.故选:A.8.答案:C解析:根据几何性质得出直线A1B与平面BB1C1C所成角为∠A1BC1,转化为直角三角形△A1C1B求解,利用边长的关系求解.本题综合考查了直棱柱的几何性质,运用平面问题求解空间角,注意空间思维能力,运算能力的考查,属于中档题.解:∵直三棱柱ABC−A1B1C1中,∠ACB=90°∴A1C1⊥CC1,A1C1⊥B1C1,∵CC1∩B1C1=C1,∴A1C1⊥面BB1C1C,∴直线A1B与平面BB1C1C所成角为∠A1BC1,∵CA=CB=CC1=1,AB=√2∴Rt△A1C1B中A1C1=1,A1B=√3,∴sin∠A1BC1=3=√33,9.答案:A解析:本题主要考查三角函数的图象与性质,是中档题.f(x)=sinωx的图象关于(2π3,0)对称,可得ω=32k(k∈Z),f(x)=sinωx在区间[0,π4]上是增函数,可得πω4≤π2且ω>0,由此可解.解:因为函数f(x)=sinωx的图象关于(2π3,0)对称,所以2ω3π=kπ(k∈Z),即ω=32k(k∈Z)①,又函数f(x)=sinωx在区间[0,π4]上是增函数,所以πω4≤π2且ω>0,所以0<ω≤2②,由①②得ω=32.故选A.10.答案:B解析:本题考查利用导数研究曲线上某点切线方程,求参数的范围问题,属于综合题.解:由题意f(x)=e x,在点P(x0,y0)处的切线,y=e x0x+e x0(1−x0),∵g(x)=a√x(a≠0),∴g′(x)=2x ,令2x=e x0,则知a>0,解得x=a24e2x0,。
陕西省西北工业大学附属中学2020届高三数学考前模拟练习试题 理(含解析)

陕西省西北工业大学附属中学2020届高三数学考前模拟练习试题理(含解析)第Ⅰ卷选择题(共60分)一.选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若(,是虚数单位),则等于()A. 3B. 2C. 0D.【答案】A【解析】,因,故,所以,选A.2.命题:“,”为真命题的一个充分不必要条件是()A. B. C. D.【答案】B【解析】由题意得 ,因为 ,因此一个充分不必要条件是,选B.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.3.已知双曲线的渐近线方程为,则双曲线的离心率为()A. B. C. D. 2【答案】B【解析】【分析】由双曲线的渐近线方程得出的值,再求双曲线的离心率.【详解】已知双曲线的渐近线方程为,且,所以,得.,所以双曲线的离心率为.故选:B【点睛】本题考查了双曲线的标准方程与简单几何性质的应用问题,属于基础题.4.下列说法错误的是()A. 回归直线一定经过样本点中心B. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近1C. 对分类变量与,若越大,则“与有关的把握程度越小”D. 在回归方程中,每当随机变量每增加1个单位时,预报变量就平均增加0.2个单位【答案】C【解析】根据相关定义分析知A、B、D正确;C中对分类变量与的随机变量的观测值来说,越大,“与有关系”的招把握程度越大,故C不正确,故选C.5.执行如图所示的程序框图,则输出的的值为()A. B. 0 C. D.【答案】B【解析】【分析】模拟程序的运行,可得程序框图的功能是计算并输出的值,可得答案.【详解】由程序语句可知:该程序的功能是利用循环结构计算并输出的值,由于.故选:B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知过球面上三点,,的截面到球心距离等于球半径的一半,且,,则球面面积为()A. B. C. D.【答案】C 【解析】 【分析】设出球的半径,小圆半径,通过已知条件求出两个半径,再求球的表面积. 【详解】如图,设球的半径为R ,O ′是△ABC 的外心,外接圆半径为r , 则OO ′⊥面ABC .在Rt△ACD 中,cos A ,则sin A .在△ABC 中,由正弦定理得2r ,r,△ABC 外接圆的半径,.故选:C .【点睛】本题考查立体几何中的球的截面问题和球的表面积问题,考查球面距离弦长问题,正弦定理的应用,考查学生分析问题解决问题能力,空间想象能力,属于难题.7.从1,2,3,4,5,6,7中取出两个不同数,记事件为“两个数之和为偶数”,事件为“两个数均为偶数”,则( )A. B.C.D.【答案】A 【解析】 【分析】用列举法求出事件A ,事件B 所包含的基本事件的个数,求P (A ),P (AB ),根据条件概率公式,即可得到结论.【详解】事件A 为“两个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(1,7),(3,5)、(3,7),(5,7),(2,4),(2,6),(4,6),∴P(A)=,事件B为“两个数均为偶数”所包含的基本事件有(2,4),(2,6),(4,6),∴P(AB)=,∴P(B|A)=.故选:A.【点睛】本题考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.属于基础题.8.将多项式分解因式得,为常数.若,则()A. B. C. 1 D. 2【答案】D【解析】【分析】由可得=5m-2=-7,m=-1,.【详解】因为的通项公式为,=x+(-2)=(5m-2),=5m-2,又,5m-2=-7,m=-1,=2,故选D.【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.9.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A. B. C. D.【答案】D【解析】试题分析:设正方体的棱长为,由三视图判断,正方体被切掉的部分为三棱锥,所以正方体切掉部分的体积为,所以剩余部分体积为,所以截去部分体积与剩余部分体积的比为,故选D.考点:几何体的三视图及体积的计算.10.将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,所得函数图象关于对称,则()A. B. C. D.【答案】B【解析】【分析】函数图象经过放缩变换与平移变换后可得,由可得结果.【详解】函数图象上各点的横坐标伸长到原来的2倍后得到,再向左平移后得到,因为的图象关于于对称,,解得,当时,,故选B.【点睛】本题考查了三角函数的图象与性质,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11.如图所示,为的外心,,,为钝角,为边的中点,则的值为()A. B. 12 C. 6 D. 5【答案】D【解析】分析】取的中点,且为的外心,可知,所求,由数量积的定义可得,代值即可.【详解】如图所示,取的中点,且为的外心,可知,∵是边的中点,∴ .,由数量积的定义可得,而,故;同理可得,故.故选:D.【点睛】本题考查向量数量积的运算,数形结合并熟练应用数量积的定义是解决问题的关键,属于中档题.12.已知函数,若当时,恒成立,则实数的取值范围为()A. B. C. D.【答案】B【解析】若当时,恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣≥﹣,当且仅当t=2时等号成立,∴m≤﹣.故选:B.第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每小题5分,共20分).13.若直线被圆截得的弦最短,则______;【答案】【解析】直线y=kx+1恒过定点A(0,1),要使截得的弦最短,需圆心(1,0)和A点的连线与直线y =kx+1垂直,所以k·=-1,即k=1.14.已知数列为等差数列,且,,则______;【答案】2【解析】【分析】由为等差数列,且,利用等差数列的性质得到的值,然后求定积分即可.【详解】因为为等差数列,由等差数列的性质,得,即. 所以,所以,所以.故答案为:2.【点睛】本题考查了等差数列的性质、定积分等知识,属于基础题.15.若实数,满足且的最小值为4,则实数的值为______;【答案】【解析】试题分析:画出可行域(如图阴影部分所示)和直线:,观察图形,知直线过直线和的交点时,取得最小值,即,解得,所以实数的值为.考点:线性规划问题.【易错点晴】线性规划问题是数学考试中常见题。
2020届陕西省西安市西北工业大学附中高三下学期3月月考数学(理)试题

西工大附中2020级高三月考数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22(,)|12x A x y y ⎧⎫=+=⎨⎬⎩⎭,{}(,)|3x B x y y ==,则A B I 中的元素的个数是( ) A. 1B. 2C. 3D. 4 2.复数2312i z i +=+-在复平面内对应的点到原点的距离是( )A.B.C.D. 3.虚拟现实(VR )技术被认为是经济发展的新增长点,某地区引进VR 技术后,VR 市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区VR 市场收入情况如图所示,则下列说法错误的是( )A. 该地区2019年的VR 市场总收入是2017年的4倍B. 该地区2019年的VR 硬件收入比2017年和2018年的硬件收入总和还要多C. 该地区2019年的VR 软件收入是2018年的软件收入的3倍D. 该地区2019年的VR 软件收入是2017年的软件收入的6倍4.执行如图所示的程序框图,若输出的S 的值为0,则中可填入( )A. 2m m =+B. 1=+m mC. 1m m =-D. 2m m =-5.设124a -=,141log 5b =,4log 3c =,则a ,b ,c 的大小关系是( )A. a b c <<B. a c b <<C. c a b <<D. c b a <<6.如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别且只能标记数字1,2,3,4,相邻区域标记的数字不同,其中,区域A 和区域B 标记的数字丢失.若在图上随机取一点,则该点恰好取自标记为1的区域的概率所有可能值中,最大的是( )A. 115B. 110C. 13D. 1307.1970年4月24日,我国发射了自己第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论不正确的是( )A. 卫星向径的最小值为a c -B. 卫星向径的最大值为a c +C. 卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D. 卫星运行速度在近地点时最小,在远地点时最大8.已知在斜三棱柱111ABC A B C -中,点E ,F 分别在侧棱1AA ,1BB 上(与顶点不重合),11AE BF EA FB =,14AA =,ABC V 的面积为5,截面1C EF 与截面CEF 将三棱柱111ABC A B C -分成三部分.若中间部分的体积为4,则1AA 与底面所成角的正弦值为( ) 的A. 12B. 35C. 45D. 29.已知()sin()(0,0)f x x ωϕωϕπ=+><≤是R 上的奇函数,若()f x 的图象关于直线4x π=对称,且()f x 在区间,2211ππ⎡⎤-⎢⎥⎣⎦内是单调函数,则6f π⎛⎫= ⎪⎝⎭( )A. 或0B. 12-C. 12D. 10.已知直线l 与曲线x y e =相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为坐标原点.若OAB V 的面积为3e ,则点P 的个数是( ) A. 1 B. 2 C. 3 D. 411.知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在C 的右支上,1MF 与y 轴交于点A ,2MAF V 的内切圆与边2AF 切于点B .若124||FF AB =,则C 的渐近线方程为( )A. 0y ±=B. 0x ±=C. 20x y ±=D. 20x y ±= 12.已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,偶函数()f x 满足(2)()f x f x +=,当[0,1]x ∈时,()f x x =,则( )A. sgn(())0f x >B. 404112f ⎛⎫= ⎪⎝⎭C. sgn((2))0()f k k Z =∈D. sgn(())|sgn |()f k k k Z =∈二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(3,2)a =-r ,(1,1)b =-r ,若()a b a μ+⊥r r r ,则实数μ的值为________;若()//(2)a b a b μ++r r r r ,则实数μ的值为________.14.若对12233(1)1n n n n n n n x C x C x C x C x +=+++++…两边求导,可得11232(1)23n n n n n x C C x C x-+=++1n n n nC x -++…,通过类比推理,有723456701234567(54)x a a x a x a x a x a x a x a x -=+++++++,可得1234567234567a a a a a a a ++++++值为________.15.已知数列{}n a 中,111a =,121n n a a n n+=++,若对任意的[1,4]m ∈,存在*N n ∈,使得2n a m t t >+成立,则实数t 的取值范围是________. 16.如图,正方体1111ABCD A B C D -的棱长是a ,S 是11A B 的中点,P 是11A D 的中点,点Q 在正方形11DCC D 及其内部运动,若//PQ 平面1SBC ,则点Q 的轨迹的长度是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.如图所示,在ABC V 中,点D 在边BC 上,且90DAC ︒∠=,cos 3DAB ∠=,AB =.