福建省泉州市2019年中考数学试题

合集下载

【2019年中考数学】福建省泉州市2019年5月初中毕业班质量检测数学试题(含答案解析)

【2019年中考数学】福建省泉州市2019年5月初中毕业班质量检测数学试题(含答案解析)

2019年福建省泉州市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. -(-2019)=2019B. |-2019|=±2019C. 20190=0D. 2019-1=-20192. 计算(-2a 2)3的结果是( )A. -6a 2B. -9a 5C. 9a 5D. -9a 63. 某几何体如下左图所示,该几何体的右视图是( )第3题图4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )A. 9B. 12C. 16D. 195. 不等式组⎩⎪⎨⎪⎧x -1≤0-x <2,的整数解的个数为( ) A. 0个 B. 2个 C. 3个 D. 无数个6. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. OA =OCB. AC =BDC. AC ⊥BDD. BD 平分∠ABC第6题图9. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A. 最高分90B. 众数是5C. 中位数是90D. 平均分为99.5第9题图9. 如图,在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若AD DB =12,DE =3,则BC 的长度是( )A. 6B. 9C. 9D. 10第9题图 9. 实数a 、b 、c 、d 在数轴上的对应点从左到右依次是A 、B 、C 、D ,若b +d =0,则a +c 的值( )A. 小于0B. 等于0C. 大于0D. 与a 、b 、c 、d 的取值有关10. 已知双曲线y =k x 经过点(m ,n ),(n +1,m -1),(m 2-1,n 2-1),则k 的值为( )A. 0或3B. 0或-3C. -3D. 3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知x =0是方程x 2-5x +2m -1=0的解,则m 的值是________.12. 分解因式:x 3-4x =________.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是15,则袋中黄球的个数为________.14. 抛物线y =x 2-6x +9的顶点坐标是________.15. 在直角坐标系中,点M (3,1)绕着原点O 顺时针旋转60°后的对应点的坐标是________.16. 如图,在面积为16的四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于点P ,则DP 的长是________.第16题图三、解答题:本大题共9小题,共96分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.19. (9分)先化简,再求值:x (x +2)+(x -1)(x +1)-2x ,其中x = 2.19. (9分)解方程组:⎩⎪⎨⎪⎧x -y =13x +y =7.19. (9分)如图,在四边形ABCD 中,AB =AD =3,DC =4,∠A =60°,∠D =150°,试求BC 的长度.第19题图。

2019年福建省中考数学试题及答案

2019年福建省中考数学试题及答案

2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。

福建省泉州市2019届中考数学试题特色题型突破 含答案

福建省泉州市2019届中考数学试题特色题型突破 含答案

特色题型突破类型一求阴影部分的面积ABCBABCABCBCA=90°,∠将△,绕点′在同一直线上,若∠逆时针旋转到△,′′,使【例1】BACAB=2 cm,则图1中阴影部分的面积为____________.=30°,图1B顺时针旋转把左边的深色阴影部分绕点120°就会转到右边的深2所示,运用旋转,方法点拨如图色阴影部分,刚好构成一个圆心角为120°的圆环面积.此题运用图形的变换将不规则的图形变为规则的可求面积的图形.图2ABCDEFOO的半径为4,则阴影部分的面积等于,若⊙____________如图【例2】 3,正六边形.内接于⊙图3ODSSSDEBC的面积,,弓形方法点拨连接,根据正多边形的对称性可得的面积=弓形==BCDBDOFDO△△△BOD的面积.此题运用图象的面积相等替换求不规则图象的面积.则不规则的阴影部分的面积刚好拼成扇形ABCABABC为圆心,以2,分别以=2为半径作,,,△如图(2016·滨州】【例3 )4是等边三角形,弧,则图中阴影部分的面积是____________.图4此题运用面积的差求阴影部分的面积.方法点拨.1OABOOO为上的两个四等分点的直径为圆心,,1.(2016·赤峰)如图5,⊙1的半径为,分别以⊙212)( 半径作圆,则图中阴影部分的面积为11 ππ D.2 A.π B.π C.425图1ABBCABCDBDBCG上一点,的面积为16,点,点,△是边上一点,且是=62.(2016·淄博)如图4BDHGHABC)是平行四边形,则图中阴影部分的面积是内部,且四边形点( 在△6图6. D 3 B.4 C.5 A.ACBDCABOBACOO若∠,.(2016·临沂)如图7,是⊙,与⊙的切线,.为切点,经过点分别相交于点3AB)=30°,( =3,则阴影部分的面积是7 图π3ππ33.DA.-C .- B.6622634.如图8,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为____________(结果保留π).图8ABCDACOOAAC=2=,将正方形绕点对角线9)5.(2016·黄石如图所示,正方形所在直线上有一点,O.____________60°,在旋转过程中,正方形扫过的面积是顺时针旋转图9ABCCAOABO的⊙中,∠在斜边=90°,∠2=30°,点6.(2016·重庆C)如图10,Rt△上,半径为DECEBCECDBACD围成的阴影部分的面积为____________,,切.边于点及,交边于点 .则由线段过点图10ABCDAAD的长为半径画弧,再以中,先以点,在边长为4的正方形为圆心,7.(2016·安顺)如图11ABAB长的一半为半径画弧,则阴影部分面积是____________(结果保留π).边的中点为圆心,图11ACBCACBCBCOCBCAB,为圆心,4,以为半径作弧8.如图12,为直径作半圆,圆心为⊥.,=以点=OACDE,则阴影部分的面积是____________作.的平行线交两弧于点过点,图12类型二规律问题【例1】 (2016·宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图13①需8根火柴棒,图②需15根火柴棒,…,按此规律,图⑦需____________根火柴棒.图13ABCABCAC为直角边,画第的斜边1的等腰直角三角形,以Rt,已知△】【例2 如图14△是腰长为ACDACDADADE,……依此类推,则第2 013△为直角边,画第三个等腰RtRt二个等腰△,再以△的斜边Rt.____________个等腰直角三角形的斜边长是图141.(2016·娄底)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学nn为正整数)(,丙烷的化学式是CH,…,设碳原子的数目为,则它们的化学H式CH,乙烷的化学式是C83246式都可以用下列哪个式子来表示( )A.CH B.CH C.CH D.CH nnnnnnnn3+2-+2222343222.已知A=3×2=6,A=5×4×3=60,A=5×4×3×2=120,A=6×5×4×3=360,依此规律A=75635____________.149163.按一定规律排列的一列数依次为:,,,,…,按此规律排列下去,这列数中的第5个数是3579n个数是____________.____________,第4.如图15,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;……按这样的规律下去,第6幅图中有____________个正方形.图15ABOAABCBO,顺时针旋转到△绕点的位置,点如图5.(2016·梅州)16,在平面直角坐标系中,将△11BCBxABCBABCCx轴上,将轴上,再将△在处,点绕点在的位置,点分别落在点,顺时针旋转到△21112111113????BAxAAABCCBC0,(0,2)绕点,则顺时针旋转到△轴上,依次进行下去….若点△,的位置,点在22222112??2B的坐标为____________.点 2 016图166.观察下列等式:311a=-=第一个等式:;1222×21×2×21×2411a==-;第二个等式:23323×22×3×22×2511a==-第三个等式:;×23×23×4×2.34344611a ==-;第四个等式:45545×24×24×5×2……按上述规律,回答以下问题:nna =____________=____________个等式:;(1)用含 的代数式表示第naaaaa =+…++(2)式子____________. +202314类型三 阅读理解1bbaa ,这里等式右边是实数?”为:(2016·梅州)对于实数=,?,定义一种新运算“【例1】2ba -211x =-2)?(( 运算.例如:1?3=-1的解是 ) =-.则方程 2x 48-1-3xxxx 7.B .5=C .==6 DA .=4【例2】 先阅读理解下面的例题,再按要求解答下列问题:2x 0. >-例题:解一元二次不等式42xxx 2)+2)(∵解:,-4=(-2xxx 0.-2)4>0可化为(>+2)(∴- 由有理数的乘法法则“两数相乘,同号得正”,得xx 2<0+2>0+????. ,②①?? xx 2<0-2>0-????x >2, 解不等式组①,得x <-2, 解不等式组②,得xxxx <-或的解集为2. >(2)(+2-2)>0∴2xxx 2.2或4>0的解集为<->即一元二次不等式-2x ;>0的解集为________________________(1)一元二次不等式16-x 1- ________________________;>0(2)分式不等式的解集为x 3-2xx 0.<3-2解一元二次不等式(3).nn -134xyxxynxyy .,规定4′=′=则有给出一种运算:对于函数=,=若函数例如:.1.(2016·深圳)3yyx )的解是′=已知函数12=( ,则方程xxxx 2 =-A .=4,,=-4 =B .22121xxxx 3=0 = D .32 =2 ,=-C .2112.阅读下列材料:2yxxyyx <+的取值范围”有如下解法:0,试确定,解答“已知2-=且1>, yxxy 2. ∵解:+-=2,∴=yyx 1. -∴>+21.>,∴又∵>1 yy 0.①,∴-又∵<01<<x ②<2.同理得:1<xy 2. +<+由①+②得-11+<0yxyx 2. +<<∴+的取值范围是0 请按照上述方法,完成下列问题:yxxxyy 的取值范围是1,23-(1)已知=,且><,则+.____________axaxxyyy 成立,求=,若1<-,1已知(2)>-结果用含(的取值范围+)的式子表示.。

