调光台灯
触摸式调光台灯原理

触摸式调光台灯原理随着科技的发展,触摸式调光台灯已经成为了人们生活必不可少的一部分。
它的出现让人们在照明方面有了更多的选择,也让人们的生活更加便捷、舒适。
那么,触摸式调光台灯的原理是什么呢?我们需要了解一下LED灯的工作原理。
LED是“Light Emitting Diode”的缩写,即“发光二极管”。
它是一种半导体元件,具有电阻小、发光效率高、寿命长等优点。
LED灯的发光原理是:在特定的电流和电压作用下,电子与空穴结合时,能量释放出来,发出光线。
触摸式调光台灯就是利用了LED灯的这一原理,通过调节电流和电压来调节灯光的明暗程度。
触摸式调光台灯中,内部集成了一个高灵敏度的触摸IC,它能够感知人体的电场,从而实现灯光的调节。
具体来说,当我们触摸灯座或灯杆上的金属触点时,触摸IC就会感应到人体电场的变化,并将其转化为电信号,通过电路板传递给LED灯。
LED灯内部的电路通过接收到的信号来控制电流和电压的大小,从而调节灯光的亮度。
需要注意的是,不同的触摸方式会对触摸IC产生不同的电场信号,因此触摸式调光台灯也可以实现不同的灯光调节方式。
比如,单点触摸可以实现灯光的开关和亮度调节,而多点触摸则可以实现颜色和色温的调节。
除了触摸IC,触摸式调光台灯中还有一个重要的部件是电容器。
电容器是一种能够存储电荷的元件,它通常用来平衡电路中的电压并实现信号的滤波和稳定。
在触摸式调光台灯中,电容器也起到了类似的作用,它可以稳定灯光的亮度并减少闪烁。
总的来说,触摸式调光台灯的工作原理并不复杂,它通过感应人体电场并控制LED灯的电流和电压来实现灯光的调节。
这种技术的出现为人们提供了更加便捷、舒适的照明方式,也让人们对科技的发展充满了期待。
调光台灯的工作原理

调光台灯的工作原理
调光台灯的工作原理是通过控制灯的电流或电压来调节灯的亮度。
台灯通常使用LED或荧光灯管作为光源,LED台灯相较于荧光灯台灯更为常见。
LED台灯的工作原理是通过改变LED的电流来调节亮度。
LED是一种发光二极管,当电流通过LED时,LED中的电子和空穴会发生复合放出光。
调光台灯的控制器可以通过改变LED电流的大小来控制灯的亮度。
通常使用调光电路来实现这一功能,调光电路会根据用户的需求,通过控制电流的大小来调节LED的亮度。
荧光灯台灯的工作原理则是通过调节灯管的电压来调节亮度。
荧光灯由一个灯管和一个电子镇流器组成。
电子镇流器会产生高频电流并加在灯管两端,使得灯管中的气态荧光粉发出可见光。
调光台灯的控制器可以通过改变电子镇流器输出的电压来调节灯管的亮度。
通常使用普遍的调光技术,如脉宽调制(PWM),来实现对电压的调节。
总之,调光台灯通过改变LED的电流或荧光灯管的电压来调节灯的亮度,从而满足用户的照明需求。
触摸调光台灯方案

触摸调光台灯方案一、引言台灯作为现代家居装饰的一部分,既能提供光亮的照射,又能为居室增添一份温馨的氛围。
近年来,随着智能家居技术的发展,触摸调光台灯逐渐成为市场的主流产品。
触摸调光台灯凭借着其方便、易操作的特点,受到了越来越多消费者的喜爱。
本文将介绍一种基于触摸调光技术的台灯方案,并探讨其特点、设计思路及应用场景。
二、触摸调光技术概述触摸调光技术是指通过触摸侦测和信号处理技术来实现对灯光亮度的控制。
传统的台灯调光方式多是通过开关调节,操作不方便且效果单一。
而触摸调光技术则通过感应人体静电信号,实现对台灯的开关和调光功能,使得用户能够通过触摸灯头或底座等位置来控制灯光的明暗程度。
三、触摸调光台灯方案设计1. 硬件方案设计触摸调光台灯的硬件方案设计包括触摸感应模块、控制电路和灯具的结构设计。
触摸感应模块通常采用金属表面的感应电极,利用人体静电感应的原理,实现对触摸动作的感知。
控制电路则负责接收触摸信号,并通过PWM(脉宽调制)技术控制灯具的亮度变化。
