流体机械外文翻译
流体机械——英文论文专用词汇总结

翼型:airfoil远场边界:farfield boundary周围条件:ambient conditions几何翼型:airfoil geometry弦长:chord length二维的,平面的:planar顺时针:clockwise逆时针:anticlockwise参数:parameter梯度,倾斜度:gradient连续的,继承的,依次的:successive默认:default动量方程:momentum equation(动量)守恒方程:(momentum) conservation equation 连续方程:continuity equation控制方程:governing equation粘性流体:viscous fluid无粘流体:inviscid fluid理想流体:perfect fluid层流:laminar湍流:turbulence有限差分法:finite difference method or FDM有限元法:finite element method or FEM有限体积法:finite volume method or FVM (又称控制体积法:control volume method or CVM)节点:node控制体积:control volume界面:face网格:grid,网格线:grid line结构网格:constructed grid,非结构网络:unconstructed grid离散格式:discretization scheme中心差分格式:central differencing scheme一阶迎风格式:first order upwind scheme交错网络:staggered grid节点:node层流:laminar flow湍流:turbulent flow湍流涡(涡):turbulent eddies涡:eddy雷诺:reynolds直接数值模拟方法:direct numerical simulation(NDS)大涡模拟:large eddy simulation(LES)雷诺平均法:reynolds averaged navier-stokes(RANS)湍动粘度:turbulent viscosity=涡粘系数:eddy viscosity湍动能:turbulent kinetic energy混合长度模型:mixed length model壁面函数法:wall functions雷诺应力方程模型:(RSM)代数应力方程模型:algebraic stress equation model(ASM)块结构网格:block-structured grids网格单元:cell网格区域:cell zone贴体坐标系:body-fitted coordinates分离式求解器:segregated solver耦合式求解器:coupled solver耦合隐式:coupled implicit耦合显式:coupled explicit相对压力值:gauge pressure参考压力:operating pressure质量进口:mass-flow-inlet区域表面:zone surface子域表面:partition surface点表面:point surface线和靶表面:line and rake surface平面:plane surface二次曲面:quadric surface轴测面:isosurface用户自定义函数:user-defined function (UDF)。
机械工程外文翻译(适用于毕业论文外文翻译+中英文对照)

Mechanical engineering1.The porfile of mechanical engineeringEngingeering is a branch of mechanical engineerig,itstudies mechanical and power generation especially power and movement.2.The history of mechanical engineering18th century later periods,the steam engine invention hasprovided a main power fountainhead for the industrialrevolution,enormously impelled each kind of mechznicalbiting.Thus,an important branch of a newEngineering –separated from the civil engineering tools andmachines on the branch-developed together with Birmingham andthe establishment of the Associantion of Mechanical Engineersin 1847 had been officially recognized.The mechanicalengineering already mainly used in by trial and error methodmechanic application technological development into professional engineer the scientific method of which in theresearch,the design and the realm of production used .From themost broad perspective,thedemend continuously to enhance theefficiencey of mechanical engineers improve the quality of work,and asked him to accept the history of the high degreeof education and training.Machine operation to stress not only economic but also infrastructure costs to an absolute minimun.3.The field of mechanical engineeringThe commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanization very good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle largevolumes of data,the data is a multifunctional machine tools necessary for the production of spare parts.One of the objectives is to fully automated production workshop,threerotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security, which requires solving many new rge power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type(petrol and diesel machines)or rotary-type(gas turbines and Mong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase the body functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complexsurgery,and injuries and ill patients life functions can be sustained.Someenviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producingnoise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable natural forces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.4.The role of mechanical engineeringThere are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical sciencefoundation.It includes the power and movement of the relationship dynamics For example,in the vibration and movement of the relationship;Automaticcontrol;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant;And material properties.The 2nd function will be conducts the research,thedesing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to break down into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,includeplan,operation and maintenance.Its goal lies in the maintenance either enhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,theconsultation,as well as carries on the market marking in certain situation.In all these function,one kind unceasingly to use thescience for a long time the method,but is not traditional or the intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanicalengineering, to take unexpected and important way to bring about a new capacity,still has a personal,markedcharacteristice.5.The design of mechanical engineeringThe design of mechanical is the design has the mechanical property the thing or the system,suchas:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.Mechanical engineering desginincludeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnicalengineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Designstages.The entire desgin process from start to finish,in the process,a demand that is designed forit and decided to do the start.After a lot of repetition,the final meet this demand by the end of the design procees and the plan.Designconsiderations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapes and size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases the design of important design considerations are not calculated or test can determine the components or systems.Especiallystudents,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,forexample,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not theother point of view.Our purpose is to make those you do not be misled to believe that every design decision will need reasonable mathematical methods.Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.Theyare:input,processingexprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess . Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.Forexample,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to productperformance,installation and may have to conduct further debugging in addition,someproducts,especially those very complex products User training is necessary.6.The processes of materials and maunfacturingHere said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,syntheticrubber,composite materials and ceramics.It said the production proccess is divided into several major process,includingshape,forging,casting/founding,heattreatment,fixed/connections ,measurement/ quality control and materalcutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manusllyproduced.This is totally integrated production take shape.A person needsindentification,collectionmaterials,the design of a product to meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human ter in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.Onecan not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdualprocesses,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous withthem .The ultimate result is the efficient working fast parked through automated processes,but is part of the stagnation in wages down,causingbottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by the next red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommthoperation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.Scientific analysis of movement,timing and mechanics ofthe disciplines is that it is composed of two pater:statics and dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,morespecifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study ofits impact.In a more precise kinematic studies position,displacement,rotation, speed,velocity and acceleration of disciplines,foresample,or planets orbiting research campaing is a paradigm.In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumption that they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.机械工程1.机械工程简介机械工程是工程学的一个分支,它研究机械和动力的产,尤其是力和动力。