(1)若sin 3C =,求BC 的值; (2)若BC 边上的中线2AE =,求AC 的值.18.如图,在多面体ABCDEF 中,//AB CD ,AD CD ⊥,22CD AB AD ==,四边形ADEF 是矩形,平面BDE ⊥平面ABCD ,AF AD λ=.(1)证明:DE ⊥平面ABCD ;(2)若二面角B CF D --,求λ的值. 19.如图,已知抛物线2:2(0)C y px p =>的焦点为F ,圆22:(3)(2)16E x y -+-=与C 交于M ,N 两点,且M ,E ,F ,N 四点共线.(1)求抛物线C 的方程;(2)设动点P 在直线1x =-上,存在一个定点(,0)(0)T t t ≠,动直线l 经过点T 与C 交于A ,B 两点,直线PA ,PB ,PT 的斜率分别记为1k ,2k ,3k ,且2132k k k +-为定值,求该定值和定点T 的坐标. 20.随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.(1)求这300名员工日行步数x (单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);(2)由直方图可以认为该企业员工的日行步数ξ(单位:千步)服从正态分布()2,N μσ,其中μ为样本平均数,标准差σ的近似值为2,求该企业被抽取的300名员工中日行步数(14,18]ξ∈的人数; (3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X (单位:元)的分布列和数学期望. 附:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+≈,(22)P μσξμσ-<≤+0.9545≈,(33)0.9973P μσξμσ-<≤+≈.21.已知函数()()21ln f x a x a x =+∈R . (1)讨论()f x 的单调性;(2)若1x ,()212x x x <是()f x 的两个零点,求证:212ln 10e a x x a ⎛⎫-++< ⎪⎝⎭. (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,曲线1C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),直线2C 的参数方程为2x at y t=-+⎧⎨=⎩(a 为常数且0a ≠,t 为参数). (1)求1C 和2C 直角坐标方程;(2)若1C 和2C 相交于A 、B 两点,以线段AB 为一条边作1C 的内接矩形ABCD ,当矩形ABCD 的面积取最大值时,求a 的值.选修4-5:不等式选讲23.已知函数()|||22|()f x x a x a R =+--∈.(1)证明:()||1f x a ≤+;(2)若2a =,且对任意x ∈R 都有(3)()k x f x +≥成立,求实数k取值范围.的。
2020届陕西省西工大附中高一数学下学期3月线上试题

高一下学期第一次网课测试(3月)数学试题一.选择题:(3×12=36分)1.已知△ABC 中,c 2=a 2+b 2−√3ab ,那么角C 的大小是( ) A .π6B .π3C .2π3D .5π62.已知点P (﹣3,5),Q (2,1),向量m →=(2λ﹣1,λ+1),若PQ →∥m →,则实数λ等于( ) A .113B .−113C .13D .−133.已知△ABC 中,a =1,b =√3,A =30°,则B 等于( ) A .30°B .30°或150°C .60°D .60°或120°4.已知平面向量a →=(−2,x),b →=(1,√3),且(a →−b →)⊥b →,则实数x 的值为( ) A .−2√3B .2√3C .4√3D .6√35.已知两座灯塔A 和B 与海洋观察站C 的距离都等于akm ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为( )A .√3a kmB .a kmC .√2a kmD .2a km6.在△ABC ,已知a cos A =b cos B ,则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.在△ABC 中,M 为边BC 上的任意一点,点N 在线段AM 上,且满足AN →=13NM →,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的值为( ) A .14B .13C .1D .48.在平行四边形ABCD 中,点M ,N 分别在边BC ,CD 上,且满足BC =3MC ,DC =4NC ,若AB =4,AD=3,则AN →⋅MN →=( ) A .−√7B .0C .√7D .79.平面内△ABC 及一点O 满足AO →⋅AB →|AB →|=AO →⋅AC →|AC →|,CO →⋅CA →|CA →|=CO →⋅CB →|CB →|,则点O 是△ABC 的( )A .重心B .垂心C .内心D .外心10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知∠B =30°,△ABC 的面积为32,且sin A +sin C =2sin B ,则b 的值为( ) A .4+2√3B .4﹣2√3C .√3−1D .√3+111.如图,在等腰直角三角形ABC 中,AB =AC =√2,D ,E 是线段BC 上的点,且DE =13BC ,则AD →•AE →的取值范围是( )A .[89,43]B .[43,83]C .[89,83]D .[43,+∞)12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,b =2√2且△ABC 面积为S =√312(b 2−a 2−c 2),则△ABC 面积S 的最大值为( ) A .2−√3B .4−2√3C .8−4√3D .16−8√3二.填空题(36=18分)13.在△ABC 中,A =60°,AB =2,AC =3,则△ABC 的面积等于 .14.已知点A (﹣1,1)、B (0,3)、C (3,4),则向量AB →在AC →方向上的投影为 .15.已知向量a →=(4,2),b →=(λ,1),若a →+2b →与a →−b →的夹角是锐角,则实数λ的取值范围为 . 16.若满足条件AB =√3,C =π3的△ABC 有两个,则边长BC 的取值范围是 . 17.已知△ABC 是锐角三角形,若A =2B ,则ab 的取值范围是 .18.如图,等腰三角形ABC ,AB =AC =2,∠BAC =120°.E ,F 分别为边AB ,AC 上的动点,且满足AE →=m AB →,AF →=n AC →,其中m ,n ∈(0,1),m +n =1,M ,N 分别是EF ,BC 的中点,则|MN |的最小值为 .三.解答题(共46分)19.(8分)设e 1→,e 2→是两个不共线向量,知AB →=2e 1→−8e 2→,CB →=e 1→+3e 2→,CD →=2e 1→−e 2→. (1)证明:A 、B 、D 三点共线(2)若BF →=3e 1→−k e 2→,且B 、D 、F 三点共线,求k 的值.20.(8分)已知角A 、B 、C 是△ABC 的内角,a ,b ,c 分别是其对边长,向量m →=(2√3sin A2,2cos 2A2),n →=(cos A2,−1),m →⊥n →. (1)求角A 的大小; (2)若a =2,cosB =√33,求b 的长.21.(10分)已知|a →|=4,|b →|=3,(2a →−3b →)⋅(2a →+b →)=61 (1)求a →与b →的夹角θ; (2)求|a →+b →|.22.(10分)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2b cos C +c =2a . (1)求角B 的大小;(2)若BD 为AC 边上的中线,cos A =17,BD =√1292,求△ABC 的面积.23.(10分)已知函数f(x)=sinx ⋅sin(x +π6). (1)求f (x )的对称轴所在直线方程及其对称中心;(2)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且f(A2)=√32,a =4,求△ABC 周长的取值范围.。
2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)和答案

2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={(x,y)|y=3x},则A ∩B中的元素的个数是()A.1B.2C.3D.42.(5分)复数在复平面内对应的点到原点的距离是()A.B.C.D.3.(5分)虚拟现实(VR)技术被认为是经济发展的新增长点,某地区引进VR技术后,VR市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区VR市场收入情况如图所示,则下列说法错误的是()A.该地区2019年的VR市场总收入是2017年的4倍B.该地区2019年的VR硬件收入比2017年和2018年的硬件收入总和还要多C.该地区2019年的VR软件收入是2018年的软件收入的3倍D.该地区2019年的VR软件收入是2017年的软件收入的6倍4.(5分)执行如图所示的程序框图,若输出的S的值为0,则中可填入()A.m=m+2B.m=m+1C.m=m﹣1D.m=m﹣2 5.(5分)设a=4,b=log,c=log43,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<a<b D.c<b<a 6.(5分)如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别且只能标记数字1,2,3,4,相邻区域标记的数字不同,其中,区域A和区域B标记的数字丢失.若在图上随机取一点,则该点恰好取自标记为1的区域的概率所有可能值中,最大的是()A.B.C.D.7.(5分)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,下列结论不正确的是()A.卫星向径的最小值为a﹣cB.卫星向径的最大值为a+cC.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大8.(5分)已知在斜三棱柱ABC﹣A1B1C1中,点E,F分别在侧棱AA1,BB1上(与顶点不重合),=,AA1=4,△ABC的面积为5,截面C1EF与截面CEF将三棱柱ABC﹣A1B1C1分成三部分.若中间部分的体积为4,则AA1与底面所成角的正弦值为()A.B.C.D.9.(5分)已知f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,若f(x)的图象关于直线对称,且f(x)在区间内是单调函数,则=()A.B.C.D.10.(5分)已知直线l与曲线y=e x相切,切点为P,直线l与x轴、y轴分别交于点A,B,O为坐标原点.若△OAB的面积为,则点P的个数是()A.1B.2C.3D.411.(5分)已知双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.若|F1F2|=4|AB|,则C的渐近线方程为()A.B.C.2x±y=0D.x±2y=0 12.(5分)已知符号函数,偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则()A.sgn(f(x))>0B.C.sgn(f(2k))=0(k∈Z)D.sgn(f(k))=|sgnk|(k∈Z)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,,若,则实数μ的值为;若,则实数μ的值为.14.(5分)若对(1+x)n=1+x+x2+x3+…+x n两边求导,可得n(1+x)n﹣1=+x+x2+…+x n﹣1.通过类比推理,有(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,可得a1+2a2+3a3+4a4+5a5+6a6+7a7的值为.15.(5分)已知数列{a n}中,a1=11,,若对任意的m∈[1,4],存在n∈N*,使得成立,则实数t的取值范围是.16.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长是a,S是A1B1的中点,P是A1D1的中点,点Q在正方形DCC1D1及其内部运动,若PQ∥平面SBC1,则点Q的轨迹的长度是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)如图所示,在△ABC中,点D在边BC上,且∠DAC =90°,,.(1)若,求BC的值;(2)若BC边上的中线AE=2,求AC的值.18.(12分)如图,在多面体ABCDEF中,AB∥CD,AD⊥CD,CD=2AB=2AD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.(1)证明:DE⊥平面ABCD;(2)若二面角B﹣CF﹣D的正弦值为,求λ的值.19.(12分)如图,已知抛物线C:y2=2px(p>0)的焦点为F,圆E:(x﹣3)2+(y﹣2)2=16与C交于M,N两点,且M,E,F,N四点共线.(1)求抛物线C的方程;(2)设动点P在直线x=﹣1上,存在一个定点T(t,0)(t≠0),动直线l经过点T与C交于A,B两点,直线PA,PB,PT的斜率分别记为k1,k2,k3,且k1+k2﹣2k3为定值,求该定值和定点T 的坐标.20.(12分)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.