此外,针对不同的设计需求,灯具的结构设计也需要考虑到灯头和灯座的稳定性和美观性。
2. 软件方案设计触摸调光台灯的软件方案设计主要包括触摸信号处理算法和灯光调光算法。
触摸信号处理算法主要用于对触摸动作的判定和触摸信号的过滤,确保灯具对触摸动作的响应准确与稳定。
灯光调光算法则通过对PWM波的调节,控制灯具的亮度变化,以满足用户对不同亮度的需求。
四、触摸调光台灯方案的特点1. 方便易用:用户只需轻触灯头或底座即可实现开关和调光功能,操作简单方便。
2. 省时省力:不再需要摸索开关或调节旋钮,提高了使用效率。
3. 灵活多样:通过触摸调光技术,可以实现多种灯光亮度的选择,满足用户在不同场景下的需求。
4. 节能环保:触摸调光台灯采用的LED 灯珠,不仅寿命长,还具有低能耗、低热量和低辐射的特点。
五、触摸调光台灯的应用场景1. 学习办公场景:触摸调光台灯能够满足学生、办公人员对不同亮度的照明需求,提高学习和工作效率。
调光台灯制作实验报告

1. 了解调光台灯的基本原理和组成。
2. 学习电子电路的基本知识和技能。
3. 培养动手能力和创新意识。
二、实验原理调光台灯是一种可以调节亮度的台灯,主要由电源、调光电路、灯泡和灯座等组成。
调光电路通常采用模拟电路或数字电路来实现亮度调节。
本实验采用模拟电路实现调光功能。
三、实验器材1. 50W白炽灯泡1个2. 220V/50Hz电源1个3. 可调电阻1个(500Ω)4. 电阻1kΩ1个5. 电阻10kΩ1个6. 电阻100kΩ1个7. 二极管1个(1N4007)8. 三极管1个(8050)9. 灯座1个10. 线路板1块11. 电烙铁1把12. 剪线钳1把13. 电工刀1把14. 万用表1个15. 实验指导书1本1. 准备工作:将所有器材准备好,了解各元件的功能和作用。
2. 设计电路:根据实验要求,设计调光电路。
本实验采用三极管开关电路和可调电阻来实现亮度调节。
3. 制作电路板:按照电路图,将元件焊接在电路板上。
4. 连接电源:将电源线接入电路板,确保电路板上的电源接口与电源线相连接。
5. 连接灯泡:将灯泡插入灯座,然后将灯泡的引脚焊接在电路板上。
6. 连接可调电阻:将可调电阻的一端焊接在电路板上,另一端连接到电源的正极。
7. 测试电路:打开电源,用万用表测量电路板上的电压和电流,确保电路正常工作。
8. 调节亮度:旋转可调电阻,观察灯泡亮度的变化,记录亮度调节范围。
9. 分析结果:根据实验结果,分析电路的工作原理和调光效果。
五、实验结果与分析1. 实验结果:通过调整可调电阻,可以实现灯泡亮度的调节,亮度调节范围在0-50W之间。
2. 分析结果:本实验采用的调光电路是通过改变电路中的电阻值来改变电流,从而实现亮度调节。
当电阻值增大时,电流减小,灯泡亮度降低;当电阻值减小时,电流增大,灯泡亮度提高。
六、实验总结1. 本实验成功制作了一款调光台灯,实现了亮度调节功能。
2. 通过实验,掌握了电子电路的基本知识和技能,提高了动手能力和创新意识。
led调光台灯调节光的原理

led调光台灯调节光的原理LED调光台灯是一种可以调节光亮度的台灯,它的原理是通过控制LED灯的电流来改变光的亮度。
LED(Light Emitting Diode)是一种半导体发光元件,具有高效、节能和寿命长等优点,因此被广泛应用于照明领域。
LED调光台灯的调光原理主要有两种:PWM调光和电流调光。
PWM调光是一种通过改变LED灯的工作时间比例来实现调光的方法。
它利用人眼的视觉暂留效应,通过快速的切换LED灯的开关状态来控制光的亮度。
具体来说,当需要降低亮度时,调光电路会以一定的频率开关LED灯的电源,使其在一个周期内的工作时间比例减小,从而降低光的亮度。
当需要增加亮度时,调光电路则会增加LED灯的工作时间比例,增加光的亮度。