泉州市 2019 届初中毕业班中考模拟试卷(三)数学试题参考答案及评分标准

泉州市 2019 届初中毕业班中考模拟试卷(三)数学试题参考答案及评分标准

2019年泉州市初中毕业班中考模拟(三)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题4分,共40分)1.B 2.A 3.C 4.D 5.C 6.A 7.A 8.C 9.B 10.B 二、填空题(每小题4分,共24分)11.()()33−+x x x 12. 2113.9 14.> 15.π 16.27 三、解答题(共86分) 17.(本小题8分)解:原式ab b ab b ab a 22222+−−+−=………………………………………………………………4分ab a −=2………………………………………………………………………………………5分当12,12−=+=b a 时, 原式()()()1212122−⨯+−+=………………………………………………………………7分1223−+=222+=……………………………………………………………………………………8分 18.(本小题8分)解:去分母得:()()1321−=−+x x x …………………………………………………………………2分331−=+−x x ……………………………………………………………………4分44=x1=x ………………………………………………………………………6分经检验:1=x 为增根,……………………………………………………………………………7分 ∴原方程无解. ………………………………………………………………………………………8分 19.(本小题8分)解:已知:如图AB CD ⊥于D ,BD AD =,求证:CB CA =.……………………………………………………………3分 证明:∵AB CD ⊥,∴︒=∠=∠90CDB CDA .……………………………………………5分BCD A在ACD ∆和BCD ∆中,∵⎪⎩⎪⎨⎧=︒=∠=∠=DC DC BDC ADC BD AD 90 ∴ACD ∆≌BCD ∆(S A S ..), ……………………………………………………………………7分 ∴CB CA =. …………………………………………………………………………………………8分20.(本小题8分)证明:(1)依题意得:()m m m m m 1618162241422−++=⨯⨯−+=∆ ……………………………………2分 ()22141816−=+−=m m m∵()0142≥−m ,∴方程总有实数根. ……………………………………………………………………………………4分 (2)解方程()021422=++−m x m x 得: ()41414−±+=m m x ,∴m x x 2,2121==. ………………………………………………………………………………………6分 ∵方程的两个根中只有一个根小于1,1211<=x , ∴12≥m , 即21≥m .…………………………………………………………………………………………………8分 21.(本小题8分)解:(1)如图线段AD 为所求作图形;………………………………………3分 (2)过C 作CE ∥DA 交BA 延长线于E ,∴DCBDAE AB =,ACE DAC ∠=∠,AEC BAD ∠=∠ ………………5分 又∵AD 平分BAC ∠,CAD BAD ∠=∠ ∴AEC ACE ∠=∠∴AE AC =…………………………………………………………7分 ∴CDBDAC AB =…………………………………………………………8分 22.(本小题10分)解:(1)9,3; ……………………………………………………………………………………………2分 (2)略……………………………………………………………………………………………………4分 (3)第一次调查,平均每天未吃早餐人数为 ()3958475635201⨯+⨯+⨯+⨯+⨯⨯=x …………………………………………………………7分7140201=⨯= ……………………………………………………………………………………9分 ∴30150010057=⨯−(人) 答:通过宣传教育后,这所学校每天约还有30人未吃早餐. ………………………………………10分 23.(本小题10分) 解:(1)连接OD , ∵AB 为⊙O 直径∴︒=∠90ADB , ………………………………………………………………………………………1分 ∵AC AB =,∴CD BD =,……………………………………………………………………………………………2分 又∵OB OA =, ∴OD ∥AC , ∵AC DF ⊥, ∴DF OD ⊥,∴FG 是⊙O 的切线;…………………………………………………………………………………4分 (2)连接BE . ∵AB 为⊙O 直径, ∴︒=∠90BEA .∴BE ∥GF ,DF 为BCE ∆中位线, …………………………………………………………………5分 ∴3==EF CF . ∵5=BG ,EFAEBG AB =, …………………………………………………………………………………6分 ∴35AEAB =, 设x AE x AB 3,5==,由勾股定理得:x BE 4=,x DF 2=. ∵,90︒=∠=A ∠=∠DFC FD CDA 即︒=∠+∠=∠+∠90C CDF CDF ADF ∴ADF C ∠=∠.∴ADF ∆∽DCF ∆, ……………………………………………………………………………………8分 ∴AF DFDF CF =, ∴33223+=x xx , 解得:43,321−==x x (舍去), ∴155==x AB .…………………………………………………………………………………………10分24.(本小题13分)解:(1)法一:∵︒=∠60BAC ,AB AC = ∴ABC ∆为等边三角形,∴BC AC AB ==,︒=∠=∠=∠60ABC ACB BAC , 由翻折可得:︒=∠=∠60ACD ACE , ∴BAC ACE ∠=∠,∴AB EG //.……………………………………………………………………………………………………2分 同理可得AC FG //,∴四边形ABGC 为平行四边形,………………………………………………………………………………3分 又AC AB =,∴四边形ABGC 为菱形.………………………………………………………………………………………4分 法二:∵︒=∠60BAC ,AB AC = ∴ABC ∆为等边三角形,∴BC AC AB ==,︒=∠=∠60ABC ACB , 由翻折可得:︒=∠=∠60ACD ACE , ∴︒=∠60BCG , 同理可得︒=∠60CBG , ∴GBC ∆为等边三角形,∴BC BG CG ==,……………………………………………………………………………………………2分 又BC AC AB ==, ∴AC CG BG AB ===,∴四边形ABGC 为菱形.……………………………………………………………………………………4分 (2)过点A 作EF AM ⊥交EF 于点M , ∴︒=∠=∠90FMA EMA .