(1)求这300名员工日行步数x(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);(2)由直方图可以认为该企业员工的日行步数ξ(单位:千步)服从正态分布N(μ,σ2),其中μ为样本平均数,标准差σ的近似值为2,求该企业被抽取的300名员工中日行步数ξ∈(14,18]的人数;(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X(单位:元)的分布列和数学期望.附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.21.(12分)已知函数f(x)=.(1)讨论f(x)的单调性;(2)若x1,x2(x1<x2)是f(x)的两个零点,求证:.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),直线C2的参数方程为(a为常数且a≠0,t为参数).(1)求C1和C2的直角坐标方程;(2)若C1和C2相交于A、B两点,以线段AB为一条边作C1的内接矩形ABCD,当矩形ABCD的面积取最大值时,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣|2x﹣2|(a∈R).(1)证明:f(x)≤|a|+1;(2)若a=2,且对任意x∈R都有k(x+3)≥f(x)成立,求实数k的取值范围.2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】作出椭圆+y2=1和y=3x的图象,结合图形得A∩B中的元素的个数是2.【解答】解:集合,B={(x,y)|y=3x},作出椭圆+y2=1和y=3x的图象,如下:结合图形得A∩B中的元素的个数是2.故选:B.2.【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵=,∴z在复平面内对应的点到原点的距离是|z|=.故选:C.3.【分析】设2017年VR市场总收入为1,根据统计图,逐一判断即可.【解答】解:设2017年VR市场总收入为1,A,地区2019年的VR市场总收入为4,是2017年的4倍,正确;B,2017年和2018年的硬件收入总和为1×0.9+2×0.8=2.5<4×0.7=2.8,故正确;C,2019年的VR软件收入1.2是2018年的软件收入0.4的3倍,正确;D,错误,2019年的VR软件收入是2017年的软件收入的12倍,故选:D.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次,S=2×(4﹣2)=4,S≤0否;若m=m+2=6;第二次,S=4×(6﹣4)=8,S≤0否;m=m+2=8;第三次,S=8×(8﹣8)=0,S≤0,是,输出S=0;正确;若m=m+1=5;第二次,S=4×(5﹣4)=4,S≤0否;m=m+1=6;第三次,S=4×(6﹣4)=8,S≤0,否;m=m+1=7,第四次,S=8×(7﹣8)=﹣8,S≤0是;输出S=﹣8;与S=0矛盾,舍去;若m=m﹣1=3;第二次,S=4×(3﹣4)=﹣4,S≤0是;输出S=﹣4,与S=0矛盾,舍去;若m=m﹣2=2第二次,S=4×(2﹣4)=﹣8,S≤0是;输出S=﹣8,与S=0矛盾,舍去;故输入m=m+2,输出的S的值为0,故选:A.5.【分析】可以得出,,从而可得出a,b,c的大小关系.【解答】解:,,∴a<c<b.故选:B.6.【分析】要想符合要求,1出现的次数尽可能的多,当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大.【解答】解:要想符合要求,1出现的次数尽可能的多;所以:当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大,此时所在的小方格个数n=5×6=30,标记为1的区域中小方格的个数m=10,∴恰好取在标记为1的区域的概率所有可能值中,最大的是P==.故选:C.7.【分析】由题意可得卫星向径是椭圆上的点到焦点的距离,可得向径的最大值最小值,运行速度的意义又是服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等,可得速度的最大值及最小值时的情况,由向径的意义可得最小值与最大值的比越小时,离心率越大,椭圆越扁,进而可得所给命题的真假.【解答】解:由题意可得卫星的向径是椭圆上的点到右焦点的距离,所以最小值为a﹣c,最大值为a+c,所以A,B正确;卫星向径的最小值与最大值的比值越小,即==﹣1+越小,则e越大,椭圆越扁,故C正确.因为运行速度是变化的,速度的变化,所以卫星运行速度在近地点时向径越小,在远地点时向径越大,卫星的向径(卫星与地球的连线)在相同的时间,内扫过的面积相等,则向径越大,速度越小,所以卫星运行速度在近地点时最大,在远地点时最小,即D不正确;故选:D.8.【分析】由题意可得中间部分的体积为原三棱柱体积的三分之一,得到原三棱柱的体积,设AA1与底面所成角为α,由棱柱体积公式列式求得sinα的值.【解答】解:如图,过EF作平面EFG∥底面ABC,则,,可得中间部分的体积为V==4,∴,设AA1与底面所成角为α,则S△ABC•AA1•sinα=12,又AA1=4,△ABC的面积为5,∴20sinα=12,即sin.∴AA1与底面所成角的正弦值为.故选:B.9.【分析】首先利用函数的奇偶性求出φ的值,进一步求出函数的关系式为f(x)=﹣sinωx,进一步利用(x)的图象关于直线对称,整理得ω=4k+2,最后利用函数的单调性的应用求出ω的值,从而确定函数的关系式,最后求出函数的值.【解答】解:f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,所以φ=kπ,k∈Z,当k=1时,φ=π.所以f(x)=sin(ωx+π)=﹣sinωx,由于f()=﹣sin(ω)=±1,所以ω=kπ(k∈Z),整理得ω=k+,整理得ω=4k+2.当k=0时,ω=2,函数f(x)=﹣sin2x,由于x∈,所以,故函数是单调递减函数.当k=1时ω=4+2=6,函数f(x)=﹣sin6x,由于x∈,所以,由于内单调,故函数不为单调函数.当k=2时,ω=10,函数f(x)在区间内也不是单调函数,所以f(x)=﹣sin2x,故f()==﹣.故选:A.10.【分析】设切点P(),写出函数在切点处的导数,得到切线方程,分别求出切线在两坐标轴上的截距,利用三角形面积公式列式可得.构造函数f(x)=(x﹣1)2e x,利用导数研究其单调性与极值,则答案可求.【解答】解:设切点P(),由y=e x,得y′=e x,则,∴直线l的方程为,取y=0,得x=x0﹣1,取x=0,得.∴,则.构造函数f(x)=(x﹣1)2e x,f′(x)=e x(x2﹣1).令f′(x)=0,得x=±1.∴当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,可得f(x)先增后减再增,,f(x)极小值=f(1)=0.∵f(x)的极大值<,∴当x≤1时,不存在点P满足题意;当x>1时,f(x)单调递增,当x→+∞时,f(x)→+∞.∴f(x)=0有唯一解,则点P存在且唯一.故选:A.11.【分析】由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合双曲线的定义,转化求解渐近线方程即可.【解答】解:双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.与MF1的切点为N,如图:设AB=n,MB=m,BF2=t,由双曲线的定义可知:m+2n+t﹣m﹣t=2a,可得n=a,若|F1F2|=4|AB|,所以2c=4a,c=2a,则b=.所以双曲线的渐近线方程为:±y=0.故选:A.12.【分析】本题先根据函数的周期性和奇偶性画出函数f(x)的图象,再根据符号函数的性质,以及函数的周期性,利用数形结合法可对四个选项逐个判断,可得正确选项.【解答】解:依题意,由f(x+2)=f(x),可知函数f(x)是以2为周期的周期函数.∵当x∈[0,1]时,f(x)=x,f(x)是偶函数,∴当x∈[﹣1,0]时,f(x)=﹣x.函数f(x)图象如下:根据图可得,0≤f(x)≤1,故sgn(f(x))≥0,选项A不正确;很明显,当x=2k,k∈Z时,f(x)=0,sgn(f(x))=0,选项C正确;f()=f(2×1010+)=f()=,故选项B不正确;当k=2时,sgn(f(2))=sgn(0)=0,|sgn2|=1,故选项D不正确故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.【分析】利用向量数量积与向量垂直、向量坐标运算与向量共线的关系即可得出.【解答】解:+μ=(﹣3+μ,2﹣μ),2+=(﹣5,3),∵,∴(+μ)•=(﹣3+μ,2﹣μ)•(﹣3,2)=﹣3(﹣3+μ)+2(2﹣μ)=0,解得μ=.∵,∴3(﹣3+μ)+5(2﹣μ)=0,解得μ=.故答案为:,.14.【分析】对已知式两边对x求导数,再利用x=1,即可求得结果.【解答】解:∵(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,两边对x求导数,可得7×5×(5x﹣4)6=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6,再令x=1,可得a1+2a2+3a3+4a4+5a5+6a6+7a7=35,故答案为:35.15.【分析】利用裂项法可求得a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=12﹣,而a n=12﹣为递增数列,可求得a n的极限值(可作为最大值),于是所求可转化为对任意的m∈[1,4],t2+mt<12恒成立问题,通过构造函数h(m)=tm+t2﹣12,则,解之即可.【解答】解:∵,∴=﹣,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=(﹣)+(﹣)+…+(﹣)+(1﹣)+11=12﹣,∵a n=12﹣为递增数列,∴当n→+∞时,a n→12.∵对任意的m∈[1,4],存在n∈N*,使得成立,∴对任意的m∈[1,4],t2+mt<12恒成立.令h(m)=tm+t2﹣12,则,即,解得:﹣4<t<2,故答案为:(﹣4,2).16.【分析】求出Q在正方形DCC1D1的位置,然后转化求解距离即可.【解答】解:要使PQ∥平面SBC1,作PE∥C1S,交C1D1于E,正方体ABCD﹣A1B1C1D1的棱长是a,D1E=C1D1=,连接BD,取BD的中点O,连接PO,则PSBO为平行四边形,PO∥SB,取DF==,连接OF,EF,所以PEFO为平行四边形,Q 在EF上,所以EF==.点Q的轨迹的长度是:.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【分析】(1)由题意利用诱导公式可求sin∠BAC的值,在△ABC 中,由正弦定理可得BC的值.(2)由(1)可得sin∠BAC=,利用同角三角函数基本关系式可求cos∠BAC,利用平面向量的运算可得=(+),两边平方后即可计算得解AC的值.【解答】解:(1)∵∠DAC=90°,,.∴sin∠BAC=sin(90°+∠DAB)=,∵,∴在△ABC中,由正弦定理,可得:=,可得:BC=4.(2)∵由(1)可得sin∠BAC=,∴cos∠BAC=﹣,∵=(+),可得2=(+)2,又∵AE=2,,∴可得4=[6+AC2+2×],可得3AC2﹣2AC﹣30=0,∴解得AC=或﹣(舍去).18.【分析】(1)推导出AD⊥DE,BD⊥DE,由此能证明DE⊥平面ABCD.(2)DE⊥平面ABCD,以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出λ.【解答】解:(1)证明:∵四边形ADEF是矩形,平面BDE⊥平面ABCD,平面BDE∩平面ABCD=BD,∴AD⊥DE,BD⊥DE,∵AD∩BD=D,∴DE⊥平面ABCD.(2)解:∵在多面体ABCDEF中,AB∥CD,AD⊥CD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.由(1)知DE⊥平面ABCD,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设CD=2AB=2AD=2,则AF=λ,则B(1,1,0),C(0,2,0),D(0,0,0),F(1,0,λ),=(1,﹣1,0),=(1,﹣2,λ),=(0,﹣2,0),设平面BCF的法向量=(x,y,z),则,取x=1,得=(1,1,),设平面CDF的法向量=(a,b,c),则,取a=1,得=(1,0,﹣),∵二面角B﹣CF﹣D的正弦值为,∴|cos<>|==||=,解得λ=2或λ=.19.【分析】(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,从而|EE′|====4,进而3+=4,由此能求出抛物线C的方程;(2)设直线l的方程为x=ky+t,与y2=4x联立,得y2﹣4ky﹣4t=0,由此利用根的判别式,韦达定理、直线与抛物线的位置关系,能求出k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T (1,0),定值为0.【解答】解:(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,∴|EE′|====4,∴3+=4,解得p=2,∴抛物线C的方程为y2=4x.(2)由题意知,直线l的斜率存在,且不为0,设直线l的方程为x=ky+t,与y2=4x联立,得:y2﹣4ky﹣4t=0,△=16k2+16t>0,设A(x1,y1),B(x2,y2),P(﹣1,y0),y1+y2=4k,y1y2=﹣4t,∴x1+x2=k(y1+y2)+2t=4k2+2t,x1x2=,∴k1+k2﹣2k3=++=+=,∴k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T(1,0),定值为0.20.