外文资料及翻译---流体传动

Transmission of fluidFormer statement fluid transmission is including gas (pressure) transmission and liquid transmission, hydraulic transmission into liquid transmission, hydraulic transmission and fluid Nien transmission. Hydraulic transmission based on the interior market, the pressure to be able to impart impetus liquid; Hydraulic transmission based on Oula equation to the liquid changes to the short wheel drive transmission; For Newton, Nien transmission fluid friction law, the sticky liquid to impart dynamism to.Hydraulic transmission is the basic hydraulic components and hydraulic Bianjuqi coupled device. Hydraulic coupled devices is a fundamental component of a number of radial plane leaves, a work of the pump and turbine round. Hydraulic transmission oil in the work of the cycle of high-speed mobile transmission power, oil pumps round her so involved with the campaign because centrifugal force role do centrifuge campaign from pumps round (and imported axis) and to absorb mechanical energy into moment of momentum (mVR) incremental, high-speed Yeliu round water from the pump to the heart to do turbine flow release moment of momentum. promote turbine (and export axis) rotation, work-driven plane (and load) homework. Hydraulic Bianjuqi basic components are pumps round, and the turbine-round, they are a space (bending) leaves work round by the work of a relevant order. Hydraulic transmission oil pumps were working round the turbine mix for incremental Ye Liu was moment of momentum, after transfer-round water turbine Yeliu direction after the release of moment of momentum (kinetic energy) to promote the work of the turbine-driven rotary rush.My hydraulic components in the development of faster, 2003 hydraulic coupled devices produced about 70,000 National Taiwan. Widely used for Daishishusongji, rail carriers, ball mill, air-compressors, compressors, pumps and fuel pumps, and other equipment, transmission,improve transmission quality and energy conservation. My hydraulic coupled with the current maximum output rotational speed for 6500r/min, minimum power to 0.3kW, the maximum power to 7100kW. Hydraulic trend is coupled with a high rotational speed and power.International hydraulic coupled device products to the most famous German Fuk under special company, according to information that has reached 20000r/min rotational speed and power to 55000kW products, which are still visible in considerable gap. Of course, the power of the big oil hydraulic components for hydraulic transmission requirements higher. Hydraulic Bianjuqi mainly for engineering machinery, machinery and diesel oil. Hydraulic Bianjuqi main internal combustion engine with matching applications, the scope of its rotational speed in 2000~3000r/min. Mechanical engineering applications more, the greatest power 700HP about output about 70,000 Taiwan. Oil machinery applications less power to 1500HP. Diesel applications less power up 3000HP.Nien transmission fluid is a liquid transmission doors emerging disciplines in the country are still at an infancy stage. Because liquid Nien transmission products (such as fluid mechanics using Nien) and hydraulic transmission products (such as governor-hydraulic coupled device) Notwithstanding the different nature, but because of similar performance and the same purposes (governor energy), in a number of technical activities (such as the formulation of development plans, standards, technology management, orders, and other activities) are regarded as the same type, with the hydraulic industry commonalities, it is another chapter on the work of its product mix and transmission oil.First, the performance characteristics of the oil and hydraulic transmission hydraulic transmission oil development not only as a transmission medium for work, but also to provide lubrication bearings and gear while the carrier is further bad fever, heat away. Hydraulic transmission oil is a complex and require specialized research topics,which is directly related to the reliability of hydraulic components, transmission efficiency and service life. Should arouse the attention of extensive in-depth study.Hydraulic transmission oil should meet the following requirements :1、A suitable low-viscosity liquid viscosity, liquid indicate friction within small, mobile resistance small loss may reduce hydraulic components hydraulic losses; But lubricant sealed perspective, the viscosity can not be too low. Provide lubrication and therefore should meet the requirements of sealed premise as a low-viscosity liquid to improve hydraulic components transmission efficiency. Wen Xing Nien also called liquid than for the high-temperature or low-temperature, and still maintain an effective lubricant sealed.2、A greater emphasis on the hydraulic components for the moment and the power transmission and liquid working for the re-direct, it is liquid-degrees the higher the better.3、The performance can have a stable bubble, aging and sedimentation.4、Suanzhi sealed pieces to be neutral to low, and a good compatibility, not dwell inflation, not dissolved, the non-corrosive metal.5、A higher flash point and lower congeal point hydraulic components work Youwen change significantly, sometimes up to 160 degrees, and therefore require flash point higher than 180 degrees, and congeal point lower than -20 degrees, low-temperature environment for the benefit of the start-up of hydraulic components.6、A good lubricant performance liquid sufficient greasiness to the good parts in the surface material, a good lubricant.At present, and hydraulic transmission applications work more liquid types, among all oil-based products, has used the water or other liquid Nanran (coal mine explosion and fire in defense applications). Domestic hydraulic components commonly used 6th hydraulic transmission oil (also useful 8th hydraulic transmission oil), andsometimes to 22 turbine fuel substitution.Diesel oil is dedicated to the life of not less than 2,000 hours and for the initial operation of new equipment installed oil after 100 hours and 500 hours of the first, second formula, can still be used after the filter.Is one of the following situations, the need to replace the new oil : Water content greater than 0.2%; 50 degrees in the new oil viscosity higher than 6% mounted; Mechanical impurities (benzene Burong objects) to reach 0.2%; A high lipid intake or Suanzhi; Excessive bubble effects transmission power. More articles on the diesel-hydraulic transmission oil outside the oil will definitely reference value.Second, Transmission