通过不同的工作时间比例,LED调光台灯可以实现连续调光。
电流调光是一种通过改变LED灯的电流来实现调光的方法。
LED灯的亮度与其通过的电流成正比关系,因此通过改变电流的大小可以实现调光。
具体来说,调光电路会控制LED灯的电流,当需要降低亮度时,调光电路会减小LED灯的电流,从而降低光的亮度。
当需要增加亮度时,调光电路则会增加LED灯的电流,增加光的亮度。
电流调光的优点是调光范围大且调光效果较为平滑,但相对而言调光电路会更为复杂。
除了PWM调光和电流调光,还有一种混合调光的方法,即将PWM调光和电流调光结合起来使用。
混合调光方法可以综合两种调光方法的优点,实现更好的调光效果。
LED调光台灯除了可以通过调整亮度,还可以调节色温。
色温是指光的颜色,常用的单位是开尔文(K)。
较低的色温(例如2700K)会产生暖黄色的光,较高的色温(例如6500K)会产生冷白色的光。
通过调节LED灯的颜色比例,LED调光台灯可以实现不同色温的光。
LED调光台灯通过控制LED灯的电流或工作时间比例来调节光的亮度,以及调节LED灯的颜色比例来调节光的色温。
这种调光原理使得LED调光台灯可以满足不同场景和需求下的照明要求,既节能环保又舒适实用。
台灯调光开关原理

台灯调光开关原理
台灯调光开关的原理是通过改变流经灯泡的电流大小来实现调光的功能。
台灯调光开关通常由三个主要部分组成:电源、调光器和灯泡。
电源是提供电能的装置,通常是通过插座与电网相连。
电源的电压通常为220V,为了保证台灯的使用安全,电源需要与其
他电源部件进行隔离。
调光器是台灯调光开关的核心部分,主要功能是控制电流大小以实现调光。
调光器通常采用的是调制宽度调制(PWM)技术,即改变电流的通断时间来实现调光。
调光器接收来自开关的控制信号,然后根据信号的强弱来控制电流的大小。
当调光信号强时,电流通断时间短,灯泡亮度高;当调光信号弱时,电流通断时间长,灯泡亮度低。
灯泡是台灯的光源部件,它通过接收调光器输出的电流来发光。
灯泡通常采用的是电阻丝发光原理,即通电时通过电阻丝产生热量使得丝发光。
电流的大小直接影响电阻丝的温度,温度越高发光亮度越高,温度越低发光亮度越低。
当用户拨动开关时,开关会发送控制信号给调光器,然后调光器根据信号的强弱来控制电流的大小,从而实现灯泡的调光效果。
用户可以根据需要选择不同的亮度,以满足各种使用场景的需求。
调光台灯的制作范文

调光台灯的制作范文调光台灯是一种能够根据需要调节光照亮度的台灯。
在现代生活中,台灯是非常常见的照明设备之一、调光台灯的制作可以实现灯光的亮度调节,给用户提供一个更舒适的照明环境。
下面将介绍调光台灯的制作方法。
首先,我们需要准备以下材料和工具:一个台灯底座、一个灯罩、一个调光器、一个灯泡、适配器、导线、插头、螺丝刀、剪刀、钳子、胶带和电缆。
步骤1:首先,取下台灯底座上的螺丝。
将灯罩安装在底座上,并用螺丝刀拧紧。
步骤2:将导线插入台灯底座的开关孔中,并用螺丝刀拧紧。
确保导线牢固地固定在底座上。
步骤3:然后,将灯泡安装在灯罩内部的灯座上。
确保灯泡牢固地插入灯座中。
步骤4:接下来,将调光器插入导线的一端,并用钳子将导线末端剥开一小段。
然后,将剥开的导线连接到调光器上的金属接线柱上,用钳子拧紧。
确保导线与调光器连接紧密,不松动。
步骤5:将适配器插入调光器的另一端,并用胶带固定。
然后,将适配器的插头插入电源插座。
步骤6:最后,将导线的末端剥开一小段,并与插头上的金属接线柱连接,用钳子拧紧。
确保导线与插头连接紧密,不松动。
完成以上步骤后,调光台灯制作完成。
用户可以通过调节调光器,实现灯光亮度的调节。
通过减少灯光亮度,可以创造一个更舒适的照明环境,适应不同的需求。
总结一下,调光台灯的制作需要准备材料和工具,并按照一定的步骤进行组装。
调光台灯能够实现灯光亮度的调节,提供一个更舒适的照明环境。