由翻折可得:CAE CAD ∠=∠,FAB DAB ∠=∠,AF AE AD ==, ∴EM EF 2=,∴()︒=︒⨯=∠=∠+∠=∠+∠=∠+∠=∠1206022222CAB DAB CAD DAB CAD DAF EAD EAF , ∴︒=︒−︒=∠=∠302120180AFM AEM .……………………………………………………………………6分 在Rt AME ∆中,AE AE AEM AE EM 2330cos cos =︒⋅=∠⋅=, ∴AD AE AE EM EF 332322==⎪⎪⎭⎫⎝⎛==,……………………………………7分 ∴当AD 取最小值时,EF 最小.又∵当BC AD ⊥时,AD 取得最小值,即EF 最小.∴当EF 最小时,BC AD ⊥. ……………………………………………………8分M HECDBA(3)由(2)可知BC AD ⊥, ∴︒=∠=∠90ADB ADC .∵EAC DAC ∠=∠,FAB DAB ∠=∠,∴()︒=︒⨯=∠=∠+∠=∠12060222BAC DAB DAC EAF ,……………………………………………………9分又AF AE AD ==,∴︒=−=∠=∠︒︒302120180AFE AEF ,又︒=∠=∠90ADB AFB ,∴︒=︒−︒=∠603090BFH ,…………………………………………………………10分 ∴BAC BFH ∠=∠, 又ABC FBH ∠=∠, ∴BFH ∆∽BAC ∆, ∴BC BHBA BF =, ……………………………………………………………………………………………11分 ∴BCBABH BF =, 又CBH ABF ∠=∠,∴ABF ∆∽CBH ∆,………………………………………………………………………………………12分 ∴︒=∠=∠90AFB CHB ,即AB CH ⊥. ……………………………………………………………………………………………13分 25.(本小题13分)解:(1)把),(1y m A 代入12++−=m x y 中,得:1121+=++−=m m m y ,…………………………………1分 ∴)1,(+m m A ……………………………………………………2分 把)1,(+m m A 代入)0(>=k xky 中, 得:m m m m k +=+=2)1(.………………………………………3分 (2)法一:若1=m ,则反比例函数为xy 2=,一次函数为3+−=x y , 如图,过点P 作AB PM ⊥于点M ,过点P 作y PN //轴交直线AB 于点N ,在Rt PQM ∆中,︒=∠90PMQ ,︒=∠30PQM ,∴PM PQ 2=. …………………………………………………4分 ∵直线3+−=x y 与y 轴所夹的锐角为︒45,又y PN //轴, ∴︒=∠45PNM .在Rt PMN ∆中,︒=∠90PMN ,︒=∠45PNM ,HECDBA∴PN PM 22=, ∴PN PQ 2=. …………………………………………5分 设点)0)(2,(>x xx P ,则)3,(+−x x N ,令t PN =∴xx t 2)3(−+−=,整理得()0232=+−+x t x , ∴()0832≥−−=∆t ,即()()22223≥−t ,……………………………………………………………6分 又∵3)2(32)3(<+−=−+−=xx x x t , ∴223−<−t ,即223−≤t , ∴PN 的最小值为223−, 又∵PN PQ 2=,∴PQ 的最小值为423−.………………………………………………………………………………7分 法二:如图,同上可得PN PQ 2=. …………………………………………………………………………5分 设直线AB 平移后的表达式为b x y +−=, 联立⎪⎩⎪⎨⎧+−==bx y xy ,2,得022=+−bx x , 由0=∆,解得22=b 或22−=b (舍去),…………………………………………………………6分 即直线22+−=x y 与双曲线xy 2=在A 、B 之间曲线部分有且只有一个交点, 当点P 与该交点重合时,PN 最大, 此时223−=PN , 又PN PQ 2=,∴PQ 的最大值为423− (7)(3) 联立⎪⎩⎪⎨⎧++−=+=122m x y xm m y ,得0)12(22=+++−m m x m x , 解得m x =1,12+=m x …………………………………………………………………………………9分 ∴1+=m n ,∴当n x m <<时,即为1+<<m x m . ∵()2314+<−m mx x , 又10+<<<m x m , ∴上式化为()xm m x2214+<−.…………………………………………………………………………10分 令函数m x y 421−=,函数()xm y 221+=,其中10+<<<m x m , ∵二次函数1y 的对称轴为y 轴且开口向上,∴当10+<<<m x m 时,函数值1y 随着x 的增大而增大,此时,函数值1y 的最大值()124122+−=−+<m m m m S .……………………………………………11分 ∵0)1(2>+m ,∴当10+<<<m x m 时,反比例函数2y 随着x 的增大而减小, 此时,函数值2y 的最小值()1112+=++>m m m T .………………………………………………………12分由题意得1122+≤+−m m m , ∴m m 32≤,又0>m ,∴30≤<m . ……………………………………………………………………………………………13分。

2019年福建中考数学试题(解析版)

2019年福建中考数学试题(解析版)
先根据二次函数解析式确定抛物线的图象开口方向,再结合图象分别计算出自变量为0, 2 和 2的函数值,再比较函数值的大小.
{分值}4 {章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:二次函数y=ax2+bx+c的性质} {考点:二次函数的系数与图象的关系} {难度:3-中等难度} {类别:易错题}
{答案} B
{解析}本题考查了多边形的内角和,解题的关键是多边形的外角和公式的记忆.先由正多边形
的一个外角是36゜,然后再套入 n 边形外角和公式列方程计算即可.由多边形的外角公式,得
36°n=360°, n =10,故选择 B.
{分值}4
{章节:[1-11-3]多边形及其内角和}
{考点:多边形}
{考点:多边形的内角和}
A. x+2x+4x=34 685
B. x+2x+3x=34 685
C. x+2x+2x=34 685
11 D. x+ x+ x=34 685
24
{答案}A
{解析}本题考查了一元一次方程的应用,关键是审清题意,抓住等量关系列方程即可
{分值}4
{章节:[1-3-3]实际问题与一元一次方程}
{考点:一元一次方程的应用(其他问题)}
{题目}14. (2019年福建)在平面直角坐标系xOy中,□OABC的三个顶点O(0,0)、A(3,0) 、
B(4,2),则其第四个顶点是是_______. {答案} (1,2) {解析}本题考查了用样本估计总体,解题的关键根据喜欢甲图案的学生60名和所占的百分比 60 ×100%=60%,进而用样本估计总体2000×60%=1200。 100 {分值}4 {章节:[1-10-1]统计调查} {考点:样本的代表性} {考点:用样本估计总体} {类别:常考题} {难度:2-简单}