and hydraulic oil brands in (slightly)Third, Fluid Nien transmission of the oil transmission fluid requirements may Nien Tien National Petroleum Corporation December thickness operational changes are divided into two categories : one category is in operation slick thickness constant fluid Nien transmission, such as silicone oil slick thickness using fans is fixed, changes in the operational work of the degree to which oil-exporting rotational speed. Another operation is slick thickness is variable fluid Nien transmission, such fluid Nien Nien transmission products including fluid mechanics using, liquid Nien brakes, fluids Nien dynamometer, fluid Nien shaft coupling, fluid mechanics Nien devices. Current applications are more fluid mechanics using Nien, fluid mechanics devices and silicone oil Nien fans Clutch.1、Fluid mechanics using Nien and transmission oil fluid mechanics using Nien through its owners, driven friction between the film to a number of oil transmission power, relying on the apparent effectiveness initiative friction films "draw" driven friction with the direction of rotation films, transmission moment with oil viscosity, two films - "goes bad" proportional, and with oil thickness (films gap) negatively. Initiative friction films and imported axle and power machine linked to the importation of rotational speed as constants. Driven friction films and thework associated with the export of axle, and the output rotational speed with control pressure changes, spherical tank pressure control, a slick film thinning, export rotational speed rise, and vice versa. When the control pressure enough, the owners, driven friction films together into the transmission straight. When sufficient pressure control small owners, driven films from friction, zero export rotational speed. Nien in fluid mechanics using rotational speed than 0>1 change from the process of film-friction conditions showing a liquid friction "(a mechanical liquid) mixed friction" (purely mechanical) border friction. Therefore fluid mechanics using Nien are in the process of separation-state governor, the state governor and the state face. Work in fluid liquid is the role of transmission Nien transmission power, heat dissipation and cooling lubricant should have the following functions : (1) the appropriate viscosity. (2) is a good lubricant performance (greasiness and very pressurised nature). (3) a good oxidation insecurities. (4) higher than the thermal capacity and higher heat conductivity. In addition to the above requirements, but also work with rustproof liquid role, anti-bubble capacity, congeal points lower, flash point should be high, not volatile, non-toxic. Nien currently made in China fluid mechanics using more oil as a hydraulic transmission work on the 8th of liquid. The domestic fluid mechanics using a TL - Nien and HC type rated rotational speed mostly 1500r/min, individual 3000r/min. 75kW power transmission smallest, the largest of 1100kW. Fluid mechanics starts with the mechanics of hydraulic Nien coupled devices, are in the rotational speed electrical driven downward in the low-speed, power and small, inefficient. To this end in fluid mechanics using input Nien before or after the installation of vertical transmission-export, or to meet with the power machine and the matching machine work, so a new device -- liquid Nien governor devices.2、Fluid mechanics devices Nien current production and application of two different structures liquid Nien governor devices, a category is the U.S. Philadelphia drove parallel axle fluid production company Niengovernor devices into rotational speed 1785r/min exporting rotational speed 5000r/min, transmitting power to 5200kW. My hill Xian too Salih coal mine in the smaller Daishishusongji specifications. Oil is brought by the United States of its transmission. Baoding propeller factory design, produced with structurally similar products. Another is the United States Dodge (Dodge) companies CST fluid mechanics devices Nien, it is in Park pillar gear -- planetary reducer round of the robustness of the export-round, and export axis (connecting the Sun round), in parallel with export large Chijuan fluid mechanics using Nien (driven friction films fixed), start-up liquid separation Nien governor in the state starts (idling), gradually increasing pressure control, when his transmission torque and the torque equivalent output bearings, export axle (with load) started turning and continue to increase the pressure until the joint control of the situation, the export axle assume full power output. CST fluid mechanics device known as Nien large Daishishusongji soft start system in the country's major coal Daishishusongji already applied. CST series products, the importation of rotational speed 1483r/min, rated slowdown than to 15.38~57.66, transmitting power scope 702~3115kW. CST series of products supplied by the United States dedicated hydraulic transmission oil.3、Silicone oil producing fans with liquid silicone oil work of the fan clutch, driven plate with a 78-98 derby leaves, the two derby leaves mutual alternate inserted, a number Park derby gap (oil), use these links, the sticky oil to impart momentum. The process of routing thickness unchanged through changes Chongyou volume and the size of the area to exploration by sheared governor.Engine in the appropriate temperature can be higher fuel efficiency, overheating is not too cold. Automotive firm to offer fans of silicone oil and engine linked driven sites linked with the fans, for liquid silicone oil viscosity larger. On temperature devices for cooling water to control the rear airflow temperature feelings Chongyou volume. When the enginecooling water temperature low, the air currents temperature low temperature equipment made Chongyou small amount of oil sheared small size, transmission moment small, low rotational speed fans for the engine cooling capacity low. Conversely, when the engine cooling water temperature is high, the fans rotational speed is high, awareness of the engine cooling effect. This will allow a regular in the most appropriate temperature. Fuel efficiency, noise small, extended engine life.Silicone oil used silicone oil is a fan using synthetic lubricants, not petroleum refining come from. It is the semi-organic silicon polymers or copolymer, containing duplicate silicon modules for yuan oxygen machine backbone, and the silicon atoms along the chain, replace clustering levonorgestrel, the general chain-guns. To meet the prescribed performance requirements, availability of different organic polymers to replace the base elements or the size of the adjustment (that is, to change its molecular weight), to change its viscosity or acquire other properties.Silicone oil depends on the physical properties of polymer molecular structure, such as molecular weight, organic genetic types and quantity, location and length of extension chain. In the liquid oil thickness constant use silicone oil Nien transmission of the main reasons is that it has a high viscosity, good performance and strong resistance Nien Wen sheared capacity.Silicone oil can be used in all types of vehicles using fans, currently our applications are mainly jeeps, and other vehicles Beijing 130. Motor oil production plant with Beijing and Changchun First Automobile Works Bengchang units.流体传动流体传动包括气体(压)传动和液体传动,液体传动分为液压传动、液力传动和液粘传动。