【分析】(1)以各组中点为该组的代表值加权平均即可;(2)依题意,日行步数ξ(千步)服从正态分布N(μ,σ2),由(1)知μ=12,又σ的近似值为2,所以P(14<ξ<18)=P(μ+σ<ξ<μ+3σ)代入即可;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,确定随机变量X的所有可能的取值,分别求出,每个随机变量对应的概率,列出分布列求期望即可.【解答】解:(1)这300名员工日行步数的样本平均数为2(5×0.005+7×0.005+9×0.04+11×0.29+13×0.11+15×0.03+17×0.015+19×0.005)=11.68≈12千步;(2)因为ξ~N(12,22),所以P(14<ξ<18)=P(12+2<ξ<12+3×2)=[P(6<ξ<18)﹣P(10<ξ<14)]=0.1574,所以走路步数ξ∈(14,18)的总人数为300×0.1574≈47人;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,由题意知X的可能取值为0,100,200,300,400,P(X=0)=0.022=0.0004,P(X=100)=2×0.02×0.88=0.0352,P(X=200)=0.882+2×0.02×0.1=0.7784,P(X=300)=2×0.88×0.1=0.176,P(X=400)=0.12=0.01,所以X的分布列为:X0100200300400P0.00040.03520.77840.1760.01E(X)=100×0.0352+200×0.7784+300×0.176+400×0.01=216.21.【分析】(1)f(x)的定义域为(0,+∞),求出导函数,通过①当a≤0时,②当a>0时,判断导数的符号,判断函数的单调性即可.(2)利用f(x)有两个零,得到,推出a>2e,要证原不等式成立,只需证明,利用分析法推出;另一方面,令,(x>0),通过函数的导数,转化求解函数的最值,转化求解即可.【解答】解:(1)f(x)的定义域为(0,+∞),且,①当a≤0时,f'(x)≤0,f(x)的单调递减区间为(0,+∞);②当a>0时,由f'(x)>0得,故f(x)的单调递增区间为,单调递减区间为.(2)证明:∵f(x)有两个零点,∴由(1)知a>0且,∴a>2e,要证原不等式成立,只需证明,只需证明,只需证明.一方面∵a>2e,∴,∴,∴,且f(x)在单调递增,故;另一方面,令,(x>0),则,当时,g'(x)<0;当时,g'(x)>0;故,故g(x)≥0即时x∈(0,+∞)恒成立,令,则,于是,而,故,且f(x)在单调递减,故;综合上述,,即原不等式成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.【分析】(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得普通方程.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得普通方程;(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD 为正方形.即可得出.【解答】解:(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得:x2+y2=4.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得:x=﹣2+ay.(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD为正方形.∴直线经过点(0,±2),代入可得:0=﹣2±2a,解得a=±1.[选修4-5:不等式选讲]23.【分析】(1)将函数f(x)=|x+a|﹣|2x﹣2|化为f(x)=|(2x﹣2)﹣(x﹣a﹣2)|﹣|2x﹣2|,利用绝对值不等式可得f(x)≤|x﹣a﹣2|(当且仅当(x﹣1)(x﹣a﹣2)≤0时取等号),进一步分析可证得结论成立;(2)要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k(x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象,结合图象可求得实数k的取值范围.【解答】(1)证明:函数f(x)=|x+a|﹣|2x﹣2|=|(2x﹣2)﹣(x ﹣a﹣2)|﹣|2x﹣2|≤|2x﹣2|+|x﹣a﹣2|﹣|2x﹣2|=|x﹣a﹣2|(当且仅当(2x﹣2)(x﹣a﹣2)≤0,即(x﹣1)(x﹣a﹣2)≤0时取等号)由于(x﹣1)(x﹣a﹣2)≤0,当a﹣2≥1,即a≥3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|=|a|+1;当1>a﹣2,即a<3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|≤|a|+1;综上所述,f(x)≤|a|+1;(2)解:a=2,且对任意x∈R都有k(x+3)≥f(x)=|x+2|﹣|2x ﹣2|=,要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k (x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象如图,由图可知,≤k≤1.即实数k的取值范围为[,1].。
2020年陕西省西安市西工大附中高考数学第三阶段模考试卷(理科) (解析版)

2020年陕西省西安市西工大附中高考数学第三阶段模考试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|x >−1},B ={x|log 2x <1},则A ∩B =( )A. {x|x >0}B. {x|−1<x <2}C. {x|0<x <2}D. {x|x <2}2. 已知单位向量a ⃗ ,b ⃗ 的夹角为π3,则a ⃗ ⋅(a ⃗ +2b ⃗ )=( )A. 32B. 1+√32C. 2D. 1+√33. 设函数f (x )={log 2x,x >1x 2+1,x ≤1,则f(f (1))的值为( )A. −1B. 1C. 0D. 24. 已知cos2α=13,则sin 2(α+π2)等于( )A. √53B. 13C. 14D. 235. 2019年成都世界警察与消防员运动会期间,需安排甲、乙、丙、丁四名志愿者去A ,B ,C 三个场馆参与服务工作,要求每个场馆至少一人,则甲、乙被安排到同一个场馆的概率为( )A. 112B. 18C. 16D. 146. 已知点F 是抛物线y 2=4x 焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,则MN 中点到准线距离为( )A. 32B. 2C. 3D. 47. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.若acosB +bcosA =4sinC ,则△ABC 的外接圆面积为( )A. 16πB. 8πC. 4πD. 2π8. 函数f(x)=2x 2−lnx 在x =1处的切线方程是( )A. y =4x −5B. y =3x −1C. y =3x −2D. y =4x −29. 在底面为正方形的四棱锥S −ABCD 中,SA =SB =SC =SD ,异面直线AD 与SC 所成的角为60°,AB =2.则四棱锥S −ABCD 的外接球的表面积为( )A. 6πB. 8πC. 12πD. 16π10.已知F1,F2是双曲线E:x2a2−y2b2=1(a>b>0)的左、右焦点,点M在E的渐近线上,且MF2与x轴垂直,cos∠MF1F2=2√23,则E的离心率为()A. 2B. √3C. √2D. √6211.正方体ABCD−A1B1C1D1棱长为4,M,N,P分别是棱A1D1,A1A,D1C1的中点,则过M,N,P三点的平面截正方体所得截面的面积为()A. 2√3B. 4√3C. 6√3D. 12√312.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠。
陕西省西安市达标名校2020年高考三月数学模拟试卷含解析

陕西省西安市达标名校2020年高考三月数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数ln(1),0 ()11,02x xf xx x+>⎧⎪=⎨+≤⎪⎩,若m n<,且()()f m f n=,则n m-的取值范围为()A.[32ln2,2)-B.[32ln2,2]-C.[1,2)e-D.[1,2]e-2.设双曲线22221y xa b-=(0a>,0b>)的一条渐近线与抛物线213y x=+有且只有一个公共点,且椭圆22221x ya b+=的焦距为2,则双曲线的标准方程为()A.22143x y-=B.22143y x-=C.22123x y-=D.22132y x-=3.已知集合{}{}2340,13A x x xB x x=-->=-≤≤,则R()A B=( )A.()1,3-B.[]1,3-C.[]1,4-D.()1,4-4.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A.15B.25C.35D.455.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A.15B.625C.825D.256.若,,x a b 均为任意实数,且()()22231a b ++-=,则()()22ln x a x b -+- 的最小值为( ) A .32B .18C .321-D .1962-7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.已知等差数列{}n a 的前n 项和为n S ,262,21a S ==,则5a = A .3B .4C .5D .69.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,AB AC .已知以直角边,AC AB 为直径的半圆的面积之比为14,记ABC α∠=,则sin 2α=( )A .925B .1225C .35D .4510.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于2的偶数可以表示为两个素数的和”( 注:如果一个大于1的整数除了1和自身外无其他正因数,则称这个整数为素数),在不超过15的素数中,随机选取2个不同的素数a 、b ,则3a b -<的概率是( ) A .15B .415C .13D .2511.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②点,012π⎛⎫-⎪⎝⎭是函数()f x 的一个对称中心; ③函数1y =与()351212y f x x ππ⎛⎫=-≤≤⎪⎝⎭的图象的所有交点的横坐标之和为7π. 其中正确的判断是( ) A .①②B .①③C .②③D .①②③12.已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO x AB y AC z AD =++,,,x y z ∈R ,则x y z ++=( )A .34B .13 C .12D .14二、填空题:本题共4小题,每小题5分,共20分。
2020年陕西省西安市西工大附中高考数学第三阶段模考试卷(理科)

2020年陕西省西安市西工大附中高考数学第三阶段模考试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x||x−2|<1},B={x|log2x<1},则A∩B=()A. (0,3)B. (1,2)C. (−∞,3)D. (0,2)2.已知单位向量a⃗与b⃗ 的夹角为π3,若x a⃗+b⃗ 与a⃗垂直,则实数x的值为()A. 12B. −12C. √32D. −√323.f(x)={x 23,x<0log2x+1,x>0,则f(f(−8))=()A. 3B. −3C. 4D. −44.已知sinα=2sin(α+π2),则cos2α=()A. 35B. −7 C. −35D. −35.自新型冠状病毒爆发以来,全国各地医护人员勇当“逆行者”支援湖北.重庆第一批共派出甲、乙、丙、丁4支医疗队奔赴武汉、孝感、黄冈三个地方,每个地方至少一支医疗队,每支医疗队只去一个地方,则甲、乙都在武汉的概率为()A. 13B. 16C. 29D. 1186.已知抛物线y2=2px(p>0),F为抛物线的焦点,O为坐标原点,A(x1,y1),B(x2,y2)为抛物线上的两点,AB的中点到抛物线准线的距离为5,△ABO的重心为F,则p=()A. 1B. 2C. 3D. 47.在△ABC中,角A,B,C对应的边分别为a,b,c,若sin2A−sin2B=sin2C−sinBsinC,a=√3,则△ABC的外接圆面积为()A. πB. 2πC. 4πD. 8π8.已知函数f(x)=x2−2m,g(x)=3lnx−x,若y=f(x)与y=g(x)在公共点处的切线相同,则m=()A. −3B. 1C. 2D. 59.在底边边长为2的正四棱锥P−ABCD中,异面直线PC与AD所成角的正切值为3,则四棱锥P−ABCD外接球的表面积为()A. 25π4B. 25π2C. 25√2π8D. 9π210.双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点为F1,F2,以F2为圆心,|OF2|为半径作圆F2,过F1作直线l与圆F2切于点M,若M在双曲线的渐近线上,则双曲线的离心率为() A. √2 B. √3 C. 2 D. 2√3311.已知在一个棱长为12的正方体ABCD−A1B1C1D1中,BB1和C1D1的中点分别为M,N,如图,则过A,M,N三点的平面被正方体所截得的截面图形为()A. 六边形B. 五边形C. 四边形D. 三角形12.咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌一直在探索的内容,而2018年至今中国咖啡行业的发展实践证明了以优质的原材料供应以及大量优惠券、买赠活动吸引消费者无疑是开拓咖啡的中国市场的最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元/杯,其原材料成本为7元/杯,营销成本为5元/杯,且品牌门店提供如下4种优惠方式:(1)首杯免单,每人限用一次;(2)3.8折优惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5杯送5杯,不限使用人数和使用次数.每位消费者都可以用以上4种优惠方式中选择不多于2种使用.现在某个公司有5位后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数须保持一致;请问,这个公司的技术人员不少于()人时,无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利.A. 28B. 29C. 30D. 31二、填空题(本大题共4小题,共20.0分)13.复数z=2+4i,则|z|=______.(1+i)2),随机变量η=2ξ+1,则η的数学期望E(η)=______.14.已知离散型随机变量ξ~B(3,1415.已知函数f(x)=sin2x−√3cos2x向左平移π个单位后,所得图象在区间(0,m)上单调递增,则m的最大值为4______.16.函数f(x)满足f(1+x)=f(1−x),当x>1时,f(x)=x,若f2(x)−2mf(x)+4m=0有8个不同的实数解,lnx则实数m的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}的前n项和为S n,a2a7=3a42,且−3,S4,9a3成等差数列.(1)求数列{a n}的通项公式;(2)设b n=(−1)n a n+1,求数列{b n}的前n项和T n.n(n+1)18.如图,在四棱锥B−ACDE中,平面ABC⊥平面ACDE,△ABC是一个边长为4的正三角形,在直角梯形ACDE中,AE//CD,AE⊥AC,AE=2,CD=3,点P在棱BD上,且BP=2PD.(1)求证:EP//平面ABC;(2)设点M在线段AC上,若平面PEM与平面EAB所成的锐二面角的余弦值为2√35,求MP的长.19.2020年初,武汉出现新型冠状病毒肺炎疫情,并快速席卷我国其他地区,口罩成了重要的防疫物资.某口罩生产厂不断加大投入,高速生产,现对其2月1日~2月9日连续9天的日生产量y i(单位:十万只,i=1,2,…,9)数据作了初步处理,得到如图所示的散点图及一些统计量的值:y−z−∑t i9t=1y i∑t i9t=1z i2.7219139.091095注:图中日期代码1~9分别对应2月1日~2月9日;表中z i=e y i,z−=19∑z i 9i=1.(1)从9个样本点中任意选取2个,在2个点的日生产量都不高于三十万只的条件下,求2个都高于二十万只的概率;(2)由散点图分析,样本点都集中在曲线y=ln(bt+a)的附近,请求y关于t的方程y=ln(bt+a),并估计该厂从什么时候开始日生产量超过四十万只.参考公式:回归直线方程是v ̂=β̂μ+α̂,β̂=∑(ni=1μi −μ−)(v i −v −)∑(n i=1μi −μ−)2=∑μi ni=1v i −nμ−v −∑μi 2n i=1−nμ−2,α̂=v −−β̂μ−. 参考数据:e 4≈54.6.20. 已知椭圆C 1:x 26+y 23=1的长轴为AB ,动点P 是椭圆上不同于A ,B 的任一点,点Q 满足AP ⊥AQ ,BP ⊥BQ . (1)求点Q 的轨迹C 2的方程;(2)过点R(0,6)的动直线l 交C 2于M ,N 两点,y 轴上是否存在定点S ,使得∠RSM +∠RSN =π总成立?若存在,求出定点S ;若不存在,请说明理由.21. 已知函数f(x)=(x −2)e x −ax +alnx(a ∈R).(1)当a =−1时,求函数f(x)的单调区间; (2)讨论f(x)的零点个数.22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =3+sinϕ−2cosϕy =cosϕ+2sinϕ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcosθ+2=0. (1)求曲线C 1的极坐标方程并判断C 1,C 2的位置关系;(2)设直线θ=α(−π2<α<π2,ρ∈R)分别与曲线C 1交于A ,B 两点,与C 2交于点P ,若|AB|=3|OA|,求|OP|的值.23. 设函数f(x)=|1−2x|−3|x +1|,f(x)的最大值为M ,正数a ,b 满足1a 3+1b 3=Mab .(Ⅰ)求M ;(Ⅱ)是否存在a ,b ,使得a 6+b 6=√ab ?并说明理由.答案和解析1.【答案】B【解析】解:∵A={x|1<x<3},B={x|0<x<2},∴A∩B=(1,2).故选:B.可以求出集合A,B,然后进行交集的运算即可.本题考查了描述法、区间的定义,绝对值不等式的解法,对数函数的单调性,交集的运算,考查了计算能力,属于基础题.2.【答案】B【解析】解:根据题意,单位向量a⃗与b⃗ 的夹角为π3,则a⃗⋅b⃗ =1×1×cosπ3=12,若x a⃗+b⃗ 与a⃗垂直,则(x a⃗+b⃗ )⋅a⃗=x a⃗2+a⃗⋅b⃗ =x+12=0,解可得x=−12;故选:B.根据题意,由数量积公式可得a⃗⋅b⃗ =1×1×cosπ3=12,由向量垂直与数量积的关系可得(x a⃗+b⃗ )⋅a⃗=x a⃗2+a⃗⋅b⃗ =x+12=0,解可得x的值,即可得答案.本题考查向量数量积的计算,涉及向量垂直与数量积的关系,属于基础题.3.【答案】A【解析】解:∵函数f(x)={x 23,x<0log2x+1,x>0,∴f(−8)=(−8)23=(−2)2=4,f[f(−8)]=f(4)=log24+1=2+1=3.故选:A.推导出f(−8)=4,从而f[f(−8)]=f(4),由此能求出结果.本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.4.【答案】C【解析】解:∵sinα=2sin(α+π2)=2cosα,∴tanα=2;∵cos2α=cos2α−sin2α=cos2α−sin2αcos2α+sin2α=1−tan2α1+tanα=1−221+2=−35;故选:C.根据三角函数的诱导公式,倍角公式,即可得到结论.本题主要考查函数值的计算,利用三角函数的倍角公式是解决本题的关键.5.【答案】D【解析】解:根据题意,将4支医疗队安排到三个地方,每个地方至少一支医疗队,每支医疗队只去一个地方,有C42A33=36种安排方法,若甲、乙都在武汉,将其他两支医疗队安排在其他两个地方即可,有A22=2种安排方法;故甲、乙都在武汉的概率P=236=118;故选:D.根据题意,由排列组合数公式计算“将4支医疗队安排到三个地方”和“甲、乙都在武汉”的安排方法数目,由古典概型公式计算可得答案.本题考查古典概型的计算,涉及排列组合的应用,属于基础题.6.【答案】D【解析】解:抛物线y2=2px(p>0)的焦点F(p2,0),准线方程为x=−p2,因为AB的中点到抛物线准线的距离为5,所以x1+x22+p2=5,①又因为△ABO的重心为F,所以x1+x23=p2,②联立①②可得3p4+p2=5,解得p=4,故选:D.求得抛物线的焦点和准线方程,由线段的中点坐标和三角形的重心坐标,解方程可得p的值.本题考查抛物线的方程和性质,以及三角形的重心坐标,考查方程思想和运算能力,属于中档题.7.【答案】A【解析】解:由于sin2A−sin2B=sin2C−sinBsinC,利用正弦定理a2−b2=c2−bc,整理得cosA=b2+c2−a22bc =12,由于A∈(0,π),所以A=π3,所以2R=asinA=√3√32=2,故R=1.所以S圆=π⋅12=π.故选:A.直接利用正弦定理的应用转换为a2−b2=c2−bc,进一步求出A的值,再利用正弦定理求出外接圆的半径,最后求出外接圆的面积.本题考查的知识要点:余弦定理正弦定理和三角形的面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.8.【答案】B【解析】解:设两曲线y=f(x)与y=g(x)的公共点(a,b)(a>0),f(x)=x2−2m,其导数f′(x)=2x,则切线的斜率k=f′(a)=2a,g(x)=3lnx−x,其导数g′(x)=3x −1,则切线的斜率k=g′(a)=3a−1,则有2a=3a −1,解可得a=1或−32(舍),则b=3ln1−1=−1,则公共点为(1,−1),则有−1=1−2m,解得m=1.故选:B.设两曲线y=f(x)与y=g(x)的公共点(a,b),求出两个函数的导数,由导数的几何意义可得切线的斜率,再由斜率相等求得a的值,将a的值代入g(x)的解析式可得b的值,即可得公共点(a,b)的坐标,将(a,b)代入f(x)的解析式,计算可得m的值.本题考查利用导数研究过曲线上某点处的切线方程,关键是掌握导数的几何意义,是中档题.9.【答案】B【解析】解:如图所示:由题意,作PE⊥BC交BC于E,则E为BC的中点,设P在面ABCD上的投影为H,连接HE,∵AD//BC,所以PC与AD所成的角等于异面直线PC与BC所成的角,∵异面直线PC与AD所成的角的正切值为3,∴PEEC=3,∴PE=3,PH=√PO2+HE2=2√2,设四棱锥P−ABCD外接球的半径为R,则有(PH−R)2+AH2=R2,R=5√24,∴四棱锥P−ABCD外接球的表面积S=4πR2=4π×258=25π2.故选:B.确定异面直线PC与AD所成角为∠PBC,取BC中点E,求出PE,HP,利用勾股定理求出外接球的半径,即可求出四棱锥P−ABCD的外接球面积.本题考查四棱锥P−ABCD外接球的表面积、异面直线的夹角,考查学生的空间想象、计算能力,属于中档题.10.【答案】C【解析】解:∵MF1为圆的切线,故OM=12F1F2=c,又MF2=OF2=r=c,∴∠MOF2=60°,∴tan∠MOF2=√3=ba,∴b=√3a,∴e=ca =√a2+b2a2=2.故选:C.根据过F1作直线l与圆F2切于点M,且M在双曲线的渐近线上,得到∠MOF2=60°,进而得到b=√3a,再双曲线的离心率即可.本题考查双曲线的性质,考查离心率的求法,抓住渐近线经过M是解题的关键.11.【答案】B【解析】解:在一个棱长为12的正方体ABCD−A1B1C1D1中,BB1和C1D1的中点分别为M,N,如图,在DD1上取点E,使DE=3ED1=9,连结AE、NE,∵AB//D1N,BM//D1E,AB∩BM=B,D1N∩D1E=D1,∴平面ABM//平面D1NE,又NE⊂平面D1NE,∴NE//平面ABM,∵D1EBM =D1NAB=12,∴NE//AM,∵AE//C1M,∴过A,M,N三点的平面被正方体所截得的截面图形为五边形AMC1NE.故选:B.在DD1上取点E,使DE=3ED1=9,连结AE、NE,推导出过A,M,N三点的平面被正方体所截得的截面图形为五边形AMC1NE.本题考查截面图形的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.12.【答案】C【解析】解:由题意知,咖啡产品原价为30元/杯,成本为12元/杯,优惠方式(1)免单购买,每购买1杯该品牌门店亏损12元;优惠方式(2)每杯售价11.4元,每购买1杯该品牌店亏损0.6元;优惠方式(3)和(4)相当于5折购买,每购买1杯该品牌门店盈利3元;我们只需要考虑最优的购买方式,每位后勤工作人员能选择2种优惠方式,必然包含优惠方式(1),可以免单购买5杯咖啡,该品牌门店因此亏损60元,最优的购买方式是不包含原价购买任何一杯咖啡(11.4×5+30×1>11.4×2+15×4,说明只要用原价购买1杯咖啡,哪怕最大程度利用3.8折优惠,花费也一定会超过搭配使用(2)(4)优惠购买咖啡),故显然该品牌门店必须按照优惠方式(3)和(4)售出20杯以上的咖啡才能盈利,故技术人员人数一定多于5+20=25人;技术人员在26−29人时,免单购买5杯咖啡+买5送5购买20杯咖啡+3.8折购买14杯咖啡,该品牌门店依旧亏损;技术人员为30人时,最优购买方式为免单购买5杯咖啡十买5送5购买20杯咖啡十买2送2购买4杯咖啡+3.8折购买1杯咖啡,该品牌门店盈利3×24−60−0.6=114元;由于11.4>0.6×4,故技术人员超过30人时,该品牌门店能保证持续盈利.故选:C.首先因为无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利,转化为当最优的购买方式购买时门店照样盈利,先分析用哪种优惠方式是最优购买,因为11.4×5+30×1>11.4×2+15×4,所以最优的购买方式是不包含原价购买任何一杯咖啡,故要想盈利必须按照优惠方式(3)和(4)售出20杯以上的咖啡才能盈利,后面再依次分析人数越多时何时品牌门店都能盈利即可得到答案.本题考查函数的实际应用,考查了分类讨论思想,将文字语言转化为数学语言是本题的关键,属于难题.13.【答案】√5【解析】解:∵z=2+4i(1+i)2=2+4i2i=1+2ii=(1+2i)(−i)−i2=2−i,∴|z|=√22+(−1)2=√5.故答案为:√5.利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.14.【答案】52【解析】解:离散型随机变量ξ~B(3,14),可得E(ξ)=3×14=34,随机变量η=2ξ+1,则η的数学期望E(η)=2×34+1=52.故答案为:52.求出ξ的期望,然后利用线性关系,求η的期望即可.本题考查离散型随机变量的期望的求法,是基本知识的考查.15.【答案】π6【解析】解:f(x)=sin2x−√3cos2x=2sin(2x−π3),向左平移π4个单位后,得到y=2sin[2(x+π4)−π3]=2sin(2x+π6 ).令2x+π6∈[2kπ−π2,2kπ+π2],k∈Z,则x∈[kπ−π3,kπ+π6],k∈Z,因为函数y的图象在区间(0,m)上单调递增,所以(0,m)⊆[kπ−π3,kπ+π6],k∈Z,所以当k=0时,m取得最大值,为π6.