2019年福建省中考数学试卷与解析

2019年福建省中考数学试卷与解析

2019年福建省中考试卷及解析、选择题1•计算2斗(一 1尸的姑果是(、 A .5B.4C 3D.22•北京故宫的占地面駅约为720 0曲,将了20 00囲科芋记款进表示为(:>. A.72xl04B.7.2xl (pC.7.2«10eD, 0.72^0®3.下列團形申,一定既是抽对蘇團形又逻申心对称困形的是(). A.等过三角形 B 直角三用形C •平行西边形 D.正君形至已知正寥边彫的亠金外角为3护,剧该止多边形鬧边数为().A.12B.10C.ED.66一如图是某班甲、乙、丙三位同学査近弐次数学成绩及其曲在班级相应平均分的折践统计團,則下列 割斷措误的是().I1CXA 甲的敖学成绩為于淮级平均分,且成纷比较穂定 旷B 一乙的戲学咸绩在班圾平均分附近淡动’且比丙好 MC 芮的戟学戒绩低于班綴年均分,但嚴綺連次撮嘉 “D 一就甲r J 丙三个人而言,匸的歡芋成绩戴不穩(7.下列运牡正蹦的爰(>,^.(1<1~ aE_(2出戶亦C. a~^a= d口一(口子一(一J )M )8.《增删算法统宗》记载:“有金学生资性好,一部孟子三日了,琴日墙诟一倍多,问若毎B 读多少?9 其大意是:青金学生天赍廳三天读宪一部《孟子》,每天闻读的字数是前一天的两倨,问他莓 天各读多少个字?已鈕《孟子》-书共有34阴玲字十设他第一天读x 个字,则下西所列方程正璋的 是()-A.A +2X +4尸弭 685B.X +2J +3J X =34 685C. rl-2.r+2v=34 685D. -d —JT + — x=34 6852 49如團,尸八 出是0O 切嬪.,土 B 为切点,点(?在G )O 上, 且ZACB=55^ 则N/V 出等于(). A.55c B.70d CU0& D125c壬视万向(第他10.若二次函敕的圏象经述AQn』)、巩。

莎卜C(3—injt). 0(^2 :刃、E(2:yQ『则y“兀、旳的大小芙系是().A. >i<护卫 E.厘弋邸卫U y3<护月 D. y2<护月二、填空题(每小题4分,共24分)11.____________________ 因式分解:A2-9-■*4 - ~亠亠、、/t C liL2.如图,数轴上仏呂两点所表示的数分别走一4和2, ---- ---------------x——L*_4 u 2点JT是线段川?的中点,則点「所羞示的数是___________ . (第12□ ■某校挺集校运会合徽,遲遶出甲、乙、丙三种图案-为了解轲4+圏案更登欢迎,随机调蚩了该校100名学生,其中60名同学專说甲因案,芝该校共有2000人,權据所学妁统计知识可以倍计该校喜欢1F图案的学生有人.14.中在平面直甬生昏系疋v中.n()ABC的三个顶点0(00)、川30)、0(4,2),则其弟四个顶点是是—・15.如图,边长为2的丘方形ABCD申心与半径为2的0O的国心董合,E、F分别是E1的延悅与0O的交点剧图中阴影部分的面积是 ________ .(结杲保蛰;T)316,如图,菱形ABCD顶点J在例函數尸-(.v>0)的图象上,函数x尸±0tA3, Q0)的图象关于直茨片匚对称#且经过点以D x悶点.若八B=2, ZDAB=30°,则£的值为_______________________ ・三、解答题(共X6分)17-悔小题满分&分)解方旌组;$一2 '|2.r+v = 4(M15 (第1618.准小题满分8分)如因*点&厂分别是拒形ABCD的边皿、CD上的一点+且Dr=BE.求证:AF=CE-19.体小题满分呂分)先化简,再求值:a—i)F&—主二2),其中x-vT+i20*爲小题满分8分)如图,已知△ABC为和点(1)以点/T为顶点求作色AEC气使△片迟Cs^ ABC.(尺规作图,保留作團痕迹,不写作法)(2)设D. E. F分别是卫ABC三边人風BC. AC的中点,D\ E\F分剂是你所作的仏A7TC'三边ATT、B'C\ A r Cr的中点,求证:氐DEFS& D£F・21.界』卜题港分$分)A RtAABC中,ZABC-90Q f Z/?AC-30,J将厶ABC点/!顺时豺旗L轻一定的南更u得到△片E0 点B、C的对应点分别是氐D (I)如图1,書点Q恰好在片厂上甘<求zrnr的度数;Q)如因2,若戊之小时*点尸是边申点,求证:V9z4^ BFDE是平行四边形.22■(本小懸満分10分)某工厂为费彻落实“绿水痛山就是金山锻山叫勺夏最遲念,投资组蹇了日茂贰处理蚩沟加吨的厦爪处邂车间,討该厂工业隕术谨行无害化处理.伸雀盍工厂¥产炖棧的扩丸」该牟间捋常无法完氏当天匚业废氷的处湮倍务,需姜将超出日暖水处理蚤的废水立给第三方企业处理.已知该车间处理厦於,毎天需固定成本⑷元,并且年处理一吨废水还需其他费用&元:将废水交给第三方企业处理,每吨需支付12无.根据记氧5^21 S,该厂产生工业废水笳吨+共花费废水处遽费370乙(1)求该牟间的日废水处理量期;(2)为实现可持渎发展*走綾色发曳之璐,工厂合理控鬣了生产规橫’使殍辛天废水赴理的平均赞用不超过JO元伽打试计算该厂一天产生的工业废水量的范亂2王(本小題满分10分)某种机器使用期为三年*买方在购进机器甘・可臥给各台机券分别一次性额外购买若干次錐修服务* 每次维修服务费为2000元.毎台机器在使用期间,如果维傷次数未超过购机时购买的维修腹务次数,毎次实陥绒修时还需向維修人员支甘工时费500元;如果维修次歎趨辻机时购买的线修服务次數,超出部分每矢雉修时需支付维修服务费MOO元,但无需支ft工时费某小司计划购窝1台该种机送,为决箕在购买机器时应同时一炭性额外购买几次维修服务,喪集并整理了100台这种机需在三年使用期內的维修次数,整理得下表;⑴以这100台机器为样直,佶计"台机器在二车使用取内维修次戟不尢于RT'的慨率;(2)试以这100杠器维修費用的平均數作为决策依据,说明购买1台该机器的同时应一次性额外购10次迁是11次维修狼务?24.宙小题满分12分)如图,四边形ABCD内接于0。