流体 机械 外文翻译 外文文献 英文文献

原文AbstractA major independent oil and gas producer (Producer) with operations located on the Outer Continental Shelf of the Gulf of Mexico had several facilities damaged by Hurricane Ike. As a part of restoring operations, one of the offshore platforms was refurbished.The refurbishment included upgrading the production train to handle additional oil and gas production from other nearby production platforms. The additional production to the platform required a vapor recovery system to recover facility flash gas.The project team chose the scroll compressor vapor recovery unit (VRU) to recover and recompress the flash gas. The project was the first application of scroll compression technology for vapor recovery in an offshore environment.The Producer installed the VRU allowing the facility to recover flash gas from the oil storage tanks and excess unused flash gas from the oil treater. The average volume recovered was approximately 58,000 standard cubic feet of natural gas per day during the initial phase of the project. The methane content of the recovered natural gas was approximately 69 percent by volume. The estimated methane recovered was 0.84 US tons per day and the estimated recovery of greenhouse gases were 17.6 US tons per day CO2e. V olatile organic compounds (VOC) recovered were 1.0 US tons per day. The scroll compressor VRU met the regulatory requirements of the U.S. Minerals Management Service’s flaring and venting regulations. The projected payout was 15 months(simple payout).The significance of this project includes:1. First use of scroll compression technology in an offshore application2. Small physical footprint of unit important to offshore operations with limitedspace3. Scroll technology requires less maintenance than typical mechanical compressors4. Lower initial costs and lower operating costs enhance economics of recovery5. Recovered flash gas that contained volatile organic compounds (VOCs) andmethane, a greenhouse gasIntroductionMany oil and gas production platforms and pipelines operating in the Outer Continental Shelf of the Gulf of Mexico were damaged by Hurricane Ike in November of 2008. A major independent oil and gas producer (Producer) with operations located on the Gulf of Mexico had several facilities damaged by the storm. As a part of restoring operations, one the offshore platforms was refurbished. The refurbishment of the platform included upgrading and improving the production train to handle additional production from other nearby production platforms that could not send their production to the gathering pipelines due to the effects of Hurricane Ike. The additional production to the platform required the installation of a VRU to recover flash gas from the oil storage tanks. The Producer’s project team decided to utilize scroll compressors to recover and recompress the flash gas from the storage tanks and oil treater.The source of natural gas vapors from oil storage tanks include flashing losses,working losses and breathing losses. Flashing for a pressure vessel (e.g., separator, heater treater) or oil storage tank occurs when the crude oil or condensate with dissolved gases moves from a higher pressure to a lower pressure. As the pressure of the oil drops some of the lighter components dissolved in the oil are released or “flashed.” Working losses are due to displacement of the natural gas vapors within the storage tank vapor space as a tank is filled. Breathing losses are due to displacement of natural gas vapor within the storage tank vapor space due to changes in the tank temperature and pressure throughout the day. For this paper we refer to the vent gas from the oil storage tanks collectively as flash gas.Often flash gases from offshore production platforms are either vented directly to the atmosphere or burned by a flare. Historically VRUs have been used to recover flash gas when there is sufficient quantity to justify the investment and to meet air emission standards. The typical type of vapor recovery compressors used for vent flash gas has been natural gas driven rotary screw compressors and rotary vane compressors.The United States Minerals Management Service (MMS) is the regulatory agency with jurisdiction over venting of natural gas in the central and western areas of the Gulf of Mexico. MMS regulations require a facility to recover natural gas volumes over 50,000 standard cubic feet per day rather than venting directly to the atmosphere or burning in a flare. For offshore production platforms, deck space requirements are a significant consideration for vapor recovery units. To accommodate this limitation, the scroll compressor package has a footprint one-third the size of a traditional VRUs used. In addition, lower overall maintenance costs were a significant factor in the decision to utilize scroll compressor technology. The scroll compressor requires oil changes once per year compared to quarterly for the typical mechanical compressor. Equipment used in the offshore environment required capital upgrades to the typical onshore compression package due to the saltwater corrosive environment and additional safety controls required for operating offshore. For this project the standard onshore VRU was upgraded to meet specifications for the offshore conditions and regulations.Description and Application of Equipment and ProcessesScroll Compression Technology.Scroll compression technology is a positive displacement machine that uses two interleaved spiral-shaped scrolls to compress natural gas. With scroll compression technology, one of the scrolls is fixed, while the other orbits eccentrically, thereby trapping and pumping or compressing gas between through successively smaller scroll volume “pockets” until the gas reaches maximum pressure at the center. At the center, the gas is released through a discharge point in the fixed scroll. Compression is continuous since during orbit of the orbiting scroll, multiple gas pockets are compressed simultaneously.The driver for the compressor is an electric motor. The scroll compressor is a hermetic compressor designed for use with high-pressure refrigerants. It has a broad range of operation and is intrinsically leak free. Scroll compressor technology has been widely used in cooling system applications.The scroll compressor VRU installed had a horizontal design that has a low profile, low noise, low vibration, and uses variable speed control motors. Depending on the application, the range of inlet pressures of gas to the scroll compressor VRUs may vary from -10.4 to 101.3 pounds per square inch gage and the discharge pressures can range from 43.5 to 363 pounds per square inch gage. The compression ratio ranges from 3 to 15.Scroll compression technology has been used in oil and gas vapor recovery applications since 2004.Application of Scroll Technology.In May of 2009, COMM and the Producer began working together to modify a typical onshore scroll compressor VRU for the platform that was damaged and being refurbished.The scroll compressor VRU consisted of two stacked modules each 8-foot long by 4-foot wide by 4-foot high steel skids each with an inlet gas scrubber. Each module contained two 