故答案为:π6.利用辅助角公式可将函数f(x)化简为f(x)=2sin(2x−π3),根据函数图象的变换法则求出平移后函数y的解析式,再结合正弦函数的单调性,求出函数y的单调递增区间,而区间(0,m)属于该递增区间的子区间,从而得解.本题考查三角函数的图象变换、正弦函数的图象与性质,熟练掌握函数图象的变换法则以及正弦函数的单调性是解题的关键,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.16.【答案】4<m <e 22(e−2)【解析】解:由题意,f(x)满足f(1+x)=f(1−x),可知f(x)图象关于x =1对称;当x >1时,f(x)=x lnx ,f′(x)=lnx−1(lnx)2,当x =e 时,f′(x)=0;当x ∈(1,e)时,f(x)单调递增;当x ∈(e,+∞)时,f(x)单调递减;∴当x =e 时,f(x)取得最小值e ;∴f(x)的范围为(e,+∞),令f(x)=t ,那么t 2−2mt +4m =0在(e,+∞)有2个不同的实数解,△>0;根的分布思想,则{△=4m 2−16m >0e 2−2me +4m >0−−2m 2≥e ,得{m >4或m <0m <e 22e−4m ≥e∴m 的范围是(4,e 22(e−2)).故答案为:(4,e 22(e−2)).对f(x)求导,判断其单调性和极值,可得f(x)的范围为(e,+∞),换元思想,令f(x)=t ,那么t 2−2mt +4m =0有2个不同的实数解,可得{△=4m 2−16m >0e 2−2me +4m >0−−2m 2≥e,从而可得m 的范围. 本题考查函数的导数的应用,函数的单调性以及函数的零点的求法,属于中档题.17.【答案】解:(1)在比数列{a n }中,由a 2a 7=3a 42,得a 12q 7=3a 12q 6,∴q =3, ∵−3,S 4,9a 3成等差数列,∴2S 4=9a 3−3.从而有2a 1(1−34)1−3=9a 1⋅32−3⇒a 1=3,∴a n =a 1q n−1=3n ;(2)由a n =3n ,且b n =(−1)n a n +1n(n+1),得b n =(−1)n ×3n +1n(n+1)=(−3)n +1n −1n+1,∴T n =[(−3)1+(−3)2+⋯+(−3)n ]+(1−12+12−13+⋯+1n −1n +1) =−3[1−(−3)n ]4+1−1n+1=3[(−3)n −1]4+n n+1.【解析】本题考查等差数列的性质,考查等比数列的通项公式及前n 项和,训练了利用裂项相消法求数列的前n 项和,是中档题.(1)由已知a 2a 7=3a 42求得等比数列的公比,再由−3,S 4,9a 3成等差数列列式求得首项,则数列{a n }的通项公式可求;(2)把(1)中求得的通项公式代入b n =(−1)n a n +1n(n+1),然后利用等比数列的前n 项和及数列的裂项相消法求和求解T n . 18.【答案】(1)证明:如图,作PQ//DC 交BC 于点Q ,连接AQ , ∵BP =2PD ,∴PQ =23DC =2,又AE//CD ,AE =2,∴AE//PQ ,且AE =PQ ,即有四边形AEPQ 是平行四边形,得EP//AQ ,∵EP ⊄平面ABC ,AQ ⊂平面ABC ,∴EP//平面ABC ;(2)解:如图,设O 是AC 的中点,在正△ABC 中,BO ⊥AC ,作Oz//AE ,∵AE ⊥AC ,∴由平面ABC ⊥平面ACDE ,可得AE ⊥平面ABC ,则Oz ⊥平面ABC ,再以OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ 方向为x ,y 轴正方向建立如图所示的空间直角坐标系,则O(0,0,0),A(2,0,0),B(0,2√3,0),E(2,0,2),D(−2,0,3),∵BP =2PD ,∴P(−43,2√33,2).AB ⃗⃗⃗⃗⃗ =(−2,2√3,0),AE ⃗⃗⃗⃗⃗ =(0,0,2),设平面EAB 的法向量为m ⃗⃗⃗ =(x 1,y 1,z 1),由{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−2x 1+2√3y 1=0m ⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =2z 1=0,取y 1=1,得m ⃗⃗⃗ =(√3,1,0);∵点M 在线段AC 上,设其坐标为M(t,0,0),其中−2≤t ≤2,∴EM ⃗⃗⃗⃗⃗⃗ =(t −2,0,−2),EP ⃗⃗⃗⃗⃗ =(−103,2√33,0),设平面PEM 的法向量为n ⃗ =(x 2,y 2,z 2),由{n ⃗ ⋅EM ⃗⃗⃗⃗⃗⃗ =(t −2)x 2−2z 2=0n ⃗ ⋅EP ⃗⃗⃗⃗⃗ =−103x 2+2√33y 2=0,取x 2=3,得n ⃗ =(3,5√3,3t−62).由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ |⋅|n ⃗⃗ ||=8√32√9+75+24=2√35⇒(3t −6)2=64⇒t =143或t =−23,∵−2≤t ≤2,∴M(−23,0,0),∴|MP|=(−43+23)(2√33−=2√133.【解析】(1)作PQ//DC 交BC 于点Q ,连接AQ ,由平行线截线段成比例可得AE//CD ,进一步得到AE//PQ ,且AE =PQ ,得到四边形AEPQ 是平行四边形,即EP//AQ ,再由直线与平面平行的判定可得EP//平面ABC ;(2)设O 是AC 的中点,在正△ABC 中,BO ⊥AC ,作Oz//AE ,证明Oz ⊥平面ABC ,再以OA ⃗⃗⃗⃗⃗ ,OB⃗⃗⃗⃗⃗⃗ 方向为x ,y 轴正方向建立如图所示的空间直角坐标系,求出平面EAB 的法向量,设M(t,0,0),其中−2≤t ≤2,再由t 表示平面PEM 的法向量,由题意列式求解t ,可得M 的坐标,则MP 的长可求.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题. 19.【答案】解:(1)9个样本点中日生产量都不高于三十万只的有5个,高于二十万只且不高于三十万只的有3个,设事件A :所取2个点的日生产量都不高于三十万只,事件B :所取2个点的日生产量高于二十万只,∴事件AB :所取2个点的日生产量高于二十万只且不高于三十万只,则P(A)=C 52C 92=518,P(AB)=C 32C 92=112, ∴P(B|A)=P(AB)P(A)=310.(2)∵y =ln(bt +a),∴z =e y =bt +a ,t −=5,∑t i 29i=1=285,∴b =∑(9i=1t i −t −)(z i −z −)∑(9i=1t i −t −)2=∑(9i=1t i z i −t −⋅z i −z −⋅t i +t −⋅z −)∑(9i=1t i 2−2t −⋅t i +t −2)=∑t i 9i=1z i −9t −⋅z −∑t i 29i=1−9t −2=1095−9×5×19285−9×52=4,∴a =z −−bt −=19−4×5=−1,∴y =ln(4t −1).令ln(4t −1)>4,解得t >e 4+14≈13.9,∴t ≥14,即该厂从2月14日开始日生产量超过四十万只.【解析】(1)设事件A :所取2个点的日生产量都不高于三十万只,事件B :所取2个点的日生产量高于二十万事件AB :所取2个点的日生产量高于二十万只且不高于三十万只,求出概率,利用条件概率公式求解即可.(2)z =e y =bt +a ,求出回归直线方程的系数,得到回归直线方程.通过ln(4t −1)>4,推出结果.本题考查回归直线方程的求法与应用,考查转化思想以及计算能力,是中档题.20.【答案】解:(1)设P(x 0,y 0)(y 0≠0),Q(x,y),不妨设A(−√6,0),B(√6,0),∵AP ⊥AQ ,BP ⊥BQ ,∴AP⃗⃗⃗⃗⃗ ⋅AQ ⃗⃗⃗⃗⃗ =0,BP ⃗⃗⃗⃗⃗ ⋅BQ ⃗⃗⃗⃗⃗⃗ =0, ∴{(x 0+√6)(x +√6)+y 0y =0(x 0−√6)(x −√6)+y 0y =0, 解得{x 0=−x y 0=−y 2, 代入x 026+y 023=1,得点Q 的轨迹C 2的方程为y 212+x 26=1(y ≠0).(2)设M(x 1,y 1),N(x 2,y 2),假设存在这样的点S(0,t)满足∠RSM +∠RSN =π,当直线l 的斜率存在时,设为y =kx +6,代入椭圆y 212+x 26=1中,得(k 2+2)x 2+12kx +24=0, ∴x 1+x 2=−12k k 2+2,x 1⋅x 2=24k 2+2,△=144k 2−96(k 2+2)=48(k 2−4)>0, ∵∠RSM +∠RSN =π,∴k MS +k NS =0,即y 1−tx 1+y 2−t x 2=0,即x 2(y 1−t)+x 1(y 2−t)=x 2(kx 1+6−t)+x 1(kx 2+6−t)=2kx 1x 2+(6−t)(x 1+x 2)=2k 24k +2+(6−t)−12k k +2=12k k +2(t −2)=0,∵k ≠0,∴t =2,即S(0,2);当斜率不存在时,直线l 也过(0,2).综上,y 轴上存在定点S(0,2),使得∠RSM +∠RSN =π总成立.【解析】(1)设P(x 0,y 0)(y 0≠0),Q(x,y),不妨设A(−√6,0),B(√6,0),通过向量的数量积,列出方程组求解即可.(2)设M(x 1,y 1),N(x 2,y 2),假设存在这样的点S(0,t)满足∠RSM +∠RSN =π,当直线l 的斜率存在时,设为y =kx +6,代入椭圆y 212+x 26=1中,利用韦达定理,结合斜率关系,转化求解即可.本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.21.【答案】(1)解:当a =−1时,f(x)=(x −2)e x +x −lnx ,则f′(x)=(x −1)e x +1−1x =(x −1)(e x +1x ),因为x ∈(0,+∞),则e x +1x >0,所以x >1时,f′(x)>0,0<x <1时,f′(x)<0,所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).(2)因为f(x)=(x −2)e x −ax +alnx ,则f′(x)=(x −1)e x −a +a x =(x −1)(e x −a x ).(i)当a <0时,因为x ∈(0,+∞),则e x −a x >0,则x >1时,f′(x)>0,所以0<x <1时,f′(x)<0,所以函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(1)=−e −a .当f(1)=−e −a >0时,即a <−e 时,f(x)≥f(1)>0,所以当a <−e 时,函数f(x)没有零点,即函数f(x)零点个数为0;当f(1)=−e −a =0,即a =−e 时,f(x)≥f(1)=0,所以当a=−e时,函数f(x)有且只有一个零点x=1,即函数f(x)的零点个数为1;当f(1)=−e−a<0,即−e<a<0时,f(2)=−a(2−ln2)>0,则存在一个实数x1∈(1,2),使得f(x1)=0,当x∈(0,1)时,(x−2)e x>−e,−ax>0,对任意的x∈(0,1),则f(x)>−e+alnx,取x=e3a,因为a<0,则0<e3a<1,则f(x)>−e+alne3a=3−e>0,则存在x2∈(e3a,1),使得f(x2)=0,即−e<a<0时,函数f(x)的零点个数为2.(ii)当a=0时,令f(x)=0,则(x−2)e x=0,则x=2,即函数f(x)有且只有一个零点x=2;即函数f(x)的零点个数为1.(iii)当a>0时,令g(x)=e x−ax ,g′(x)=e x+ax2>0,故g(x)=e x−ax 在(0,+∞)上单调递增,令m=min{12,a2},n=max{1,a},故g(m)≤√e−2<0,g(n)≥e−1>0,则一定存在x0∈(m,n),使得g(x0)=0,所以x∈(0,x0)时,g(x)<0,x∈(x0,+∞)时,g(x)>0.因为f′(x)=(x−1)e x−a+ax =(x−1)(e x−ax),当x0=1,即a=e时,f(x)=(x−2)e x−ex+elnx,所以f′(x)=(x−1)(e x−ex),所以x>1时,f′(x)>0,所以0<x<1时,f′(x)>0,则f(x)在(0,+∞)上单调递增,且f(1)=−2e<0,f(3)=e3−3e+eln3>0,则存在x1∈(1,3),使得f(x1)=0,所以函数f(x)有且只有一个零点x=x1,即函数f(x)的零点个数为1.因为f′(x)=(x−1)e x−a+ax =(x−1)(e x−ax),当x0>1,x∈(0,1)时,f′(x)>0,当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,则f(x)在(0,1)上单调递增,在(1,x0)上单调递减,在(x0,+∞)上单调递增,当0<x0<1,x∈(0,x0)时,f′(x)>0,当x∈(x0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,则f(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增,因为x∈(0,1]时,(x−2)e x<0,−ax<0,alnx≤0,即f(x)<0,所以f(x)在x∈(0,1]时没有零点,x∈(1,+∞)上f(x)至多有一个零点,而f(a+2)=ae a+2−a(a+2)+aln(a+2)=a(e a+2+ln(a+2)−(a+2)),令t =a +2,ℎ(t)=e t +lnt −t(t >2),则ℎ′(t)=e t +1t −1(t >2),则ℎ′(t)>0,故ℎ(t)在t ∈(2,+∞)上单调递增,而ℎ(2)=e 2+ln2−2>0,即f(a +2)>0,故存在一个,则存在x 1∈(1,a +2),使得f(x 1)=0,所以函数f(x)有且只有一个零点x =x 1,即函数f(x)的零点个数为1,综上所述:当a <−e 时,函数f(x)的零点个数为0;当a =−e 或a ≥0时,函数f(x)的零点个数为1;当−e <a <0时,函数f(x)的零点个数为2.