福建省泉州市2019年中考数学质检试题卷(含答案)

福建省泉州市2019年中考数学质检试题卷(含答案)

2019年年泉州市初中学业质量量检查数学试题(试卷满分:150分:考试时间:120分钟)⼀一、选择题:本⼤大题共10⼩小题,每⼩小题4分,共40分1.在-1、2、、这四个数中,⽆无理理数是()A.-1B.2C.D.2.下列列运算结果为a 3的是()A.a+a+aB.a 5-a 2C.a·a·aD.a 6÷a 23.⼀一个⼏几何体的三视图如图所示,则这个⼏几何体是()4.⼈人体中红细胞的直径约为0.0000077m ,将数字0.0000077⽤用⽉月科学记数法表示为A.7.7×10-5B.0.77×10-5C.7.7×10-6D.77×10-75.下列列事件中,是必然事件的是()A.从装有10个⿊黑球的不不透明袋⼦子中摸出⼀一个球,恰好是红球B.抛掷⼀一枚普通正⽅方体骰⼦子所得的点数⼩小于7C.抛掷⼀一枚普通硬币,正⾯面朝上D.从⼀一副没有⼤大⼩小王的扑克牌中抽出⼀一张牌,恰好是⽅方块6.⼩小王和⼩小丽下棋,⼩小王执圆⼦子,⼩小丽执⽅方⼦子,如图是在直⻆角坐标系中棋⼦子摆出的图案,若再摆放⼀一圆⼀一⽅方两枚棋⼦子,使9枚棋⼦子组成的图案既是轴对称图形⼜又是中⼼心对称图形,则这两枚棋⼦子的坐标分别是()A.圆⼦子(2,3),⽅方⼦子(1,.3) B.圆⼦子(1,3),⽅方⼦子(2,3)C.圆⼦子(2,3),⽅方⼦子(4,0)D.圆⼦子(4,0),⽅方⼦子(2,3)7.关于x 的⼀一元⼆二次⽅方程x 2-mx -1=0的根的情况是()A.有两个不不相等的实数根B.有两个相等的实数根C.⽆无实数根D.不不能确定8.⼀一次函数y =-2x +1的图象不不经过()A.第⼀一象限B.第⼆二象限C.第三象限D.第四象限9.如图,抛物线y=ax 2+bx+c (a >0)过原点O ,与x 轴另⼀一交点为A ,顶点为B ,若△AOB 为等边三⻆角形,则b 的值为()A.-B.2C.-3D.-4D .C .A .B .(第3题)(第6题)(第9题)10.如图,点E 为△ABC 的内⼼心,过点E 作MN ∥BC 交AB 于点M ,交AC 于点N ,若AB =7,AC =5,BC =6,则MN 的⻓长为()A.3.5B.4C.5D.5.5⼆二、填空题:本⼤大题共6⼩小题,每⼩小题4分,共24分11.计算:()-1+(-1)°=________.12.若⼀一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为________.13.在五边形ABCDE 中,若∠A +∠B +∠C +∠D =440°,则∠E =________.14.若是⽅方程组的解,则a +4b =________.15.如图,PA 切⊙O 于点A ,点B 是线段PO 的中点,若⊙O 的半径为,则图中阴影部分的⾯面积为________.16.在平⾯面直⻆角坐标系中,点A 的坐标为(4,0),点B 为y 轴上的⼀一动点,将线段AB 绕点B 顺时针旋转90°得线段BC ,若点C 恰好落在反⽐比例例函数y =的图象上,则点B 的坐标为________.三、解答题:本⼤大题共9⼩小题,共86分,解答应写出⽂文字说明,证明过程或演算步骤17.(8分)解不不等式组,并将解集在数轴上表示出来.18.(8分)先化简,再求值:(a +)÷,其中a =-2.(第10题)(第15题)19.(8分)如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.20.(8分)《杨辉算法》中有这么⼀一道题:“直⽥田积⼋八百六⼗十四步,只云⻓长阔共六⼗十步,问⻓长多⼏几何?”意思是:⼀一块矩形⽥田地的⾯面积为864平⽅方步,只知道它的⻓长与宽共60步,问它的⻓长⽐比宽多了了多少步?21.(8分)如图,在□ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.22.(10分)电器器专营店的经营利利润受地理理位置、顾客消费能⼒力力等因素的影响某品牌电脑专营店设有甲、⼄乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利利润如表1所示.现从甲、⼄乙两店每⽉月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量量,如表2所示.表1:四种款式电脑的利利润电脑款式A B C D利利润(元/台)160200240320表2:甲、⼄乙两店电脑销售情况电脑款式A B C D甲店销售数量量(台)2015105⼄乙店销售数量量(台)88101418试运⽤用统计与概率知识,解决下列列问题:(1)从甲店每⽉月售出的电脑中随机抽取⼀一台,其利利润不不少于240元的概率为_______;(2)经市场调查发现,甲、⼄乙两店每⽉月电脑的总销量量相当.现由于资⾦金金限制,需对其中⼀一家分店作出暂停营业的决定,若从每台电脑的平均利利润的⻆角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理理由.23.(10分)在平⾯面直⻆角坐标系中,反⽐比例例函数y=(x>0,k>0图象上的两点(n,3n)、(n+1,2n).(1)求n的值;(2)如图,直线l为正⽐比例例函数y=x的图象,点A在反⽐比例例函数y=(x>0,k>0)的图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D,记△BOC的⾯面积为S1,△ABD的⾯面积为S2,求S1-S2的值.24.(13分)如图,在菱形ABCD中,点E是BC边上⼀一动点(不不与点C重合)对⻆角线AC与BD相交于点O,连接AE,交BD于点G.(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆⼼心F(不不写作法和证明,保留留作图痕迹);(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;②记t=GF2+AG·GE,当AB=6,BD=6时,求t的取值范围.25.(13分)如图,⼆二次函数y=x2+bx-3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有⼀一定点D,其纵坐标为2,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求⼆二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不不是,请说明理理由;②若MT=AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT时,求y的最⼤大值与最⼩小值(⽤用含a的式⼦子表示).2019年福建省泉州市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题4分,共40分)1.D 2.C 3.D 4.C 5.B 6. A 7.A 8.C 9.B 10.B 二、填空题(每小题4分,共24分)11.3 12. 5 13.100 14.6 15. 233π− 16.()1,0或()3,0 三、解答题(共86分) 17.(本小题8分)解:解不等式①得:x ≥2− …………………………………………………………………………3分解不等式②得: 3<x ……………………………………………………………………………6分∴不等式组的解集是2−≤x 3<……………………………………………………………………8分 18.