15-horsepower scroll compressors and an aftercooler. Each module also included a control panel with Programmable Logic Control (PLC) and variable frequency drive (VFD). The design recovery capacity of this twin module package used was 200,000 standard cubic feet per day.A suction line connected to the oil storage tanks’ common vent and to the oil treater (i.e., heater treater) vent was installed to the inlet scrubber of the scroll compressor VRU. The suction line to the oil treater was used to collect excess gas from the oil treater that was not used as platform fuel gas. A flow meter was placed on the suction line prior to the inlet of the scroll compressor VRU to measure the amount of natural gas recovered. The discharge of the scroll compressor package was piped to the suction separator/scrubber of the onsite main compressor. This main compressor compresses natural gas for ultimate injection into the sales pipeline.A purge gas system was installed and used to recycle gas through the scroll compressor VRU when there is insufficient pressure from flash gas in the storage tanks. The purpose of the purge gas system is to keep VRU operating to maintain the scroll compressor’s oil temperature at a minimum of 235 degrees Fahrenheit. By maintaining the oil temperature at or above 235 degrees F, the flash gas will remain in a gas phase.As a safety measure, a blanket gas system was installed on the storage tanks to maintain approximately 0.5 ounce per square inch of pressure on the tanks to keep oxygen from entering the tanks.Figure 1 contains a simplified process flow for the VRU.The control panels with VFD’s were located in the motor control center (MCC) and wiring was run to the scroll compressor VRU which was located on a lower deck of the platform.Functionally, the scroll compressor operates normally in the recycle mode at 2400 revolutions per minute (rpm). When the pressure builds in the oil storage tanks, a pressure transmitter sends a signal enabling the speed of the compressor to increase to 4800 rpms and the flash gas is recovered and compressed. Once the flash gas from the storage tanks is recovered and the pressure drops in the storage tanks, the VFD rampsthe compressor speed down to 2400 rpms. Then the VRU is in recycle mode again. Any liquids recovered by the gas scrubber are pumped back to the oil storage tanks. Modifications to VRU Package.To meet offshore specification, the structural components of the scroll compressor package were already hot dipped galvanized and suitable for offshore installation but other components required refinishing to withstand the corrosive saltwater environment. The compressors and several other components were removed from the modules and specially coated with a three part epoxy coating to withstand the corrosive environment.In addition to the special coatings needed for offshore, there was a number of safety system modifications needed to make the scroll compressor VRU compliant with the United States Minerals Management Service (MMS) regulations. Offshore operators are required to abide by the American Petroleum Institute (API) Recommended Practices 14C (RP 14C). API RP 14C contains the criteria for designing, installing and testing a safety system on an offshore platform. It identifies each undesirable event that could affect a process component and discusses safety device selection criteria for each component type.Failure to meet RP 14C requirements can result in fines to the operators and in some cases, require an interruption of production which could result in losses of income to the operator until compliance is restored.Specifically, the modifications in response to RP-14C were:1. Installation of test circuit for monthly testing of high level alarm/shutdown on the gas scrubber2. Installation of test circuit for monthly testing of high discharge pressurealarm/shutdown on compressor discharge line3. Installation of test circuit for monthly testing of low pressure alarm/shutdown on oil storage tanks4. Addition on redundant oil storage tank pressure transmitter. Installation of test circuit for monthly testing of high pressure alarm/shutdown on oil storage tanks. Additionally, the Producer’s offshore specifications required the repla cement of several valves to steel construction rather than brass.The scroll compressor VRU was shipped to the platform in July 2009. The interconnecting piping to and from the scroll compressor VRU was completed in August 2009. Once the installation was completed and the platform was placed into operation, the scroll compressor VRU was brought into operation.Presentation of Data and ResultsFor this installation, the scroll compressor VRU had an average recovery of tank flash gas over the initial operating period of 58,000 standard cubic feet per day. Thepeak flowrate documented was 215,000 standard cubic feet of flash gas per day. A sample of the recovered flash gas that was chemically analyzed had a molecular weight of 26.6 and contained approximately 69 percent by volume of methane. V olatile organic compounds (nonmethane, nonethane hydrocarbons) amounted to approximately 29 percent by volume. The higher heating value was approximately 1540 British Thermal Units (BTU) per standard cubic feet.The hydrogen sulfide content of the flash gas was considered de minimus based on the facility processing sweet natural gas.The calculated simple payout of this scroll compressor VRU based on the average recovery and gas price of USD 5/MMBTU is 15 months.The estimated methane emissions recovered were 0.84 US tons per day and the estimated recovery of greenhouse gases were 17.6 US tons per day CO2e. V olatile organic compound (VOC) emissions recovered were 1.0 US tons per day.The Producer is in the process of modifying the scroll compressor VRU control system. These modifications include the installation of a single programmable logic controller (PLC) to control both modules, replacement of pressure switches with transmitters and the installation of a touch screen control panel next to the VRU. The modifications are needed to meet the Producer’s operating standards. The cost of this modification will result in an extra initial cost of USD 8,000.ConclusionsThe application of scroll based compression technology in the harsh offshore environment is a cost effective and most efficient solution for vapor recovery. By utilizing scroll compression technology for vapor recovery, offshore operators can meet regulatory requirements to reduce emissions, improve their carbon footprint and economically recover flash gas.AcknowledgmentsOur sincerest thanks go to Mr. James Welsh and Mr. Ron Damron for their expertise and diligence in making this project successful.Reference List1. Emerson Climate Technologies. April 2008. A Hermetic Scroll Compressor For Application To High Heat-Of-Compression Gases,/oil_gas/PDF/HermeticScrollCompressorWhitePap er.pdf.2. RP 14C, Recommended Practice for Analysis, Design, Installation and Testing of Basic Surface Safety Systems on Offshore Production Platforms, sixth edition. March 1998. Washington, DC: API.第一篇:在海上生产平台上使用滚动压缩技术回收储存罐内闪发气体G.B.(比尔)施耐德,SPE, 布莱恩E. 博耶,SPE,马克A.古德伊尔,商科工程摘要位于墨西哥湾外大陆架的一个独立的石油天然气生产操作遭到飓风艾克的袭击并损坏了一些设施。
流体机械英文课件Chapt3-2012

the motion and does not consider the physical causes of motion itself.