【解析】(1)把a =−1代入后对函数求导,然后结合导数与单调性的关系即可求解,(2)先对函数求导,然后结合导数与单调性关系对a 进行分类讨论,确定导数的符号,进而可求函数的单调性,再由函数的零点判定定理进行判断即可.本题主要考查了利用导数研究函数的单调性及零点个数的判断,体现了转化思想及分类讨论思想的应用. 22.【答案】解:(1)由曲线C 1得:{x −3=sinϕ−2cosϕy =cosϕ+2sinϕ,平方相加得(x −3)2+y 2=5, 即x 2+y 2−6x +4=0,又ρ2=x 2+y 2,x =ρcosθ,得曲线C 1的极坐标方程为ρ2−6ρcosθ+4=0.联立{ρ2−6ρcosθ+4=0ρcosθ+2=0,得ρ2+16=0,此方程无解, ∴C 1,C 2相离;(2)由{ρ2−6ρcosθ+4=0θ=α,得ρ2−6ρcosα+4=0. ∵直线θ=α与曲线C 1有两个交点A ,B ,∴△=36cos 2α−16>0,即cosα>23.设方程的两根分别为ρ1,ρ2,则{ρ1+ρ2=6cosα>0ρ1ρ2=4,① ∵|AB|=3|OA|,∴|OB|=4|OA|,即ρ2=4ρ1,联立①式解得ρ1=1,ρ2=4,cosα=56,满足△>0,联立{ρcosθ+2=0θ=α⇒ρ=−2cosα=−125, ∴|OP|=|ρ|=125.【解析】(1)把曲线C 1中的参数消去,可得普通方程,整理后结合极坐标与直角坐标的互化公式可得曲线C 1的极坐标方程.联立C 1,C 2的极坐标方程,化为关于ρ的一元二次方程,根据方程解的个数可得C 1,C 2的位置关系;(2)联立直线θ=α与曲线C 1的极坐标方程,结合已知求得θ,再把直线与曲线C 2联立即可求得|OP|的值. 本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查运算求解能力,是中档题.23.【答案】解:(1)分三类讨论如下:①当x <−1时,f(x)=x +4,单调递增,f(x)<3;②当−1≤x ≤12时,f(x)=−5x −2,单调递减,f(x)max =f(−1)=3,③当x >12时,f(x)=−x −4,单调递减,f(x)<f(12)=−92,综合以上讨论得,f(x)的最大值M =3;(2)假设存在正数a ,b ,使得a 6+b 6=√ab ≥2√a 6b 6=2a 3b 3,所以,a 52⋅b 52≤12,------------① 又因为1a +1b =Mab =3ab ≥2⋅33,所以,a 52⋅b 52≥23,-----------② 显然①②相互矛盾,所以,假设不成立,即不存在a ,b 使得a 6+b 6=√ab .【解析】(1)直接采用零点分段法确定函数的最值;(2)先假设存在,再两次运用基本不等式得出a 52⋅b 52≤12和a 52⋅b 52≥23相互矛盾,所以假设不成立. 本题主要考查了分段函数最值的确定,以及基本不等式在解题中的应用,运用了零点分段法和反证法,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,B={(x,y)|y=3x},则A ∩B中的元素的个数是()A.1B.2C.3D.42.(5分)复数在复平面内对应的点到原点的距离是()A.B.C.D.3.(5分)虚拟现实(VR)技术被认为是经济发展的新增长点,某地区引进VR技术后,VR市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区VR市场收入情况如图所示,则下列说法错误的是()A.该地区2019年的VR市场总收入是2017年的4倍B.该地区2019年的VR硬件收入比2017年和2018年的硬件收入总和还要多C.该地区2019年的VR软件收入是2018年的软件收入的3倍D.该地区2019年的VR软件收入是2017年的软件收入的6倍4.(5分)执行如图所示的程序框图,若输出的S的值为0,则中可填入()A.m=m+2B.m=m+1C.m=m﹣1D.m=m﹣2 5.(5分)设a=4,b=log,c=log43,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<a<b D.c<b<a 6.(5分)如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别且只能标记数字1,2,3,4,相邻区域标记的数字不同,其中,区域A和区域B标记的数字丢失.若在图上随机取一点,则该点恰好取自标记为1的区域的概率所有可能值中,最大的是()A.B.C.D.7.(5分)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,下列结论不正确的是()A.卫星向径的最小值为a﹣cB.卫星向径的最大值为a+cC.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁D.卫星运行速度在近地点时最小,在远地点时最大8.(5分)已知在斜三棱柱ABC﹣A1B1C1中,点E,F分别在侧棱AA1,BB1上(与顶点不重合),=,AA1=4,△ABC的面积为5,截面C1EF与截面CEF将三棱柱ABC﹣A1B1C1分成三部分.若中间部分的体积为4,则AA1与底面所成角的正弦值为()A.B.C.D.9.(5分)已知f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,若f(x)的图象关于直线对称,且f(x)在区间内是单调函数,则=()A.B.C.D.10.(5分)已知直线l与曲线y=e x相切,切点为P,直线l与x轴、y轴分别交于点A,B,O为坐标原点.若△OAB的面积为,则点P的个数是()A.1B.2C.3D.411.(5分)已知双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.若|F1F2|=4|AB|,则C的渐近线方程为()A.B.C.2x±y=0D.x±2y=0 12.(5分)已知符号函数,偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则()A.sgn(f(x))>0B.C.sgn(f(2k))=0(k∈Z)D.sgn(f(k))=|sgnk|(k∈Z)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,,若,则实数μ的值为;若,则实数μ的值为.14.(5分)若对(1+x)n=1+x+x2+x3+…+x n两边求导,可得n(1+x)n﹣1=+x+x2+…+x n﹣1.通过类比推理,有(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,可得a1+2a2+3a3+4a4+5a5+6a6+7a7的值为.15.(5分)已知数列{a n}中,a1=11,,若对任意的m∈[1,4],存在n∈N*,使得成立,则实数t的取值范围是.16.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长是a,S是A1B1的中点,P是A1D1的中点,点Q在正方形DCC1D1及其内部运动,若PQ∥平面SBC1,则点Q的轨迹的长度是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)如图所示,在△ABC中,点D在边BC上,且∠DAC =90°,,.(1)若,求BC的值;(2)若BC边上的中线AE=2,求AC的值.18.(12分)如图,在多面体ABCDEF中,AB∥CD,AD⊥CD,CD=2AB=2AD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.(1)证明:DE⊥平面ABCD;(2)若二面角B﹣CF﹣D的正弦值为,求λ的值.19.(12分)如图,已知抛物线C:y2=2px(p>0)的焦点为F,圆E:(x﹣3)2+(y﹣2)2=16与C交于M,N两点,且M,E,F,N四点共线.(1)求抛物线C的方程;(2)设动点P在直线x=﹣1上,存在一个定点T(t,0)(t≠0),动直线l经过点T与C交于A,B两点,直线PA,PB,PT的斜率分别记为k1,k2,k3,且k1+k2﹣2k3为定值,求该定值和定点T 的坐标.20.(12分)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.(1)求这300名员工日行步数x(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);(2)由直方图可以认为该企业员工的日行步数ξ(单位:千步)服从正态分布N(μ,σ2),其中μ为样本平均数,标准差σ的近似值为2,求该企业被抽取的300名员工中日行步数ξ∈(14,18]的人数;(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X(单位:元)的分布列和数学期望.附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.21.(12分)已知函数f(x)=.(1)讨论f(x)的单调性;(2)若x1,x2(x1<x2)是f(x)的两个零点,求证:.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),直线C2的参数方程为(a为常数且a≠0,t为参数).(1)求C1和C2的直角坐标方程;(2)若C1和C2相交于A、B两点,以线段AB为一条边作C1的内接矩形ABCD,当矩形ABCD的面积取最大值时,求a的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣|2x﹣2|(a∈R).(1)证明:f(x)≤|a|+1;(2)若a=2,且对任意x∈R都有k(x+3)≥f(x)成立,求实数k的取值范围.2020年陕西省西安市西工大附中高考数学模拟试卷(理科)(3月份)答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】作出椭圆+y2=1和y=3x的图象,结合图形得A∩B中的元素的个数是2.【解答】解:集合,B={(x,y)|y=3x},作出椭圆+y2=1和y=3x的图象,如下:结合图形得A∩B中的元素的个数是2.故选:B.2.【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵=,∴z在复平面内对应的点到原点的距离是|z|=.故选:C.3.【分析】设2017年VR市场总收入为1,根据统计图,逐一判断即可.【解答】解:设2017年VR市场总收入为1,A,地区2019年的VR市场总收入为4,是2017年的4倍,正确;B,2017年和2018年的硬件收入总和为1×0.9+2×0.8=2.5<4×0.7=2.8,故正确;C,2019年的VR软件收入1.2是2018年的软件收入0.4的3倍,正确;D,错误,2019年的VR软件收入是2017年的软件收入的12倍,故选:D.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次,S=2×(4﹣2)=4,S≤0否;若m=m+2=6;第二次,S=4×(6﹣4)=8,S≤0否;m=m+2=8;第三次,S=8×(8﹣8)=0,S≤0,是,输出S=0;正确;若m=m+1=5;第二次,S=4×(5﹣4)=4,S≤0否;m=m+1=6;第三次,S=4×(6﹣4)=8,S≤0,否;m=m+1=7,第四次,S=8×(7﹣8)=﹣8,S≤0是;输出S=﹣8;与S=0矛盾,舍去;若m=m﹣1=3;第二次,S=4×(3﹣4)=﹣4,S≤0是;输出S=﹣4,与S=0矛盾,舍去;若m=m﹣2=2第二次,S=4×(2﹣4)=﹣8,S≤0是;输出S=﹣8,与S=0矛盾,舍去;故输入m=m+2,输出的S的值为0,故选:A.5.【分析】可以得出,,从而可得出a,b,c的大小关系.【解答】解:,,∴a<c<b.故选:B.6.【分析】要想符合要求,1出现的次数尽可能的多,当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大.【解答】解:要想符合要求,1出现的次数尽可能的多;所以:当区域A标记的数字是2,区域B标记的数字是1时,恰好取在标记为1的区域的概率所有可能值最大,此时所在的小方格个数n=5×6=30,标记为1的区域中小方格的个数m=10,∴恰好取在标记为1的区域的概率所有可能值中,最大的是P==.故选:C.7.【分析】由题意可得卫星向径是椭圆上的点到焦点的距离,可得向径的最大值最小值,运行速度的意义又是服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等,可得速度的最大值及最小值时的情况,由向径的意义可得最小值与最大值的比越小时,离心率越大,椭圆越扁,进而可得所给命题的真假.【解答】解:由题意可得卫星的向径是椭圆上的点到右焦点的距离,所以最小值为a﹣c,最大值为a+c,所以A,B正确;卫星向径的最小值与最大值的比值越小,即==﹣1+越小,则e越大,椭圆越扁,故C正确.因为运行速度是变化的,速度的变化,所以卫星运行速度在近地点时向径越小,在远地点时向径越大,卫星的向径(卫星与地球的连线)在相同的时间,内扫过的面积相等,则向径越大,速度越小,所以卫星运行速度在近地点时最大,在远地点时最小,即D不正确;故选:D.8.【分析】由题意可得中间部分的体积为原三棱柱体积的三分之一,得到原三棱柱的体积,设AA1与底面所成角为α,由棱柱体积公式列式求得sinα的值.【解答】解:如图,过EF作平面EFG∥底面ABC,则,,可得中间部分的体积为V==4,∴,设AA1与底面所成角为α,则S△ABC•AA1•sinα=12,又AA1=4,△ABC的面积为5,∴20sinα=12,即sin.∴AA1与底面所成角的正弦值为.