通过自己制作调光台灯,用户不仅能够享受到自己动手制作的乐趣,还能够根据自己的需要调节灯光亮度,提高生活质量。
可调光台灯原理

可调光台灯原理
可调光台灯是一种能够根据需求调节亮度的灯具。
它包含一个灯泡和一个可调光电路。
可调光台灯的灯泡通常是白炽灯(现在也有LED灯泡)。
它
的亮度可以通过改变输入电流或改变灯泡的电压来调节。
较低的电流或电压会使灯泡变暗,较高的电流或电压会使灯泡变亮。
可调光电路的主要作用是改变输入电流或电压。
它通常由一个调光开关、一个调光器和一个调光电容器组成。
调光开关用于调节灯泡的亮度。
调光器是一个电子元件,它能够控制电流或电压的大小,从而实现灯泡的亮度调节。
调光电容器用于对电流或电压进行滤波,以保证稳定的输出。
在工作时,电源通过调光开关输入调光器。
调光器会根据调光开关的位置,调整输出电流或电压的大小。
然后,调光电容器对电流或电压进行滤波。
经过滤波后的电流或电压通过灯泡,从而实现灯泡的亮度调节。
总的来说,可调光台灯通过控制电流或电压的大小来实现灯泡的亮度调节。
调光开关、调光器和调光电容器是实现这一功能的关键元件。
这种设计使得用户可以根据实际需求来调节灯光亮度,提高舒适度和节能效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1)首先确定T2:门极G与T1之间的距离较近,其正、反 )首先确定 向电阻都很小,用万用表“R×1”挡测量G~T1间的电阻 仅几十欧,而G~T2、T1~T2之间的反向电阻均为无穷 大。那么,当测出某脚和其他两脚都不通,就能确定该脚 为T2极。有散热板的双向晶闸管T2极往往与散热板相通。 • 2)区分 与T1极:确定T2后,剩下两脚中一脚为T1极, )区分G与 另一脚为G极。用黑表笔接T1极,红表笔接T2极,把T2与 G极瞬时短接一下(给G加上负触发信号),电阻值如为 10Ω左右,证明管子已导通,导通方向为T1~T2,上述假 设正确。如万用表没有指示,电阻值仍为无穷大,说明管 子没有导通,假设错误,可改变两极连接表笔再测;如果 把红表笔接T1极,黑表笔接T2极,然后将T2与G极瞬时短 接一下(给G加上正触发信号),电阻值如为10Ω左右, 管子为导通,导通方向为T2~T1。
任务3 认识单结晶体管
一、认识单结晶体管
单结晶体管的实物图
单结晶体管的结构 图 形 符 号
单结晶体管的外形
二、单结晶体管触发电路
• 1、单结晶体管的基本特性 、 A、B1间的电压为: RB1 UA = U BB = ηU BB RB1 + RB 2 式中,η称为分压比,其值一般 在0.3~0.9之间。 单结晶体管等 效电路 单结晶体管的导通条件是: 单结晶体管的导通条件是: UE﹥η UBB + UD (UD为PN结的正向压降) 结论: 结论:只要改变UE的大小,就可以控制单结晶体管的导通 与截至。从而获得从RB1输出的脉冲电压。
图7-11 =0°时的输出电压波形 °
图7-12 =30°时的输出电压波形 °
α + θ = π ,改变触发延迟角 的大小,即改变触发脉冲 α
在每周期内触发的时刻,负载电压的波形不同。 单相半波可控整流电路参数计算公式见表7-3
电路参数 输出电压平均值 负载电流平均值 通过晶闸管的平均电流 晶闸管承受的最大电压
学习要点:
• 1.晶闸管是一种电力半导体器件,是一种可控的 电子开关。主要应用在可控整流、交流调压、大 功率变频控制、逆变控制和无触点开关等方面。 • 2.单向晶闸管只有在阳极和阴极间加正向电压, 同时在门极和阴极间加正向触发电压时,它才会 导通。晶闸管一旦导通后,门极便失去控制作用 ,要使导通的晶闸管关断,必须将阳极电压降低 ,使通过阳极的电流减小到低于维持电流IH,或 者改变阳极电压的极性。 • 3. 晶闸管的电极识别和质量好坏可以通过万用表 的电阻挡进行简易的检测。
