统计检验之统计检验力和效果量

合集下载

统计检验力和效果量

统计检验力和效果量

02 统计检验力与假设检验
CHAPTER
假设检验的基本概念
假设检验是一种统计推断方法,通过对样本数据的分析,对总体参数做出推断。
假设检验的基本步骤包括提出假设、选择合适的统计方法、进行统计推断、得出结 论。
假设检验的结论是概率性的,有一定的风险,即存在误判的可能性。
统计检验力在假设检验中的应用
统计检验力和效果量
目录
CONTENTS
• 统计检验力概述 • 统计检验力与假设检验 • 效果量概述 • 效果量与效应大小 • 统计检验力与效果量在实际研究中的应用
01 统计检验力概述
CHAPTER
定义与概念
统计检验力是指一个研究或实验能够正确拒 绝或接受某一假设的能力,即当实际效应存 在或不存在时,研究结果能够证明该效应的 能力。
选择适当的统计方法
根据数据特点和问题背景选择 合适的统计方法,能够提高统 计检验力。
降低显著性水平
显著性水平是决定是否拒绝原 假设的临界值,降低显著性水 平可以提高统计检验力。
重复实验
通过重复实验,可以降低随机 误差的影响,提高统计检验力

03 效果量概述
CHAPTER
定义与概念
效果量是指一个干预措施或条件 变化对个体或群体的影响程度, 它反映了实验或观察结果的变化
02
在统计分析中,常用的效果量计算方法包括Cohen's d、eta squared(η²)、phi (φ)等,这些方法可以帮助研究者了解干预措施或条件变化对个体或群体的具体 影响程度。
03
计算效果量时需要注意其适用范围和局限性,以确保结果的准确性和可靠性。
效果量的作用与意义
1
效果量可以帮助研究者了解实验或观察结果的可 靠性和实用性,为后续的研究和实践提供有价值 的参考。

统计检验力和效果量

统计检验力和效果量


再点击“选项”,选中“功效 估计”和“检验效能”;点击“继 续”、“确定”,于是得到“观察 到的效力=0.91”,这就是统计检验 力。
八戒晃着脑袋说:我最怕做计算了,现 在有了SPSS可好了,点击一下就帮我算 出来了! 唐僧:由于计算效果量和统计检验力的 方法较多,不同方法得到的结果是不能 进行比较的,因此,还是要把基础知识 搞清楚啊!
七、卡方检验的效果量和统计检验 力 八、积差相关系数的效果量和统计 检验力
来自扬子江畔的余老师 给同学们连灌好几天数学公式, 有人已经开始消化不良了, 如果再来数学演算, 看样子要“胃结石”了, 我们来说说“西游记后传”吧!
话说天蓬元帅猪八戒, 虽然表面上对悟空恭恭敬敬, 但内心仍然看不起 这个基层干部弼马温, 特别是花果山的儿童团猴小兵。
3、确定α水平及相应的临界值。 4、计算实际得到的Z值与α水平临 界值的差。
5、根据Z值与α水平临界值的差查 正态分布表,确定可能犯的第二类 错误概率β,于是得到统计检验力 1- β。
例题: 我们分别在猪宝宝与猴小兵中 分别抽取100名被试进行智商测查, 得到两组被试的智商平均数分别为 115分和111分。根据常模,该年龄 组智商的标准差为15分,请计算这 两组被试智商差异显著性检验的统 计检验力。
唐僧立刻截获了八戒的短信,暗想:这 个呆子,怎就忘记了出家人是从来不碰 荤腥的,我怎能稀罕灌汤包和筒子鸡? 唐僧不动声色:关于两个样本平均数的 差异,还可以计算它们的效果量。
三、两个独立样本平均数差异 显著性检验的效果量
效果量d:当两个独立样本的方差 和容量都相等时:
d
1
沙僧:师父说得对啊,我们一定要把各 种计算方法都搞明白。 刚才介绍了单因素方差分析的情况,那 么对于两因素方差分析,该如何计算效 果量和统计检验力呢?