(本小题8分)解:原式aa a a a a +−÷−+−=2221212…………………………………………………………………1分()()()()111212+−+÷−−=a a a a a a ……………………………………………………………4分 ()()()()111212−++⋅−−=a a a a a a ……………………………………………………………5分()21−−=a a a ………………………………………………………………………………6分当2−=a 时,原式()2322122−=−−−−⨯−=…………………………………………………8分19.(本小题8分) 证明:法一:∵AB CD ⊥,AC BE ⊥,∴90BDC CEB ∠=∠=︒.……………………………………………………………………………2分 ∵AB AC =,∴ABC ACB ∠=∠.……………………………………………………………………………………3分 在BCD ∆与CBE ∆中,BDC CEB ∠=∠,DBC ECB ∠=∠,BC CB =,∴BCD ∆≌CBE ∆.……………………………………………………………………………………7分 ∴CE BD = . …………………………………………………………………………………………8分 法二:∵AB CD ⊥,AC BE ⊥,∴︒=∠=∠90BEA CDA .………………………………………………………………………2分 在ADC ∆与AEB ∆中,BEA CDA ∠=∠,A A ∠=∠,AC AB =∴ADC ∆≌AEB ∆. ……………………………………………………………………………………6分 ∴AE AD =∴AE AC AD AB −=−,∴CE BD = . ……………………………………………………………………………………………8分 20.(本小题8分) 解:设矩形的长为x 步,则宽为()x −60步,依题意得:……………………………………………1分()86460=−x x ,……………………………………………………………………………………5分整理得:0864602=+−x x解得:36=x 或24=x (不合题意,舍去)………………………………………………………7分∴24366060=−=−x (步) ∴122436=−(步) 答:该矩形的长比宽多12步. ……………………………………………………………………………8分 21.(本小题8分)(1)由折叠性质得:CE BC = .…………………………………………………………………………1分 在□ABCD 中,AD BC =,BC ∥AD ,∴AD CE =, ……………………………………………………………………………………………2分 又AD ∥CE ,∴四边形ACED 是平行四边形. …………………………………………………………………………3分 ∵BC AC ⊥, ∴︒=∠90ACE . ∴□ACED 是矩形. ………………………………………………………………………………………4分 (2)法一:在矩形ACED 中,4==DE AC ,︒=∠=∠90ADE DEC . ∵︒=∠90ACE ,由折叠性质可知:B 、C 、E 三点共线 ∴633=+=+=CE BC BE . 在BED Rt ∆中,由勾股定理得:132524622==+=BD .………5分在ABC Rt ∆中,同理可得:5=AB . 如图1,过点A 作BD AF ⊥于点F , ∴DE AD AF BD S ABD ⋅=⋅=∆2121,D∴432113221⨯⨯=⋅⨯AF ,13136=AF . ……………………………………………………6分 在AFB Rt ∆中,65136513136sin ===∠AB AF ABF .………………………………………………8分 法二:由(1)得︒=∠=∠90ACB BED ,4==AC DE ,3==BC CE , 在BED Rt ∆中,由勾股定理,得:132********==+=+=DE BE BD ,在ABC Rt ∆中,同理可得:5=AB .在□ABCD 中,242121=⨯==AC AO ,131322121=⨯==BD BO ……………………5分如图2,过点O 作AB OF ⊥于点F ,则︒=∠90OFA . ∵BAC OAF ∠=∠,︒=∠=∠90BCA OFA , ∴OAF ∆∽BAC ∆,∴BA OA BC OF =,即523=OF ,∴56=OF ,………………………………6分在OFB Rt ∆中,651361356sin ===∠OB OF ABD .……………………8分 22.(本小题10分) 解:(1)103;……………………………………………………………………………………………3分 (2) 甲店每售出一台电脑的平均利润值为:204505320102401520020160=⨯+⨯+⨯+⨯(元), ………………………………………………………………………………………………………6分 乙店每售出一台电脑的平均利润值为:248501832014240102008160=⨯+⨯+⨯+⨯(元), ………………………………………………………………………………………………………9分 204248> ,即乙店每售出一台电脑的平均利润值大于甲店, 又两店每月电脑的总销量相当,∴应对甲店作出暂停营业的决定. ………………………………………………………………10分 23.(本小题10分)解:(1)将)3,(n n 和)2,1(n n +代入x k y =得:n k n =3,12+=n kn , ………………………1分 ()1232+=∴n n n ,……………………………………………………………………………………2分解得2=n 或0=n (舍去),2=∴n .…………………………………………………………………………………………………3分 (2)由(1)得:点)6,2(在反比例函数)0,0(>>=x k xky 的图象上,(第21题图2)将点()6,2代入x ky =,得12=k . ∴反比例函数为xy 12=.………………………………………………………………………………4分 设OC a =,又点B 在直线x y =,∴点B ()a a ,.又x BC ⊥轴,∴BOC ∆为等腰直角三角形. ∵l AB ⊥,BC AD ⊥,∴ABD ∆为等腰直角三角形. …………………………………………………………………………6分 设b BD =,则b AD =, ∴点()b a b a A −+,. 将点()b a b a A −+,代入x y 12=,得ba b a +=−12, 即1222=−b a ,………………………………………………………………………………………8分又2121a S =,2221b S =, ()61221212221=⨯=−=−∴b a S S .…………………………………10分24.(本小题13分)(1) 如图1,⊙F 为所求作的圆;…………………………………………3分(若有其它作法,可参考以上评分标准) (2) ①证明:法一:如图2,连接AF .∵四边形ABCD 为菱形,∴BD AC ⊥.∴ACB DBC ∠−︒=∠90.…………………………………………………4分∵FE FA =,∴FAE AEF ∠=∠,∴()AFE AFE AEF ∠−︒=∠−︒=∠219018021.