磁场的基本物理量
磁场强度、磁通量及磁感应强度的相互关系及计算

磁场强度、磁通量及磁感应强度的相互关系及计算1. 磁场强度磁场强度(H)是指单位长度上的磁力线数目,用来描述磁场的强弱。
磁场强度是一个矢量量,具有大小和方向。
在国际单位制中,磁场强度的单位是安培/米(A/m)。
磁场强度的计算公式为:[ H = ]其中,N 表示单位长度上的磁极数目,I 表示通过每个磁极的电流,L 表示磁极之间的距离。
2. 磁通量磁通量(Φ)是指磁场穿过某个面积的总量。
磁通量也是一个矢量量,具有大小和方向。
在国际单位制中,磁通量的单位是韦伯(Wb)。
磁通量的计算公式为:[ = B A () ]其中,B 表示磁场强度,A 表示面积,θ 表示磁场线与法线之间的夹角。
3. 磁感应强度磁感应强度(B)是指单位面积上的磁通量。
磁感应强度用来描述磁场在某一点上的分布情况。
在国际单位制中,磁感应强度的单位是特斯拉(T)。
磁感应强度的计算公式为:[ B = ]其中,Φ 表示磁通量,A 表示面积。
4. 相互关系磁场强度、磁通量和磁感应强度之间存在紧密的相互关系。
根据法拉第电磁感应定律,磁通量的变化会产生电动势,从而产生电流。
因此,磁场强度和磁感应强度可以相互转化。
当电流通过导体时,会产生磁场。
这个磁场的磁感应强度与电流强度成正比,与导线的长度成正比,与导线之间的距离成反比。
因此,磁场强度、磁感应强度和电流之间也存在相互关系。
5. 计算实例假设有一个长直导线,长度为 1 米,电流为 2 安培。
求该导线产生的磁场强度和磁感应强度。
首先,根据磁场强度的计算公式,可以求出导线产生的磁场强度:[ H = = = 2 ]然后,假设在导线附近有一个平面,面积为 1 平方米。
根据磁感应强度的计算公式,可以求出该平面上的磁感应强度:[ B = = = 2 ]因此,该导线产生的磁场强度为 2 A/m,磁感应强度为 2 T。
6. 总结磁场强度、磁通量和磁感应强度是描述磁场的基本物理量。
它们之间存在相互关系,可以通过相应的计算公式进行计算。
地磁

第一节 地球的磁场
一 、磁场的基本物理量 磁化率
M H
称为介质的磁化率。 磁化率表示物质磁化的难易程度。 值越大,说明越容易磁化。由于值是表 示岩石磁性强弱的物理量,所以它是磁法 勘探的物性依据。
第一节 地球的磁场
一 、磁场的基本物理量 物质的磁性:反磁性、顺磁性、铁 磁性
反磁性:磁化率很小,可看成无磁性物质。(1~-2)*10-6CGSM。岩盐、石油、方解石 顺磁性:磁化率(0~500 )*10-6CGSM。黑云母、 辉石、褐铁矿。 铁磁性:几千~几百万个10-6CGSM。只有铁、 镍、钴以及它们的化合物、合金,铬、锰合金。
2M s 当x 0时,Z max h2 若令Z a 0, 则 x0 h
水平圆柱体磁场
水平圆柱体磁场
任意走向水平圆柱体的磁异常剖面
水平圆柱 体不同有 效磁倾角 时的剖面 曲线
板状体磁场
A 薄板状体的磁场 B 厚板状体磁场 C 顺层磁化无限延深厚板
无限延深厚板(顺层磁化)的座标
第六节 磁性体的磁场
正问题的假设 (1)磁性体为简单的几何形状;(2) 磁性体是均匀磁化的;(3)天然剩磁与 感应磁化强度方向相同;(4)磁性体孤 立存在;(5)观测面是水平的。
第六节 磁性体的磁场
一、柱体磁场
单极的磁场
第六节 磁性体的磁场
单极的磁场
b.双极磁场
Z a Z a (-m) Z a ( m)
F 1 40 QmQm 0 3 γ
磁场强度
F 1 Qm H 3 γ Qm 0 40
第一节 地球的磁场
一 、磁场的基本物理量 磁感应强度(毕奥—沙伐尔定律)
0 ldl r B 3 4 L r
第一节磁场基本物理量何铁磁性材料