元器件选择
• 表7-1 调光台灯电路元件明细表
序号 1 2 3 分类 VD1~VD4 VU VT R1、R3 R2 4 5 6 7 8 R4 HL C RP 其他 名 称 整流二极管 单结晶体管 晶闸管 电阻器 电阻器 电阻器 灯泡 电容器 带开关电位 器 型号规格 IN4007 BT33 3CT151 100 470 1k 220V、25W 0.1µF 100k 实验板(万能板)、导线 数量 4 1 1 2 1 1 1 1 1
5、晶闸管的型号及简易检测 、 • (1) 型号 ) 3CT系列和KP系列型号组成部分的含义:
举例:3CT-5/500表示额定电流为5A、额定电压为500V的普通型单向 晶闸管。
• (2)单向晶闸管简易检测 ) • 1)极性的判断 将万用表置于“R×1k”或“R×100”挡 ) ,如果测得其中两个电极的正向电阻较小,而交换表笔后 测得反向电阻很大,那么以阻值较小的一次为准,黑表笔 所接的就是门极G,而红表笔所接的就是阴极K,剩下的 电极便是阳极。 • 2)质量的判断 将万用表置于“R×10”挡,黑表笔接阳 ) 极,红表笔接阴极,指针应接近∞,如图7-7所示。当合上 S时,表针应指很小的阻值,约为60~200Ω,表明单向 晶闸管能触发导通;断开S,表针回不到∞,表明晶闸管 是正常的(有些晶闸管因为维持电流较大,万用表的电流 不足以维持它导通,当S断开后,表 图7-7 针会回到∞,也是正常的)。如果在 S未合上时,阻值很小,或者在S合上 时表针也不动,表明晶闸管质量太差 或已击穿、断极。
• 2、单结晶体管触发电路 、 工作原理: 工作原理: 电源接通后,通过可调电阻RP和电阻 R3给电容C充电,当电容充电电压UE上升 到大于ηUBB + UD时,单结晶体管导通, C迅速放电,在R2上形成一个很窄的正脉 冲。此 图7-21 单结晶体管触发电路时电 容C两端的电压几乎为零。第一个周期过 后,由于UCC继续通过RP和R3给电容C充 电, 这样连续不断重复上述过程,从而 获得晶闸管所需要的触发脉冲电压。
3、单向晶闸管的导通和关断的规律 单向晶闸管的工作 特点: 特点:
1)单向晶闸管的导通条件 ) 是阳极与阴极间加正向电 压,同时在门极与阴极间 也加上正向电压。 也加上正向电压。 2)晶闸管一旦导通后,门 )晶闸管一旦导通后, 极即失去控制作用。 极即失去控制作用。要使 导通后的晶闸管关断, 导通后的晶闸管关断,可 将阳极电压降低到一定程 度或改变阳极电压的极性。 度或改变阳极电压的极性。 3)晶闸管具有以弱电控制 ) 强电的作用, 强电的作用,即利用弱电 信号(即触发信号) 信号(即触发信号)对门 极的控制作用, 极的控制作用,就可使晶 闸管导通去控制强电系统。 闸管导通去控制强电系统。
图7-15
° α =0°时的输出电压波形
图7-16 α =30°时的输出电压波形 °
• 单相桥式可控整流电路参数计算公式
电路参数 输出电压平均值 负载电流平均值 通过晶闸管的平均电流 晶闸管承受的最大电压
U L = 0.9U 2
计算公式
1 + cosα 2
L L
I
L
=
U R
IT = I L
U
RM
=
分析单相半波可控整流电路工作原理 • 1)u2为正半周时,晶闸管VT承受正向电压,如果此时没 有加触发电压,则晶闸管处于正向阻断状态,负载电压 uL=0。 • 2)当 ωt= 时,门极加有触发电压ug,晶闸管具备了导通 条件,由于晶闸管正向压降很小,电源电压几乎全部加到 负载上,uL≈ u2。 • 3)在 <ωt<л期间,尽管ug在晶闸管导通后即已消失, 但是晶闸管仍然保持导通,因此,在这期间,负载电压uL 依然和次级电压u2保持基本相等。 • 4)当ωt=л时,u2=0,晶闸管自行关断,uL=0。 • 5)当л<ωt<2л时,u2进入负半周后,晶闸管承受反压 ,呈反向阻断状态,负载电压uL=0。 在u2的第二个周期里,电路将重复第一周期的变化。如此不 断重复,负载RL上就得到单向脉动电压。如图7-10C所示