统计检验之统计检验力和效果量ppt课件

统计检验之统计检验力和效果量ppt课件

解:已知条件为:
n 100, 1
x1 115,
15
1
n x 100, 2
111,
2
15
2
1、建立假设:
H :
0
1
2
H :
1
1
2
2、计算统计检验量Z
Z
X 1
X
2
1
2
2
2
1
2
n1 n2
115 111 4 1.89
152 152 2.12
100 100
3、令α=0.05,双侧检验的临界值 为1.96
水平)
要检验专业知识和棋局类型对记 忆成绩是否有显著影响,二者是否存 在交互作用;两因素和它们交互作用 的效果量及检验力各为多少。
运用SPSS进行方差分析后得到:
变异来源
F
偏η2 统计检验力
因子A
…… 18.65** 0.538 0.982
因子B
…… 14.73** 0.479 0.949
交 互 作 用 ……
拒绝 H 0 I 型错误 正确决策,1 统计检验力
在其他条件不变的前提下 α 和 不可以同时增大或减小
❖ 八戒可真聪明:我明白了,
❖ 虚无假设H0认为“猪宝宝与猴小兵”的智力 没有显著差异,
❖ 备择假设H1认为“猪宝宝与猴小兵”的智力 存在显著差异。
❖ 唐僧:不论我接受或拒绝哪个假设,都有可 能犯错误,这涉及到统计检验力的问题。
本例中,=0.93 6 = 2.28 查表,得到统计检验力在0.88~
0.96之间。
3、运用SPSS计算统计检验力
(以SPSS18.0中文版为例)
点击“分析”菜单中的“一般 线性模型”;再点击“单变量 (U)……”后,出现对话框,输 入“因变量(智商)”,“固定因 子(教学方式)”;

统计检验力与效果大小

统计检验力与效果大小
H0
1-4 统计检验力的计算公式
Z统计量的计算公式: Z ( X1 X 2) (1 2)
2 1
2 2
n1 n2
因为 和 X1 X2 的总体期望值
分别是u 1 和 u 2,因此可得 的计算公式:
(1 2 )
2 1
2 2
n1 n2
或者用公式:
Z
Z
Z
(
X
1
X
2) SE
(1
2
)
Z
X
二 独立样本平均数差异显著性检验 统计检验力的估计步骤
接受 H 0
正确决策,1 II 型错误
拒绝 H 0 I 型错误 正确决策,1 统计检验力
统计检验力的含义
❖ 1 反映着正确辨认真实差异的能力,统计学 中称之为统计检验力(power of test)或效力。 也可以把统计检验力定义为:“在虚无假设为 假(备择假设为真)时,正确拒绝的概率”。
2) SE
(1
2
)
Z
X
实例
❖ 20, X 1 117.2,1 5.2 n2 20, X 2 114, 2 5.2
H0 : 1 2 H1 : 1 2
Z ( X1 X 2) (1 2) 117 .1114 3.1 1.89
2 1
2 2
第11章 统计检验力 和效果大小的估计
胡竹菁 2009. 10.-
第11章 统计检验力和效果大小的估计
❖ 参考文献与使用意义 ❖ 1. 平均数差异显著性检验的统计检验力和效
果大小的估计 ❖ 2. 方差分析的统计检验力和效果大小的估计 ❖ (3. 卡方检验与积差相关系数的统计检验力和
效果大小
参考文献
1
一 统计检验力的含义与估计原理