第一节磁场基本物理量和铁磁性材料一、电磁场的基本物理量为了更好地理解磁场的基本性质,介绍四个常用的基本物理量,即磁感应强度B、通Φ、磁导率μ、磁场强度H。
1、磁感应强度B磁感应强度B是反映磁场性质的参数.它的大小反映磁场强弱,它的方向就是磁场的方向.若在磁场中某一区域,磁力线疏密一致,且方向相同,则称该区域为匀强磁场或均匀磁场.在均匀磁场内,磁感应强度处处相同。
场内某点磁力线的方向即磁感应强度的方向,磁力线的多少就表示磁感应强度的大小。
一载流导体在磁场中受电磁力的作用,如图3-1所示。
电磁力的大小就与磁感应强度B、电流I、垂直于磁场的导体有效长度L成正比。
公式为F=BILsinα(3一1)式中,α为磁场与导体的夹角;B为磁感应强度,单位是特斯拉(T),工程上也曾用高斯(Gs)。
两个单位的大小关系是:1Gs=10-4 T。
若α=90°,则F=BIL (3一2)电磁力的方向可用左手定则来确定。
2、磁通Φ磁感应强度B和垂直于磁场方向的某一面积S的乘积称为该截面的磁通Φ。
若磁场为匀强磁场,Φ的大小为:Φ= BS (3-3)磁通Φ的单位为韦伯(Wb), 工程上过去常用麦克斯韦(Mx), 两个单位的大小关系是:1Mx=10-8Wb。
磁力线垂直穿过某一截面, 磁力线根数越多,就表明磁通越大;磁通越大就表明在一定范围中磁场越强。
由于磁力线是首尾闭合的曲线,所以穿入闭合面的磁力线数,必等于穿出闭合面的磁力线数,这就是磁通的连续性。
3、磁导率μ磁导率μ是用来衡量磁介质磁性性能的物理量。
如图3-2所示一直导体,通电后在导体周围产生磁场,在导体附近一处X点的磁感应强度B与导体中的电流I及X点所处空间几何位置、磁介质μ有关。
公式为:(3-4)由式(3-4)可知磁导率μ越大,在同样的导体电流和几何位置下,磁场越强,磁感应强度B越大,磁介质的导磁性能越好。
不同的介质,磁导率μ也不同,例如真空中的磁导率μ0=4π×10-7H/m,一般磁介质的磁导率μ与真空中磁导率μ0的比值,称为相对磁导率,用表示μr表示,即(3-5)磁导率μ的单位为亨/米(H/m)。
1.2_电磁学基本知识解析

磁位差
公式:
总磁动
Ni H k lk H1l1 H 2l2 H
k 1
3
常用物理量和定律
3、均匀磁路的欧姆定律 磁通量Φ 等于磁通密度乘以面积:
BA
磁场强度等于磁通密度除以磁导率: H B 于是 Hl Ni 可写为:
电磁学基本知识
• 常用的物理量和定律 • 常用的铁磁材料及其特性
法拉第
M.法拉第(1791~1869)伟大的物理学家、化学家、19世纪最伟大的实 验大师。右图为法拉第用过的螺绕环
电磁学基本知识
导言:
• 100多年前,人们从电磁现象出发,总
结出系统的电磁理论。一个最直接的产品
就是电机。电磁理论是研究电场、磁场、
常用物理量和定律
补充B和H的区别: •磁场强度和磁感应强度均为表征磁场性质(即磁场 强弱和方向)的两个物理量。
•由于磁场是电流或者说运动电荷引起的,而磁介质
(除超导体以外不存在磁绝缘的概念,故一切物质均 为磁介质)在磁场中发生的磁化对源磁场也有影响 (场的迭加原理)。 •因此,磁场的强弱可以有两种表示方法。
常用物理量和定律
磁力线
(1)磁感应线的回转方向和电流方向之间的关系遵守右手螺旋法则. (2)磁场中的磁感应线不相交,每点的磁感应强度的方向确定唯一. (3)载流导线周围的磁感应线都是围绕电流的闭合曲线.
常用物理量和定律
2. 磁通量Φ (磁通) 垂直通过磁场中某一面积的磁力线数称为通过该面
积的磁通量(磁通),符号、单位Wb (韦伯).
常用物理量和定律
主磁路:主磁通所通过的路径。 漏磁路:漏磁通所通过的路径。 励磁线圈:用以激励磁路中磁通的载流线圈。
励磁电流:励磁线圈中的电流。
常用基本电磁定律