故选:B.9.【分析】首先利用函数的奇偶性求出φ的值,进一步求出函数的关系式为f(x)=﹣sinωx,进一步利用(x)的图象关于直线对称,整理得ω=4k+2,最后利用函数的单调性的应用求出ω的值,从而确定函数的关系式,最后求出函数的值.【解答】解:f(x)=sin(ωx+φ)(ω>0,0<φ≤π)是R上的奇函数,所以φ=kπ,k∈Z,当k=1时,φ=π.所以f(x)=sin(ωx+π)=﹣sinωx,由于f()=﹣sin(ω)=±1,所以ω=kπ(k∈Z),整理得ω=k+,整理得ω=4k+2.当k=0时,ω=2,函数f(x)=﹣sin2x,由于x∈,所以,故函数是单调递减函数.当k=1时ω=4+2=6,函数f(x)=﹣sin6x,由于x∈,所以,由于内单调,故函数不为单调函数.当k=2时,ω=10,函数f(x)在区间内也不是单调函数,所以f(x)=﹣sin2x,故f()==﹣.故选:A.10.【分析】设切点P(),写出函数在切点处的导数,得到切线方程,分别求出切线在两坐标轴上的截距,利用三角形面积公式列式可得.构造函数f(x)=(x﹣1)2e x,利用导数研究其单调性与极值,则答案可求.【解答】解:设切点P(),由y=e x,得y′=e x,则,∴直线l的方程为,取y=0,得x=x0﹣1,取x=0,得.∴,则.构造函数f(x)=(x﹣1)2e x,f′(x)=e x(x2﹣1).令f′(x)=0,得x=±1.∴当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,可得f(x)先增后减再增,,f(x)极小值=f(1)=0.∵f(x)的极大值<,∴当x≤1时,不存在点P满足题意;当x>1时,f(x)单调递增,当x→+∞时,f(x)→+∞.∴f(x)=0有唯一解,则点P存在且唯一.故选:A.11.【分析】由双曲线的定义和内切圆的切线性质:圆外一点向圆引切线,则切线长相等,结合双曲线的定义,转化求解渐近线方程即可.【解答】解:双曲线的左、右焦点分别为F1,F2,点M在C的右支上,MF1与y轴交于点A,△MAF2的内切圆与边AF2切于点B.与MF1的切点为N,如图:设AB=n,MB=m,BF2=t,由双曲线的定义可知:m+2n+t﹣m﹣t=2a,可得n=a,若|F1F2|=4|AB|,所以2c=4a,c=2a,则b=.所以双曲线的渐近线方程为:±y=0.故选:A.12.【分析】本题先根据函数的周期性和奇偶性画出函数f(x)的图象,再根据符号函数的性质,以及函数的周期性,利用数形结合法可对四个选项逐个判断,可得正确选项.【解答】解:依题意,由f(x+2)=f(x),可知函数f(x)是以2为周期的周期函数.∵当x∈[0,1]时,f(x)=x,f(x)是偶函数,∴当x∈[﹣1,0]时,f(x)=﹣x.函数f(x)图象如下:根据图可得,0≤f(x)≤1,故sgn(f(x))≥0,选项A不正确;很明显,当x=2k,k∈Z时,f(x)=0,sgn(f(x))=0,选项C正确;f()=f(2×1010+)=f()=,故选项B不正确;当k=2时,sgn(f(2))=sgn(0)=0,|sgn2|=1,故选项D不正确故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.【分析】利用向量数量积与向量垂直、向量坐标运算与向量共线的关系即可得出.【解答】解:+μ=(﹣3+μ,2﹣μ),2+=(﹣5,3),∵,∴(+μ)•=(﹣3+μ,2﹣μ)•(﹣3,2)=﹣3(﹣3+μ)+2(2﹣μ)=0,解得μ=.∵,∴3(﹣3+μ)+5(2﹣μ)=0,解得μ=.故答案为:,.14.【分析】对已知式两边对x求导数,再利用x=1,即可求得结果.【解答】解:∵(5x﹣4)7=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7,两边对x求导数,可得7×5×(5x﹣4)6=a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6,再令x=1,可得a1+2a2+3a3+4a4+5a5+6a6+7a7=35,故答案为:35.15.【分析】利用裂项法可求得a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=12﹣,而a n=12﹣为递增数列,可求得a n的极限值(可作为最大值),于是所求可转化为对任意的m∈[1,4],t2+mt<12恒成立问题,通过构造函数h(m)=tm+t2﹣12,则,解之即可.【解答】解:∵,∴=﹣,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=(﹣)+(﹣)+…+(﹣)+(1﹣)+11=12﹣,∵a n=12﹣为递增数列,∴当n→+∞时,a n→12.∵对任意的m∈[1,4],存在n∈N*,使得成立,∴对任意的m∈[1,4],t2+mt<12恒成立.令h(m)=tm+t2﹣12,则,即,解得:﹣4<t<2,故答案为:(﹣4,2).16.【分析】求出Q在正方形DCC1D1的位置,然后转化求解距离即可.【解答】解:要使PQ∥平面SBC1,作PE∥C1S,交C1D1于E,正方体ABCD﹣A1B1C1D1的棱长是a,D1E=C1D1=,连接BD,取BD的中点O,连接PO,则PSBO为平行四边形,PO∥SB,取DF==,连接OF,EF,所以PEFO为平行四边形,Q 在EF上,所以EF==.点Q的轨迹的长度是:.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【分析】(1)由题意利用诱导公式可求sin∠BAC的值,在△ABC 中,由正弦定理可得BC的值.(2)由(1)可得sin∠BAC=,利用同角三角函数基本关系式可求cos∠BAC,利用平面向量的运算可得=(+),两边平方后即可计算得解AC的值.【解答】解:(1)∵∠DAC=90°,,.∴sin∠BAC=sin(90°+∠DAB)=,∵,∴在△ABC中,由正弦定理,可得:=,可得:BC=4.(2)∵由(1)可得sin∠BAC=,∴cos∠BAC=﹣,∵=(+),可得2=(+)2,又∵AE=2,,∴可得4=[6+AC2+2×],可得3AC2﹣2AC﹣30=0,∴解得AC=或﹣(舍去).18.【分析】(1)推导出AD⊥DE,BD⊥DE,由此能证明DE⊥平面ABCD.(2)DE⊥平面ABCD,以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出λ.【解答】解:(1)证明:∵四边形ADEF是矩形,平面BDE⊥平面ABCD,平面BDE∩平面ABCD=BD,∴AD⊥DE,BD⊥DE,∵AD∩BD=D,∴DE⊥平面ABCD.(2)解:∵在多面体ABCDEF中,AB∥CD,AD⊥CD,四边形ADEF是矩形,平面BDE⊥平面ABCD,AF=λAD.由(1)知DE⊥平面ABCD,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设CD=2AB=2AD=2,则AF=λ,则B(1,1,0),C(0,2,0),D(0,0,0),F(1,0,λ),=(1,﹣1,0),=(1,﹣2,λ),=(0,﹣2,0),设平面BCF的法向量=(x,y,z),则,取x=1,得=(1,1,),设平面CDF的法向量=(a,b,c),则,取a=1,得=(1,0,﹣),∵二面角B﹣CF﹣D的正弦值为,∴|cos<>|==||=,解得λ=2或λ=.19.【分析】(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,从而|EE′|====4,进而3+=4,由此能求出抛物线C的方程;(2)设直线l的方程为x=ky+t,与y2=4x联立,得y2﹣4ky﹣4t=0,由此利用根的判别式,韦达定理、直线与抛物线的位置关系,能求出k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T (1,0),定值为0.【解答】解:(1)由题意知E(3,2),设抛物线C的准线为直线l′,过M,N,E分别作直线l′的垂线,垂足分别为M′,N′,E′,则|MF|=|MM′|,|NF|=|NN′|,∴|EE′|====4,∴3+=4,解得p=2,∴抛物线C的方程为y2=4x.(2)由题意知,直线l的斜率存在,且不为0,设直线l的方程为x=ky+t,与y2=4x联立,得:y2﹣4ky﹣4t=0,△=16k2+16t>0,设A(x1,y1),B(x2,y2),P(﹣1,y0),y1+y2=4k,y1y2=﹣4t,∴x1+x2=k(y1+y2)+2t=4k2+2t,x1x2=,∴k1+k2﹣2k3=++=+=,∴k1+k2﹣2k3的值与k,y0无关,当且仅当t=1时,定点为T(1,0),定值为0.20.【分析】(1)以各组中点为该组的代表值加权平均即可;(2)依题意,日行步数ξ(千步)服从正态分布N(μ,σ2),由(1)知μ=12,又σ的近似值为2,所以P(14<ξ<18)=P(μ+σ<ξ<μ+3σ)代入即可;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,确定随机变量X的所有可能的取值,分别求出,每个随机变量对应的概率,列出分布列求期望即可.【解答】解:(1)这300名员工日行步数的样本平均数为2(5×0.005+7×0.005+9×0.04+11×0.29+13×0.11+15×0.03+17×0.015+19×0.005)=11.68≈12千步;(2)因为ξ~N(12,22),所以P(14<ξ<18)=P(12+2<ξ<12+3×2)=[P(6<ξ<18)﹣P(10<ξ<14)]=0.1574,所以走路步数ξ∈(14,18)的总人数为300×0.1574≈47人;(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,由题意知X的可能取值为0,100,200,300,400,P(X=0)=0.022=0.0004,P(X=100)=2×0.02×0.88=0.0352,P(X=200)=0.882+2×0.02×0.1=0.7784,P(X=300)=2×0.88×0.1=0.176,P(X=400)=0.12=0.01,所以X的分布列为:X0100200300400P0.00040.03520.77840.1760.01E(X)=100×0.0352+200×0.7784+300×0.176+400×0.01=216.21.【分析】(1)f(x)的定义域为(0,+∞),求出导函数,通过①当a≤0时,②当a>0时,判断导数的符号,判断函数的单调性即可.(2)利用f(x)有两个零,得到,推出a>2e,要证原不等式成立,只需证明,利用分析法推出;另一方面,令,(x>0),通过函数的导数,转化求解函数的最值,转化求解即可.【解答】解:(1)f(x)的定义域为(0,+∞),且,①当a≤0时,f'(x)≤0,f(x)的单调递减区间为(0,+∞);②当a>0时,由f'(x)>0得,故f(x)的单调递增区间为,单调递减区间为.(2)证明:∵f(x)有两个零点,∴由(1)知a>0且,∴a>2e,要证原不等式成立,只需证明,只需证明,只需证明.一方面∵a>2e,∴,∴,∴,且f(x)在单调递增,故;另一方面,令,(x>0),则,当时,g'(x)<0;当时,g'(x)>0;故,故g(x)≥0即时x∈(0,+∞)恒成立,令,则,于是,而,故,且f(x)在单调递减,故;综合上述,,即原不等式成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.【分析】(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得普通方程.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得普通方程;(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD 为正方形.即可得出.【解答】解:(1)曲线C1的参数方程为(θ为参数),利用平方关系消去参数可得:x2+y2=4.直线C2的参数方程为(a为常数且a≠0,t为参数).消去参数t可得:x=﹣2+ay.(2)由直线x=﹣2+ay经过定点(﹣2,0),由于以线段AB为一条边作C1的内接矩形ABCD,因此矩形的对角线为圆的直径,都经过原点.可知:当矩形ABCD的面积取最大值时,四边形ABCD为正方形.∴直线经过点(0,±2),代入可得:0=﹣2±2a,解得a=±1.[选修4-5:不等式选讲]23.【分析】(1)将函数f(x)=|x+a|﹣|2x﹣2|化为f(x)=|(2x﹣2)﹣(x﹣a﹣2)|﹣|2x﹣2|,利用绝对值不等式可得f(x)≤|x﹣a﹣2|(当且仅当(x﹣1)(x﹣a﹣2)≤0时取等号),进一步分析可证得结论成立;(2)要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k(x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象,结合图象可求得实数k的取值范围.【解答】(1)证明:函数f(x)=|x+a|﹣|2x﹣2|=|(2x﹣2)﹣(x ﹣a﹣2)|﹣|2x﹣2|≤|2x﹣2|+|x﹣a﹣2|﹣|2x﹣2|=|x﹣a﹣2|(当且仅当(2x﹣2)(x﹣a﹣2)≤0,即(x﹣1)(x﹣a﹣2)≤0时取等号)由于(x﹣1)(x﹣a﹣2)≤0,当a﹣2≥1,即a≥3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|=|a|+1;当1>a﹣2,即a<3时,|x﹣a﹣2|≤|1﹣a﹣2|=|a+1|≤|a|+1;综上所述,f(x)≤|a|+1;(2)解:a=2,且对任意x∈R都有k(x+3)≥f(x)=|x+2|﹣|2x ﹣2|=,要使k(x+3)≥f(x)恒成立.则过定点(﹣3,0)的直线y=k (x+3)的图象不会在y=f(x)的图象的下方,在同一坐标系中作出y=f(x)与y=k(x+3)的图象如图,由图可知,≤k≤1.即实数k的取值范围为[,1].。