…………………………………………………5分 又AFE ACB ∠=∠21,∴ACB AEF ∠−︒=∠90,……………………………………………………………………………7分又∵ACB DBC ∠−︒=∠90,∴DBC AEF ∠=∠.……………………………………………………………………………………8分 法二:如图2,连接AF ,在菱形ABCD 中,CD CB =,AC 平分BCD ∠,∴ACB BCD ∠=∠2.………………………………………………………4分 又ACE AFE ∠=∠2,∴AFE BCD ∠=∠.…………………………………………………………5分D(第24题图1)(第24题图2)在等腰三角形CBD 中,2180BCDCBD ∠−︒=∠,在等腰三角形FEA 中,2180AFEAEF ∠−︒=∠, ………………………………………………7分 ∴AEF CBD ∠=∠. …………………………………………………………………………………8分②法一:∵四边形ABCD 为菱形,∴CBD ABD ∠=∠,OC AO =,33362121=⨯===BD DO BO . ………………………9分 在ABO Rt ∆中,3)33(62222=−=−=BO AB AO .又∵FGE AGB ∠=∠,FEG ABG ∠=∠,∴ABG ∆∽FEG ∆, ∴GEBGGF AG =,∴BG GF GE AG ⋅=⋅.………………………………………………………………10分 ∵FBE GEF ∠=∠,EFB GFE ∠=∠, ∴EFB ∆∽GFE ∆, ∴EFBFGF EF =, ∴2GF BF EF ⋅=, …………………………………………………………………………………11分 ∴GE AG GF t ⋅+=2=22)(EF BF GF BG GF GF BG GF GF =⋅=+=⋅+.在菱形ABCD 中,BD AC ⊥,AF EF =≥AO ,∴2EF ≥9322==AO .如图3,当点F 与点O 重合时,AF 最小.∴当3==AO EF 时,t 的最小值为9. ……………………………………………………………12分 如图3,当点E 与点B 重合时,AF 最大.由题意可知:BF AF =,设x AF =,则x OF −=33, 由勾股定理得:222AF OF AO =+,即()222333x x =−+,解得:32=x .∴当32=x 时,t 的最大值为12∴9≤t ≤12…………………………………………………………13分 法二:如图4,设⊙F 的半径为r ,连接EQ 、AP 、AF . 在菱形ABCD 中,BD AC ⊥,则AF ≥OA ,即r ≥3.(第24题图3)(G(第24题图4)参考答案 第 6 页 共 8 页∵AQ =AQ ,∴APG QEG ∠=∠. 又PGA QGE ∠=∠,∴QEG ∆∽APG ∆,…………………………………………………………………………………10分 ∴AGQGPG EG =,即QG PG AG EG ⋅=⋅.……………………………………………………………11分 ∴()()2222222AF r GF r GF GF r GF r GF QG PG GF GE AG GF t ==−+=+⋅−+=⋅+=⋅+=. 如图4,当点F 与点O 重合时,AF 最小.∴当3=r 时,t 的最小值为9. ………………………………………………………………………12分 ......(以下同法一) 25.(本小题13分)解:(1)把点B ()0,3代入32−+=bx x y ,得:2−=b ,∴二次函数的解析式为:322−−=x x y ……………………………2分(2) ①DMT ∠为定值.…………………………………………………3分 理由如下:如图1,连接AD ,∵抛物线()413222−−=−−=x x x y ,∴抛物线的对称轴为直线1=x .又点D 的纵坐标为32,∴()32,1D .………………………………………………………………4分在322−−=x x y 中,令0=y ,则0322=−−x x ,解得:11−=x ,32=x ,∴()0,1−A .在AED Rt ∆中,3232tan ===∠AEDE DAE ,……………………5∴︒=∠60DAE ,∴︒=∠=∠1202DAE DMT ,∴在点T 的运动过程中,DMT ∠为定值︒120.………………………6分②解法一:如图2, ∵AD MT 21=,又MD MT =, ∴AD MD 21=,∵ADT ∆的外接圆圆心M 在AD 的中垂线上,(第25题图2)C(第25题图1)参考答案 第 7 页 共 8 页∴当点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,AD MD 21=.……………………7分 ∵()0,1−A ,()32,1D ,∴点M 的坐标为()3,0.………………………………………………8分解法二:如图3, ∵()0,1−A ,()32,1D ,∴线段AD 的中点P 的坐标为()3,0,32=AD .由题意得:圆心M 在AD 的中垂线上,设直线MP 交x 轴于点Q . ∴AD PQ ⊥,即︒=∠90APQ ,又︒=∠60DAQ , ∴︒=∠30PQA . 在OPQ Rt ∆中,3=OP ,330tan =︒=OPOQ ,即()0,3Q ,∴Q 与点B 重合.由()3,0P 、()3,0Q 可求得直线333+−=x y . ……………………………………………7分 设点⎪⎪⎭⎫ ⎝⎛+−333,m m M ,则1+=m HT ,()0,12+m T ,∵AD MT 21=,∴242121=⨯==AD MT . 作x MH ⊥轴于点H ,在MHT Rt ∆中,由勾股定理,得:222MT HT MH =+∴()22221333=++⎪⎪⎭⎫ ⎝⎛+−m m ,解得:0=m . ∴()3,0M .……………………………………………………………………………………………8分(3)如图4,作x MH ⊥轴于点H ,则AT HT AH 21==, 又a HT =,∴()0,1−a H 、()0,12−a T ………………………9分 ∵OH ≤x ≤OT ,又动点T 在射线EB 上运动, ∴0≤1−a ≤x ≤12−a , ∴0≤1−a ≤12−a ,∴a ≥1,∴12−a ≥1.…………………………………………10分(第25题图3)C(第25题图4)参考答案 第 8 页 共 8 页(i )当()⎩⎨⎧−−≥−−≥−11211112a a a ,即1≤a ≤34时,当1−=a x 时,()()a a a a y 4312122max −=−−−−=;当1=x 时,4min −=y .………………………………………………………………………………11分(ii )当()⎪⎩⎪⎨⎧−−<−−>−≤−<11211112110a a a a ,即a <34≤2时, 当12−=a x 时,()()a a a a y 8431221222max −=−−−−=;当1=x 时,4min −=y .…………………………………………………………………………………………………………12分 (iii )当11>−a ,即2>a 时,当12−=a x 时,()()a a a a y 8431221222max −=−−−−=.当1−=a x 时,()()a a a a y 4312122min −=−−−−=.…………………………………………………………………………………………………………13分。