2
Fluid mechanics = fluid statics + fluid dynamics Fluid dynamics = relation between fluid motion and forces Fluid kinematics studies fluid motion.
particles in control volume or system – To obtain some integral equations.
z Differential analysis (微分分析)looking at infinitesimal
(极微小的) system or control volume (local individual behaviour) – To obtain differential equations
z Dimensional analysis (量纲分析)is used in experimental
study of fluid flow to rearrange flow parameters and obtain dimensionless parameter groups, such as Re, Ma, etc. through which we can not obtain an exact flow solution.
It is much more convenient to analyzing a volume in space through which the fluid fls an arbitrary volume in space, chosen by
机械类外文文献及翻译

机械类外文文献及翻译(文档含中英文对照即英文原文和中文翻译)原文:GEAR AND SHAFT INTRODUCTIONAbstract:The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, using for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many ways .Key words: Wheel gear; ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case ofbevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed heli : cal gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle areequal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is onein which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 0-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 0 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often go : od design practice to go to the spiral bevel gear, which is the bevel counterpart of thehelical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous v ariations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment,and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two in : ertias I and I traveling at the respective angular velocities W and W, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows:. Rim type with internally expanding shoes. Rim type with externally contracting shoes. Band type. Disk or axial type. Cone type. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:. Assume or determine the distribution of pressure on the frictional surfaces.. Find a relation between the maximum pressure and the pressure at any point. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” bec ause the driver is stopped or because another source of power increase the speed of the driven. This : type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。
机械外文翻译中英文

机械外文翻译中英文附录附录1英文原文Rolling Contact BearingsThe concern of a machine designer with ball and roller bearings is fivefold as follows:(a) life in relation to load; (b)stiffness,ie.deflections under load; (c) friction; (d) wear; (e) noise. For moderate loads and speeds the correct selection of a standard bearing on the basis of a load rating will become important where loads are high,although this is usually of less magnitude than that of the shafts or other components associated with the bearing. Where speeds are high special cooling arrangements become necessary which may increase fricitional drag. Wear is primarily associated with the introduction of contaminants,and sealing arrangements must be chosen with regard to the hostility of the environment.Because the high quality and low price of ball and roller bearing depends on quantity production,the task of the machine designer becomes one of selection rather than design. Rolling-contact bearings are generally made with steel which is through-hardened to about900HV,although in many mechanisms special races are not provided and the interacting surfaces are hardened to about 600HV. It is not surprising that,owing to the high stresses involved,a predominant form of failureshould be metal fatigue, and a good deal of work is based on accept values of life and it is general practice in bearing industry to define the load capacity of the bearing as that value below which 90 percent of a batch will exceed life of one million revolutions.Notwithstanding the fact that responsibility for basic design ofball and roller bearings rests with the bearing manufacturer, the machine designer must form a correct appreciation of the duty to be performed by the bearing and be concerned not only with bearingselection but with the conditions for correct installation.The fit of the bearing races onto the shaft or onto the housings is of critical importance because of their combined effect on the internal clearance of the bearing as well as preserving the desired degree of interference fit. Inadequate interference can induce serious trouble from fretting corrosion. The inner race is frequently located axially by against a shoulder. A radius at this point is essential for the avoidance of stress concentration and ball races are provided with a radius or chamfer to follow space for this.Where life is not the determining factor in design, it is usual to determine maximum loading by the amount to which a bearing will deflect under load. Thus the concept of "static load-carrying capacity" is understood to mean the load that can be applied to a bearing, which is either stationary or subject to slight swiveling motions, without impairing its running qualities for subsequent rotational motion. This has been determined by practical experience as the load which whenapplied to a bearing results in a total deformation of 0.0025mm for a ball 25mm in diameter.The successful functioning of many bearings depends upon providing them with adequate protection against their environment, and in some circumstances the environment must be protected from lubricants or products of deterioration of the bearing design. Moreover, seals which are applied to moving parts for any purpose are of interest to tribologists because they are components of bearing systems and can only be designed satisfactorily on basis of the appropriate bearing theory.Notwithstanding their importance, the amount of research effort that has been devoted to the understanding of the behavior of seals has been small when compared with that devoted to other aspects of bearing technology.LathesLathes are widely used in industry to produce all kinds of machined parts. Some are general purpose machines, and others are used to perform highly specialized operations.Engine lathesEngine lathes, of course, are general-purpose machine used in production and maintenance shop all over the the world. Sized ranger from small bench models to huge heavy duty pieces of equipment. Many of the larger lathes come equipped with attachments not commonly found in the ordinary shop, such as automatic shop for the carriage.Tracer or Duplicating LathesThe tracer or duplicating lathe is designed o produce irregularly shaped parts automatically. The basic operation of this lathe is as fallows. A template of either a flat or three-dimensional shape isplaced