统计显著性与效果量分析

统计显著性与效果量分析

统计显著性与效果量分析统计显著性和效果量分析是研究领域中常用的统计方法,用于评估研究结果的可靠性和实际影响力。

本文将介绍统计显著性和效果量分析的概念、原理以及在科学研究中的应用。

统计显著性分析统计显著性分析是通过对研究数据进行统计推断,判断样本数据与总体数据之间是否存在显著差异。

在科学研究中,通常使用假设检验方法进行统计显著性分析。

在假设检验中,研究者需要提出一个原假设(nullhypothesis)和一个备择假设(alternativehypothesis)。

原假设通常是认为两组数据没有差异或没有关联,备择假设则相反,认为数据之间存在差异或关联。

通过计算样本数据与原假设之间的偏差程度,可以得出一个统计值。

然后,通过设定一个显著性水平(significancelevel),比如0.05,来确定拒绝原假设的临界值。

如果计算得到的统计值小于临界值,就可以拒绝原假设,认为数据之间存在显著差异。

然而,统计显著性并不代表实际上的显著影响。

它只能告诉我们有没有差异存在,但不能告诉我们差异的程度和实际影响。

效果量分析效果量分析是用来衡量研究结果的实际影响大小的统计方法。

它能够帮助研究者更全面地理解研究发现,而不仅仅关注统计显著性。

常用的效果量指标包括Cohen’sd、r、η²等。

Cohen’sd衡量两组数据之间的差异程度,r衡量两个变量之间的关联程度,η²则是针对方差分析等多组数据进行效果量分析的指标。

效果量的计算通常需要样本大小、均值和标准差等统计参数。

通过对效果量的计算和解释,研究者可以更好地了解研究结果的实际影响,提供更准确的科学解释和决策依据。

统计显著性与效果量分析的应用统计显著性和效果量分析在科学研究中具有广泛的应用。

它们可以用于比较不同组别或条件下的数据差异,验证研究假设或研究问题的解答。

以医学研究为例,通过进行统计显著性和效果量分析,医生可以判断某种新药物与安慰剂之间是否存在显著差异,同时还可以评估新药物对病情的实际疗效。

统计功效和效应值(讲稿子1)

统计功效和效应值(讲稿子1)

统计功效与效应量华中师范大学心理学院 刘华山一、统计功效(检验功效,效力,Power )统计功效指某检验能够正确地拒绝一个错误的虚无假设的能力。

用1-β表示。

或说:当总体实际上存在差异(备择假设H 1为真),应该拒绝虚无假设时,正确地拒绝虚无假设的概率,或不犯β错误的概率 。

它表示某个检验探查出实际存在的差异,正确拒绝虚无假设的能力。

在实验设计中,统计功效反映了假设检验能够正确侦查到真实的处理效应的能力。

统计功效的大小取决于四个条件:1.两总体差异。

当两总体实有差异越大,或处理效应越大,则假设检验的统计功效越大;(在α错误概率不变的情况下,1-β变大)2.显著性标准α:也称显著性水平,是一个特定的值,一个决策标准。

通过p 与α的决策比较,作出统计决策。

而当假设H 0是真实的时候,观察到的差异完全是由随机误差所致的概率称为观察概率p 。

显著性标准α越大,则β错误越小,从而统计功效1-β越大;反之,α变小,1-β变小3.检验的方向:当两总体差异一定,对于同样的显著性标准α,单侧检验比双侧检验的统计功效要大。

4.样本容量。

样本容量越大,样本平均数分布的标准误越小,分布曲线越瘦◆ 单总体检验◆ α错误的解释 ◆ β错误的解释 ◆ 统计功效1-β◆ 决定统计功效的条件削,统计功效越大。

二、效应量 (效应大小,Effect Size,ES )效应量,反映处理效应大小的度量。

效应量表示两个总体分布的重叠程度。

ES越大,表示两总体重叠的程度越小,效应越明显。

其实,两样本平均数的差异本身就是一个效应量。

由计算出的ES大小,可由专门的表格中查出两样本分布的重叠的百分比。

故效应量经常用两总体重叠的程度为指标,重叠的部分百分比越大,效应量越小。

或以两个样本不重叠的程度为指标,不重叠的部分百分比越大,效应量越大。

三、效应量检验的功能1.效应量有助于我们判断统计上显著差异是否有实际的意义已有统计显著性检验的条件下,检验效应大小的必要性:统计显著性与实际显著性的区别:差异的统计显著性、相关的统计显著性只是告诉你在特定的条件下,这差异、这相关系数是存在的、并不是完全由抽样误差造成的,但并不意味着这差异有实际意义。

统计检验之统计检验力和效果量

统计检验之统计检验力和效果量


2
本例中:
115 111 d 0.27 15
Cohen认为:d=0.2为低效果; d=0.5为中效果; D=0.8为高效果 本例为较低效果。
八戒松了一口气: 我请河南大学研究生对猪宝宝进行智力 开发,虽然效果不显著,但还算是有些 效果的,看样子还要坚持下去啊!
假设检验的两类错误
虚无假设:
H 0 为真
H 0 为假
H 0 : 1 2
备择假设:
拒绝 H 0 I 型错误
H 1 : 1 2
接受 H 0 正确决策, 1 II 型错误

1 统计检验力 正确决策,
在其他条件不变的前提下 α 和 不可以同时增大或减小
八戒可真聪明:我明白了, 虚无假设H0认为“猪宝宝与猴小兵”的智力 没有显著差异, 备择假设H1认为“猪宝宝与猴小兵”的智力 存在显著差异。 唐僧:不论我接受或拒绝哪个假设,都有可 能犯错误,这涉及到统计检验力的问题。
4、计算Z值和临界值的差: 1.89-1.96=-0.07
5、查正态分布表 从中心点为零到右边0.07个标 准差所占的面积为0.0279,约等于 0.03,加上中心点左侧的0.5的面积, 共有曲线下0.53的面积,这就是犯 II型错误的概率β。于是统计检验力 (1- β)=0.47。

再点击“选项”,选中“功效 估计”和“检验效能”;点击“继 续”、“确定”,于是得到“观察 到的效力=0.91”,这就是统计检验 力。
八戒晃着脑袋说:我最怕做计算了,现 在有了SPSS可好了,点击一下就帮我算 出来了! 唐僧:由于计算效果量和统计检验力的 方法较多,不同方法得到的结果是不能 进行比较的,因此,还是要把基础知识 搞清楚啊!