垂直穿过某截面积的磁力线总和。单位:Wb
F SΒ dA
对于均匀磁场,若B与S垂直,则 F BA
磁场强度H
计算磁场时引用的物理量(实际也在存在的)。单位:A/m B=μH
μ:导磁材料的磁导率。
注意:B的大小与磁场环境有关,H的大小与磁场内在因素有关.
3
电磁学的基本定律
1.3.2 法拉第电磁感应定律—— 磁生电
14
1.4.2 软磁材料与硬磁材料
1、软磁材料——磁滞回线较窄。 硅钢片、铸铁、铸钢、铁氧体等。 用于制作电器设备的铁心。
2、硬磁材料——磁滞回线较宽。 铷铁硼、铁钴钐。 用于制作永久磁铁。
B H(i)
B H(i)
15
1.4.3 铁心损耗
铁耗
磁滞损耗 :由磁畴相互摩擦发热造成
Ñ ph fV HdB Ch fBmnV
11
二、磁化曲线和磁滞回线
1、起始磁化曲线
Φ i
物体从无磁性开始,磁
场强度H(i)由零逐渐增
加时,磁通密度B将随 B μ= B/H
பைடு நூலகம்
之增加。用B=f (H)描述
c
的曲线就称为起始磁化
b
曲线。
a
O
磁饱和现象
d B=f (H)
导磁性能的 非线性现象
H∝i
12
2、磁滞回线
Φ
磁滞回线——当H在Hm和- Hm i 之间反复变化时,呈现磁滞现
第1章 磁路 本章内容
磁路的基本知识 电磁学基本定律 常用磁性材料及其特性
1
第一节 磁路的基本定律
一、磁场的几个常用物理量
1.磁感应强度(磁密) B
•表征磁场强弱及方向的物理量。单位:特斯拉T(Wb/m2)
磁感应强度与磁场的关系

磁感应强度与磁场的关系磁感应强度(B)是描述磁场强度的物理量,是衡量磁场对物体施加力或对电流产生力矩的指标。
磁感应强度与磁场的关系是一个重要的研究课题,在理论物理和实际应用中都有广泛的应用。
本文将就磁感应强度与磁场的关系进行深入探讨。
一、磁感应强度的定义和基本性质磁感应强度(B)是指在磁场中一个空间点受到的磁力的物理量。
它的单位是特斯拉(T)。
根据安培定律,磁感应强度与电流的关系可由以下公式描述:B = μ₀ * (I / 2πr)其中,B为磁感应强度,μ₀为真空的磁导率,I为电流,r为距离电流的距离。
磁感应强度的性质包括大小、方向和空间分布等。
在电流产生磁场时,磁感应强度的大小与电流成正比,与距离的平方成反比。
在距离电流足够远的时候,磁感应强度与距离无关。
其方向由右手定则确定,垂直于电流方向和距离电流的方向,指向磁场线的方向。
二、磁感应强度是磁场的物理量,两者密切相关。
磁感应强度在磁场中的分布形式与磁场的形状和磁源的特性有关。
磁场的强度和方向都可以通过磁感应强度来确定。
在磁感应强度与磁场的关系中,磁感应强度是描述磁场强度的基本物理量。
通过测量空间中不同点的磁感应强度,我们可以绘制出磁力线,描绘出磁场的分布。
磁感应强度的大小取决于磁场强度的大小,从而给出了磁场在空间中的强弱关系。
磁感应强度与磁场的关系还表现在磁场之间的相互作用上。
根据洛伦兹力的原理,当一个带电粒子运动时,如果有磁场存在,磁感应强度将对带电粒子施加力。
这个力的大小与磁感应强度和带电粒子的速度有关。
这个力对运动轨迹的影响和磁感应强度的大小和方向相关。
三、磁感应强度与电磁感应的关系磁感应强度与电磁感应之间存在密切的关系。
根据法拉第电磁感应定律,当磁场的磁感应强度发生变化时,将在电磁感应环路中产生感应电动势。
这个感应电动势的大小与磁感应强度的变化率成正比。
利用磁感应强度与电磁感应的关系,可以实现电磁感应现象的应用。
在发电机、变压器等电气设备中,通过磁感应强度的变化产生感应电动势,从而将机械能或电能转换为电能。
磁学