in a holder. A guide or pointer then moves along this shape andits movement controls that of the cutting tool. The duplication may include a square or tapered shoulder, grooves, tapers, and contours. Work such as motor shafts, spindles, pistons, rods, car axles, turbine shafts, and a variety of other objects can be turned using this type of lathe.Turret LathesWhen machining a complex workpiece on a general-purpose lathe, agreat deal of time is spent changing and adjusting the several toolsthat are needed to complete the work. One of the first adaptations ofthe engine lathe which made it suitable to mass production was the addition of multi-tool in place of the tailstock. Although most turrets have six stations, some have as many as eight.High-production turret lathes are very complicated machines with a wide variety of power accessories. The principal feature of all turret lathes, however, is that the tools can perform a consecutive serials of operations in proper sequence. Once the tools have been set and adjusted, little skill is require to run out duplicate parts.Automatic Screw MachineScrew machines are similar in construction to turret lathes, except that their heads are designed to hold and feed long bars of stock.Otherwise, their is little different between them. Both are designed for multiple tooling, and both have adaptations for identical work. Originally, the turret lathe was designed as a chucking lathe for machining small casting, forgings, and irregularly shaped workpieces.The first screw machines were designed to feed bar stock and wire used in making small screw parts. Today, however, the turret lathe is frequently used with a collect attachment, and the automatic screw machine can be equipped with a chuck to hold castings.The single-spindle automatic screw machine, as its name implies, machines work on only one bar of stock at a time. A bar 16 to 20 feet long is feed through the headstock spindle and is held firmly by a collect. The machining operations are done by cutting tools mounted on the cross slide. When the machine is in operation, the spindle and the stock are rotated at selected speeds for different operations. If required, rapid reversal of spindle direction is also possible.In the single-spindle automatic screw machine, a specific length of stock is automatically fed through the spindle to a machining area. At this point, the turret and cross slide move into position and automatically perform whatever operations are required. After the machined piece is cut off, stock is again fed into the machining area and the entire cycle is repeated.Multiple-spindle automatic screw machines have from four to eight spindles located around a spindle carrier. Long bars of stock, supported at the rear of the machine,pass though these hollow spindles and aregripped by collects. With the single spindle machines, the turret indexes around the spindle. When one tool on the turret is working, the others are not. With a multiple spindle machine, however, the spindle itself index. Thus the bars of stock are carried to thevarious end working and side working tools. Each tool operates in only one position, but tolls operate simultaneously. Therefore, four to eight workpieces can be machined at the same time.Vertical Turret LathesA vertical turret is basically a turret lathe that has been stood on its headstock end. It is designed to perform a variety of turning operations. It consists of a turret, a revolving table, and a side head with a square turret for holding additional tools. Operations performed by any of the tools mounted on the turret or side head can be controlled through the use of stops.Machining CentersMany of today's more sophisticated lathes are called machining centers since they are capable of performing, in addition to the normal turning operations, certain milling and drilling operations. Basically, a machining center can be thought of as being a combination turret lathe and milling machine. Additional features are sometimes included by the versatility of their machines.Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control(NC). Prior to the adventof NC, all machine tools were manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools.Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:1. Electrical discharge machining.2. Laser cutting.3. Electron beam welding.Numerical control has also made machines tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide variety of parts, each involving anassortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tools and processes.Like so many advanced technologies, NC was born in the laboratories of the Masschusetts Institute of Technology. The concept of NC was developed in early 1950s with funding provided by the U.S.Air force. In its earliest stages, NC machines were able to make straight cuts efficiently and effectively.However,curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter is straight lines making up the steps, the smoother is the curve. Each line segment in the steps had to be calculated.This problem led to the development in 1959 of the Automatically Programmed Tools(APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the further development of NC technology. The original NC systems were vastly different from those used today. The machines had hardwired logic circuits. This instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape.A tape reader was used to interpret the instructions written on the tapefor the machine. Together, all of this represented a giant step forwardin the control of machine tools. However, there were a number ofproblems with NC at this point in its development.A major problem wad the fragility of the punched paper tape medium.It was common for the paper tape containing the programmed instructionsto break or tear during a machining process. This problem wasexacerbated by the fact that each programmed instructions had to bereturn through the reader. If it was necessary to produce 100 copies ofa given part,it was also necessary to run the paper tape through the reader 100 separate times. Fragile paper tapes simply could notwithstand the rigors of a shop floor environment and this kind ofrepeated use.This led to the development of a special magnetic plastic tape. Whereas the paper tape carried the programmed instructions as a seriesof holes punched in the tape, the plastic tapecarried the instructions as a series of magnetic dots. The plastictape was much stronger than the paper taps, which solved the problem of frequent tearing and breakage. However, it still left two other problems.The most important of these was that it was difficult or impossibleto change the instructions entered on the tape. To