二、双向晶闸管
1、结构和符号 、 它是N-P-N-P-N五层三端半 导体器件,也有三个电极,但 它没有阴、阳极之分,而统称 为主电极T1和T2,另一个电极 G也称为门极。 2、工作特点 、 它的主电极T1和T2无论加正向电压还是反向电压,其门极 G的触发信号无论是正向还是反向,它都能被“触发”导 通。 3、双向晶闸管的电极识别及质量判别 、
4. 单向晶闸管的主要参数 • (1)断态重复峰值电压 DRM :结温为额定值时,门极 )断态重复峰值电压U 断开,允许重复加在晶闸管A、K间的正向峰值电压。 • (2)反向重复峰值电压 RRM 结温为额定值时,门极断 )反向重复峰值电压U 开,允许重复加在晶闸管A、K间的反向峰值电压。 • (3)通态平均电流 T(AV) :在规定的环境温度和散热条 )通态平均电流I 件下,结温为额定值,允许通过的工频正弦半波电流的平 均值。 • (4)通态平均电压 T(AV) :结温稳定,通过正弦半波额 )通态平均电压U 定的平均电流,晶闸管导通时,阳极A和阴极K间的电压 平均值,习惯上称为导通时的管压降,一般为1V左右。 • (5)维持电流 H :在规定环境温度下,门极断开时, )维持电流I 维持晶闸管继续导通所必需的最小电流。
任务1 检测晶闸管
一 、认识晶闸管
常用的晶闸管有单向和双向两大类 1、单向晶闸管基本结构与图形符号: 、单向晶闸管基本结构与图形符号: 文字符号“VT”,
属于四层三端半导体器件: 属于四层三端半导体器件: 阳极A、阴极K、门极G, 阳极 、阴极 、门极 ,
2、连电路,观察单向晶闸管的工作特性 、连电路,
2U
2
学习要点:
• 1.在单相半波可控整流电路中,负载RL上得到 的脉动直流电压的平均值为UL=0.45U2 , • 流过负载和晶闸管的直流电流相等,即IL=IT,晶闸 管承受的最大反压URM = U2 。 • 2.在单相桥式可控整流电路中,输出电压比半 波可控整流电路增加一倍,即UL=0.9U2 ,其它 ,IL=IT,晶闸管承受的最大反压URM = U2 不变。 • 3.与二极管整流电路的区别是:晶闸管整流电路 输出的直流电压是可控的,触发延迟角 越大,输 出电压越小。 的变化范围称为移相范围,单相半 波可控整流电路和单相桥式可控整流电路的移相 范围都是0°~180°。
I
计算公式
U RM =
UL = 0.45 2 U
2U 2
1+ cosα 2
IT =IL
L
=
U R
L L
二、单相桥式可控整流电路
• 1、认识单相桥式可控整流电路 、
a)变压器二次 侧电压
b)触发 脉冲
c)输出 波形
图7-13 单相桥式可控整流电路
图7-14 工作波形图
• 2.工作原理 . • (1)u2为正半周时,二极管VD1、VD4承受正向电压, VD2、VD3承受正向电压,如果未加触发电压,则晶闸管 处于正向阻断状态,uL=0。 • (2)当ωt= 时,加有触发电压ug,晶闸管VT导通,电路 中的电流方向如图实线所示。uL和u2基本相等。 • (3)在 <ωt<л期间,尽管ug在晶闸管导通后已消失, 3 ωt л u 但是晶闸管仍然保持导通。因此,在这期间,uL依然和u2 保持基本相等。极性为上正下负,iVD1=iVD4=iL。 • 4)当л<ωt<2л时,u2进入负半周后,二极管VD2~VD3 承受正向电压,VD1、VD4承受反向电压,只要触发脉冲 ug到来,晶闸管VT 就导通,电流方向如图中虚线所示。 uL≈u2,方向仍为上正下负, iVD2=iVD3=iL。 在u2的第二个周期里,电路将重复第一周期的变化。如此不 断重复,负载RL上就得到单向脉动电压。如图7-14所示。