福建省泉州市2019秋南安初二年期中考数学科答案

福建省泉州市2019秋南安初二年期中考数学科答案

南安市2019—2020学年度上学期初中期中教学质量监测初二数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确作完该步应得的累计分数.(四)评分最小单位是1分,得分或扣分都不出现小数.一、选择题(每小题4分,共40分).1.D ; 2.C ; 3.B ; 4.A ; 5.C ;6.D ; 7.C ; 8.B ; 9.A ; 10.A .二、填空题(每小题4分,共24分).11、512; 12、3; 13、2;14、5; 15、2244m mn n ++; 16、3三、解答题(10题,共86分).17.(8分)5(4)-- …………………………………………………6分1 ………………………………………………………8分18.(8分)解:原式=22322969y x xy y x -- ……………………………………6分 =36xy - ……………………………………………………8分19.(8分)解:(1)原式=2(9)x x -+ …………………………………………2分=(3)(3)x x x +- ……………………………………4分(2)原式=22(69)a x x -+ ……………………………………6分=22(3)a x - …………………………………………8分20.(8分)解:原式=32222324248x x y xy x y xy y ++--- ……………………4分 =338x y - ………………………………………………………6分 当1x =-,12y =时, 333318(1)8()2x y -=--⨯ …………………………………………7分 =112--=- ……………………………………………8分21.(8分)解:(1) 4 , 40 ………………………………4分(2)1.99 ……………………………………………………………6分(3)10000 ……………………………………………………………8分22.(10分)解:(1)16 …………………………………………………………………2分(2)333b c b c +=⋅ ……………………………………………………4分58=⨯40= ……………………………………………………6分(3)233a b -=2333a b ÷ ………………………………………………7分=23(3)(3)a b ÷ ……………………………………………8分=2345÷ =16125 ……………………………………………………10分 23.(10分)解:(1)∵2236108=-,∴36是奇巧数. ……………………………………………………2分设两个连续偶数为m ,2m +(n 为偶数),则22(2)50m m +-=,解得11.5m =(不符合题意)∴50不是奇巧数. …………………………………………………4分(2)是. …………………………………………………………………5分理由如下:∵22(22)(2)n n +-=224844n n n ++- ………………………8分 =84n + ………………………………9分=4(21)n +∴这两个连续偶数构造的奇巧数是4的倍数 ………………………10分24.(13分)解:(1)2 4 6; ………………………………………………3分(2)log a MN ………………………………………………………………4分 设log a M x =,log a N y =,则x a M =,y a N = ………………………………………………5分∴x y x y M N a a a +⋅=⋅=, …………………………………………6分 根据对数的定义, log a x y MN +=,即log log log a a a M N MN += ……………………………………7分(3)(方法一):log 9log (33)a a =⨯ …………………………………………………8分log 3log 3a a =+ ……………………………………………9分5510=+= …………………………………………………10分log 27a =log (93)a ⨯ ………………………………………………11分=log 9log 3a a + ……………………………………………12分=10515+= …………………………………………………13分(方法二):由log 35a =,得53a =,∵5510933a a a =⨯=⋅=,5551527333a a a a =⨯⨯=⋅⋅=∴根据对数的定义, log 910a =,log 2715a =25.(13分)解:(1)ab b a b a 2)(222++=+ ………………………………… 3分备注:或者ab b a b a 2)()(222=+-+,)(2)(222b a ab b a +=-+(2)(法一):设b m a m =-=-2019,2020 ,则ab m m =--)2019)(2020(,221,4039a b a b +=+= ……… 4分∵ab b a b a 2)(222++=+∴ a b 2403912+= …………………………………………………… 6分∴ 2019-=ab ……………………………………………………… 7分 ∴)2019)(2020(--m m 2019-= …………………………………… 8分(法二):∵ab b a b a 2)(222++=+[])2019)(2020(2)2019()2020()2019()2020(222--+-+-=-+-∴m m m m m m………………………………………………………………………… 5分∴ )2019)(2020(2403912--+=m m …………………… 7分∴)2019)(2020(--m m 2019-= ………………………………… 8分(3)设正方形EFGH 的边长为x ,则x NG x PG -=-=32,8……… 9分∵ CQGN PBNG APGM S S S S 正方形长方形正方形阴++=2∴22)32()32)(8(2)8(x x x x S -+--+-=阴………………… 10分∵ab b a b a 2)(222++=+∴ []2)32()8(x x S -+-=阴 ………………………………………… 12分 224=576= ……………………………………………………………… 13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省泉州市2019年中考数学试题
一、选择题(每小题3分,共21分) 1、-3的绝对值是( )。

A.3
B.-3
C.
D.
2、
的结果是( ) A. B. C. D. 3、不等式组的解集是( )
A.x 2
B.x>1
C.1<x 2
D.无解 4、如图,AB 和⊙O 相切于点B ,,则的大小为( ) A.15 B.30 C.45 D.60 5、一组数据:2,5,4,3,2的中位数是( )
A.4
B.3.2
C.3
D.2
6、如图,圆锥地面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为216的扇形,则r 的值为( ) A.3 B.3 C.3 D.6
7、如图,已知
点A(-8,0)、B(2,0),点C 在直线上,则
使△ABC 是直角三角形的点C 的
个数为( )。

A.1
B.2
C.3
D.4
二、填空题(每小题4分,共40分) 8、27的立方根是___________.
9、我国的陆地面积约为9 600 000平方千米,把9 600 000用科学计数法表示为________________. 10、因式分解:=______________.
3
1
-
313
2)(y x 3
5
y x y x 6
3
1-
3
6y x ⎩
⎨⎧≤>-2,
01x x ≤≤0
60=∠AOB A ∠0
ππ4
4
3
+-=x y 2
-1x
11、如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若BC=8,则DE 的长为________. 12、十边形的外交和是________. 13
、计算:
=_________. 14、如图,在Rt△ABC 中,E 是斜边AB 的中点,若AB=10,则CE=________.
15、如图,⊙0的弦AB/CD 相交于点E ,若CE :BE=2:3,则AE:DE=_______________.
16、找出下列图形中数的规律,依次,a 的值为____________.
17、如图,在四边形ABCD 中,AB//DC ,E 是AD
中点,EF BC 于点F ,BC=5 ,EF=3。

(1)若AB=DC ,则四边形ABCD 的面积S=_____________;
(2)若AB>DC ,则此时四边形ABCD 的面积_______S (用“>”或“=”或“<”填空)。

A.
解答题(共89分):在答题卡上相应题目的答题区域内作答。

18、(9分)计算:
1
m 3
1m m 3++
+⊥S '1
-0
1-520-2-3-)()(+÷+π
19、(9分)先化简,再求值:
,其中x=。

20、(
9分)如图,△ABC、△CDE 均为等腰直角三角形,,点E 在AB 上。

求证:△CDA≌△CEB
12.
(9分)A 、B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5.它们除了数
字外没有任何区别。

(1)随机地从A 中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜。

请问这样的游戏规则对甲乙双方公平吗?为什么?
22、(9分)近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书交于活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:
)1(422
+-+x x x )(20
90=∠=∠DCE ACB
(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度? (2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数。

23、(9分)已知反比例函数的图像经过点P(2,-3). (1)求该函数的解析式;
(2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n (n>0)个单位得到点,使得点恰好在该函数的图像上,求n 的值和点P 沿y 轴平移的方向。

24、(9分)某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销售量y (千克/天)与售价x (元/千克)的关系,如图所示。

(1)试求出y 与x 的之间的一个函数关系式; (2)利用(1)的结论:
①求每千克售价为多少元时,每天可以获得最大的销售利润。

②进口产品检验,运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?
P 'P
'
25、我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦。

你可以利用这一结论解决问题。

如图,点P 在MN (南北方向)为直径的⊙O 上,MN=8,PQ MN 交⊙O 于点Q ,垂足为H , PQ MN ,弦PC 、PD 分别交MN 于点E,F ,且PE=PF 。

(1)比较弧CQ 与弧DQ 的大小
(2)若OH=2,求证:OP//CD
(3)设直线MN 、CD 相交所成的锐角为,试确定cos =时,点P 的位置。

26、如图,在四边形ABCD 中,AB//BC ,,点P 在边AB 上。

(1)判断四边形ABCD 的形状并加以证明;
(2)若AB=CD ,以过点P 的直线为轴,将四边形ABCD 折叠,使点B 、C 分别落在点上,且经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形(保留作图痕迹,不必说明做法和理由); ②如果,那么为何值时,
⊥≠2αα2
3
C A ∠=∠C B ''、C B ''Q C B P ''0
60=∠C PB
AP
AB P B ⊥'。

相关文档
最新文档