A1=6.5×5×0.92=30cm2 A2=8×5=40cm2 A3=ab+(a+b)l0
=5×6.5+(5+6.5) ×0.1=33.65cm2
JIE
⑶ 求各段磁路磁感应强度
⑷ 求各段磁路磁场强度
B1
A1
3103 30104
1T
3103 B2 A2 40104 0.75T
B0
A0
的系数。
Φ
Φ
ie
ie
i
+
ue
–
§9.6交流铁心线圈的电路模型
一、励磁电流的计算
U E I a
I
IM
E
损耗角
arc
tan
I IM
2
1.求磁化电流
U m Bm Hm Im IM
IM
Im 2
>1
2.求磁损耗电流
磁损耗 pFe pFe0V
磁损耗电流 Ia PFe / E
3.求励磁电流
l0 l2 30
30
0.1 8
为cm,铁心由D21硅钢片叠成,叠装因 数KFe=0.92,衔铁材料为铸钢。要使电 磁铁空气隙中的磁通为3×10-3 Wb。 求:⑴所需磁通势;⑵若线圈匝数
N=1000匝,求线圈的励磁电流。
解:⑴ 将磁路分成铁心、衔铁、气隙三段。
⑵ 求各段长度和截面积 l1=(30-6.5)+2(30-3.25)=77cm l2=30-6.5+4×2=31.5cm 2l0=0.1×2=0.2cm
I Ia IM
I
2 a
I
2 M
求励磁电流
设铁心是由D21硅钢片叠制而成,片厚0.5mm,铁心截面A=6.6cm2, 磁路平均长度l =66cm,励磁线圈匝数N=1000匝,接至频率f=50HZ U=220V的正弦电压。求励磁电流有效值及相位角(忽略线圈电阻 及漏磁通)。
第一章 磁路基础知识

l1 l2 3l 15 10 2 m 两边磁路长度:
气隙磁位降: B 1.211 2H 2 2 2.5 10 3 A 4818 A 0 4π 10 7
1.211 (2 0.25) 2 B T 1.533T 中间铁心磁位降: 3 4 A 4 10
磁路基础知识
1.2.3涡流与涡流损耗 1、涡流 2、涡流损耗:涡流在铁心中引起的损耗 3、注意:为减小涡流损耗,电机和变压器的铁心都用 含硅量较高的薄硅钢片叠成。 4、铁心损耗:磁滞损耗+涡流损耗
2 pFe f 1.3 BmG
南通大学《电机学》
磁路基础知识
1.3直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量 磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Ak ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk;
Φ
RmFe
N
F
Rm
i
Φ
串联磁路 南通大学《电机学》 磁路基础知识
模拟电路图
解:铁心内磁通密度为 BFe 0.0009 T 1T
AFe 0.0009
从铸钢磁化曲线查得:与BFe对应的HFe=9×102A/m
H FelFe 9 10 2 0.3A 270 A 铁心段的磁位降:
查磁化曲线:H1 H 2 215 A/m
H1l1 H 2l2 215 15 10 2 A 32.25A
总磁动势和励磁电流为:
Ni 2H H l
3 3
H 1l1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北经济管理学校教案
序号:1 编号:JL/JW/
河北经济管理学校教案
为了描述不同物质的导磁能力,引入了磁导率这个物理量,磁导率的大小反映了物质导磁能力的强弱。
物质导磁性能的强弱用磁导率来表示。
磁导率的单位是:亨利/米(H/m)。
不同的物质磁导率不同。
在相同的条件下,磁导率值越大,磁感应强度 B 越大,磁场越强;磁导率值越小,磁感应强度 B 越小,磁场越弱。
4.磁场强度(重难点)
磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值,用字母H 表示。
磁场强度 H 也是矢量,其方向与磁感应强度 B 同向,国际单
位是:安培/米 (A/m)。
必须注意:磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。
计算举例(15min )
1.如图所示是某磁场磁感线的分布,由图可知关于A 、B 两点的
磁场方向的说法中正确的是(BD)
A .A 处的磁场比
B 处的强
B .A 处的磁场比B 处的弱
C .A 处的磁场方向与B 处的磁场方向相同
D .A 处的磁场方向与B 处的磁场方向不同
2.将条形磁铁从中间切断分成两半,然后再拉开一小段距离,如下图所示.如果在其空隙处O 点放置一个小磁针,小磁针的N 极将(A)
向左偏转 B .向右偏转 C .不会偏转
D .向上或向下偏转
3.磁铁在高温下或者受到敲击时会失去磁性,根据安培
的分子电流假说,其原因是(C)
A .分子电流消失
B .分子电流取向变得大致相同
C .分子电流取向变得杂乱
D .分子电流减弱
解析:根据安培的分子电流假说,当分子电流取向变得大致相同时,对外显示磁性;当温度升高或者受到敲击时,分子运动加剧,分子电流变得紊乱无序,对外不显示磁性. 课堂小结(15min )
本节课学习了磁场的基本物理量。
磁通:用来定量描述在磁场中一定面积上磁力线的分布情况
磁感应强度:是描述某一空间各点磁场的强弱和方向的物理量
磁导率:为了描述不同物质的导磁能力,引入了磁导率这个物理量
磁场强度:磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值
五、布置作业(10min )
课本P85自我测评2、3题
μ
B H =。