统计检验力和效果量_图文

统计检验力和效果量_图文

3、确定α水平及相应的临界值。
4、计算实际得到的Z值与α水平临 界值的差。
5、根据Z值与α水平临界值的差查 正态分布表,确定可能犯的第二类 错误概率β,于是得到统计检验力
1- β。
例题:
我们分别在猪宝宝与猴小兵中 分别抽取100名被试进行智商测查 ,得到两组被试的智商平均数分别 为115分和111分。根据常模,该年 龄组智商的标准差为15分,请计算 这两组被试智商差异显著性检验的 统计检验力。
唐僧:以前我们对若干个样本的平均数 进行比较时,只是给出它们之间是否有 显著性差异的结论。例如,上个月猪宝 宝与猴小兵比武,我只是宣布双方的武 艺有显著性差异。
八戒脸一红,那次是全军覆没啊!
唐僧:我没有说双方武艺的差异有多大。
八戒连忙说:感谢师父给我留面子!
唐僧:实际上,我们还是应该知道双方的 差异究竟有多大。这可以用“效果量”作为 统计指标来反映这种差异。
八戒看着眼里,喜在心头, 决定与悟空的猴小兵比试一下 智力高低。 找到师父唐三藏说明来意, 唐僧看得徒儿如此有出息, 也就欣然答应。
唐僧:对猪宝宝与猴小兵的智力比试 是两个样本平均数差异显著性检验问题, 我虽为金蝉子转世, 判断却也可能出错。 八戒诧异地问道:师父也会有错? 唐僧:我可能会犯两类错误啊!
沙僧:师父说得对啊,我们一定要把各 种计算方法都搞明白。
刚才介绍了单因素方差分析的情况,那 么对于两因素方差分析,该如何计算效 果量和统计检验力呢?
唐僧:且听我细细道来。
六、两因素方差分析的效果量 和统计检验力
可以通过SPSS获得,也可以采用 公式计算。
介绍SPSS的方法(SPSS18.0中文版 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八戒:以前师父只是和我们讲过显著 性水平α,
现在看来,这个β也很重要啊! 那怎么来计算统计检验力1- β呢? 唐僧:八戒这几年真是有长进了, 我会慢慢教你的。
唐僧:以前我们对若干个样本的平均数 进行比较时,只是给出它们之间是否有 显著性差异的结论。例如,上个月猪宝 宝与猴小兵比武,我只是宣布双方的武 艺有显著性差异。
八戒:师父啊,这次智力测验,您一定 要报告统计检验力和效果量!
唐僧:八戒真是好学啊,我先把有关计 算方法和你说说吧。
二、两个独立样本平均数差异 显著性检验的统计检验力
计算步骤: 1、根据已知条件建立假设 2、采用相应的公式计算Z统计量
3、确定α水平及相应的临界值。
4、计算实际得到的Z值与α水平临 界值的差。
统计检验之统计检验力和效果 量
ห้องสมุดไป่ตู้
主要内容
一、统计检验力和效果量的含义 二、两个独立样本平均数差异显著
性检验的统计检验力 三、两个独立样本平均数差异显著
性检验的效果量
四、单因素方差分析的效果量 五、单因素方差分析的统计检验力 六、两因素方差分析的效果量和统
计检验力
七、卡方检验的效果量和统计检验 力
5、查正态分布表
从中心点为零到右边0.07个标 准差所占的面积为0.0279,约等于 0.03,加上中心点左侧的0.5的面积, 共有曲线下0.53的面积,这就是犯 II型错误的概率β。于是统计检验力 (1- β)=0.47。
八戒纳闷地看着师父:您说什么?检验 结果表明我和大师兄的孩子在智力上没 有显著差异?我给河南大学研究生的银 子就打水漂了?心疼啊!
八、积差相关系数的效果量和统计 检验力
来自扬子江畔的余老师 给同学们连灌好几天数学公式, 有人已经开始消化不良了, 如果再来数学演算, 看样子要“胃结石”了, 我们来说说“西游记后传”吧!
话说天蓬元帅猪八戒, 虽然表面上对悟空恭恭敬敬, 但内心仍然看不起 这个基层干部弼马温, 特别是花果山的儿童团猴小兵。
虚无假设H0认为“猪宝宝与猴小兵”的智力 没有显著差异,
备择假设H1认为“猪宝宝与猴小兵”的智力 存在显著差异。
唐僧:不论我接受或拒绝哪个假设,都有可 能犯错误,这涉及到统计检验力的问题。
一、统计检验力和效果量的含义
统计检验力: 当虚无假设H0为假(备择假设
H1为真)时,正确拒绝H0的概率, 它等于1-。
师徒四人和白龙马西天取得真经后, 猪八戒衣锦还乡回到高老庄, 和高小姐拜堂成亲, 连生了180个小猪仔, 呵呵,猪类不需要计划生育啊!
八戒自知武艺不如悟空, 决定还是从“智力开发”角度来培养猪宝宝
, 特地从河南大学教科院请来研究生, 对猪宝宝开展“一对一”的家教辅导, 同时加强心理咨询工作 猪宝宝们都茁壮成长, 智商逐步接近了八戒的水平。
唐僧:检验结果表明两组孩子的智商没 有显著差异,得出该结论的统计检验力 为47%。
八戒嘟嘟哝哝:
小学生都知道115比111要大,师父却说 没有明显差异,分明是偏袒大师兄。我 赶快发个短信给高小姐,今天晚饭就不 要给师父吃灌汤包和桶子鸡了。
八戒脸一红,那次是全军覆没啊!
唐僧:我没有说双方武艺的差异有多大。
八戒连忙说:感谢师父给我留面子!
唐僧:实际上,我们还是应该知道双方的 差异究竟有多大。这可以用“效果量”作 为统计指标来反映这种差异。
效果量(效应量、效果大小):
表示不同处理下的总体平均数 之间差异的大小。它不受样本容量 的影响。(统计检验力则会受到样 本容量的影响)
解:已知条件为:
n 100, 1
x1 115,
15
1
n x 100, 2
111,
2
15
2
1、建立假设:

H :
0
1
2
H :
1
1
2
2、计算统计检验量Z
Z

X 1
X

2

1
2
2
2
1
2
n1 n2
115 111 4 1.89

两个独立样本的效果量
通常用符号“d”表示 ,它可以理解为是两个总体分布的重叠量
计算统计检验力和效果量的意义:
通过假设检验只能得知样本统 计量之间是否存在显著差异,而不 能告诉我们这个差异究竟有多大, 因此提出了统计检验力和效果量。
八戒对于河南大学研究生的家教质量充 满信心,对于这次智力比试满怀希望。
152 152 2.12
100 100
3、令α=0.05,双侧检验的临界值 为1.96
由于Z=1.89<1.96
即:p>0.05,接受H0,两组被 试的智商平均数没有显著差异。
在一般情况下,假设检验到此 就完成了。但如果要计算统计检验 力,则还需要下列步骤。
4、计算Z值和临界值的差: 1.89-1.96=-0.07
假设检验的两类错误
虚无假设: H 0 : 1 2 备择假设: H 1 : 1 2
H 0 为真 H 0 为假
接受 H 0 正确决策,1 II 型错误
拒绝 H 0 I 型错误 正确决策,1 统计检验力
在其他条件不变的前提下 α 和 不可以同时增大或减小
八戒可真聪明:我明白了,
5、根据Z值与α水平临界值的差查 正态分布表,确定可能犯的第二类 错误概率β,于是得到统计检验力
1- β。
例题:
我们分别在猪宝宝与猴小兵中 分别抽取100名被试进行智商测查, 得到两组被试的智商平均数分别为 115分和111分。根据常模,该年龄 组智商的标准差为15分,请计算这 两组被试智商差异显著性检验的统 计检验力。
八戒看着眼里,喜在心头, 决定与悟空的猴小兵比试一下 智力高低。 找到师父唐三藏说明来意, 唐僧看得徒儿如此有出息, 也就欣然答应。
唐僧:对猪宝宝与猴小兵的智力比试 是两个样本平均数差异显著性检验问题, 我虽为金蝉子转世, 判断却也可能出错。 八戒诧异地问道:师父也会有错? 唐僧:我可能会犯两类错误啊!
相关文档
最新文档