make even the most minor adjustments in a program of instructions, it necessary tointerrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a realityand soon solved the problem of NC associated with punched paper and plastic tape.The development of a concept known as direct numericalcontrol(DNC)solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool as needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend o a host computer. When the lost computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control.The development of the microprocessor allowed for the development of programmable logic controllers(PNC)and microcomputer. These two technologies allowed for the development of computer numericalcontrol(CNC). With CNC, each machine tool has a PLC or a microcomputer that serves the same purpose. This allows programs to be input and stored at each individual machine tool. It also allows programs to be developed off-line and download at the individual machine tool. CNC solved the problems associated with downtime of the host computer, butit introduced another known as data management. The same program mightbe loaded on ten different being solved by local area networks that connect microcomputer for better data management.CNC machine tool feed motion systemsCNC machine tool feed motion systems, especially to the outline of the control of movement into the system, must be addressed to the movement into the position and velocity at the same time the realization of two aspects of automatic control, as compared with the general machine tools, require more feed system high positioning accuracy and good dynamic response. A typical closed-loop control of CNC machine tool feed system, usually by comparing thelocation of amplification unit, drive unit, mechanical transmission components, such as feedback and testing of several parts. Here as mechanical gear-driven source refers to the movement of the rotary table into a linear motion of the entire mechanical transmission chain, including the deceleration device, turning the lead screw nut become mobile and vice-oriented components and so on. To ensure that the CNC machine tool feed drive system, precision, sensitivity and stability, the design of the mechanical parts of the general requirement is to eliminate the gap, reducing friction, reducing the movement of inertia to improve the transmission accuracy and stiffness. In addition, the feeding system load changes in the larger, demanding response characteristics, so for the stiffness, inertia matching the requirements are very high.Linear Roller GuidesIn order to meet these requirements, the use of CNC machine tools in general low-friction transmission vice, such as anti-friction sliding rail, rail rolling and hydrostatic guideways, ball screws, etc.; transmission components to ensure accuracy, the use of pre-rational, the form of a reasonable support to enhance the stiffness of transmission; deceleration than the best choice to improve the resolution of machine tools and systems converted to the driveshaft on the reduction of inertia; as far as possible the elimination of drive space and reduce dead-zone inverse error and improve displacement precision.Linear Roller Guides outstanding advantage is seamless, and can impose pre-compression. By the rail body, the slider, ball, cage, end caps and so on. Also known as linear rolling guide unit. Use a fixed guide body without moving parts, the slider fixed on the moving parts. When the slider moves along the rail body, ball and slider in the guide of the arc between the straight and through the rolling bed cover of Rolling Road, from the work load to non-work load, and then rolling back work load, constant circulation, so as to guide and move the slider between the rolling into a ball.附录2中文翻译滚动轴承对于球轴承和滚子轴承,一个机械设计人员应该考虑下面五个方面:(a)寿命与载荷关系;(b)刚度,也就是在载荷作用下的变形;(c)摩擦;(d)磨损;(e)噪声。
流体机械专用词汇英文翻译

流体机械专用词汇英文翻译Mechanical Engineer流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operatingconditions额定工况ratedconditions极限工况limitedconditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptableconditions连续工况continuousworking conditions实际工况actualconditions效率efficiency旋转方向directionof rotation公称压力nominalpressure工作压力workingpressure进口压力inletpressure出口压力outletpressure压降pressure drop;differentialpressure背压back pressure启动压力breakoutpressure 充油压力chargepressure开启压力crackingpressure 峰值压力peakpressure运行压力operatingpressure 耐压试验压力proofpressure 冲击压力surgepressure静压力staticpressure系统压力systempressure控制压力pilotpressure充气压力pre-chargepressure 吸入压力suctionpressure调压偏差overridepressure额定压力ratedpressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase 快退工步rapid return phase频率响应frequency responseHysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressurecontrol)流量(速度)控制回路(speedcontrol)方向控制回路(directionalvalve control)安全回路(securitycontrol)定位回路(positioncontrol)同步回路(synchronisecircuit)顺序动作回路(sequeuntcircuit)液压泵(pump)阀(valve)压力控制阀(pressurevalve)、流量控制阀(flow valve)方向控制阀(directionalvalve)液压辅件(accessory)普通阀(commonvalve)插装阀(cartridge valve)叠加阀(superimposedvalve四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊空气处理单元air conditioner unit压力控制回路pressurecontrol circuit安全回路safety circuit差动回路differential circuit调速回路flowcontrol circuit进口节流回路meter-incircuit出口节流回路meter-outcircuit同步回路synchronizing circuit开式回路opencircuit闭式回路closedcircuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematicviscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portableparticle counterSolenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplexfilter过滤器压降filterpressure drop有效过滤面积effectivefiltration area 公称过滤精度nominalfiltration rating 压溃压力collapsepressure填料密封packingseal机械密封mechanicalseal径向密封radialseal旋转密封rotaryseal活塞密封pistonseal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bondedwasher复合密封件compositeseal弹性密封件elastomerseal丁腈橡胶nitrilebutadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制overridecontrol压力表pressure gauge压力传感器electricalpressure transducer 压差计differential pressure instrument 液位计liquid level measuring instrument 流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop 分辨率resolution频率响应frequencyresponse 幅值比amplitude ratio相位移phase lag传递函数transferfunction管路flow line硬管rigid tube软管flexible hose工作管路workingline回油管路returnline补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling 法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity 气囊式蓄能器bladder accumulator 空气污染air contamination固体颗粒污染solid contamination 液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydrauliclock液压卡紧sticking变量泵variable displacement pump 泵的控制control ofpump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axialpiston pump法兰安装flangemounting底座安装footmounting液压马达hydraulicmotor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder 双作用缸double-acting cylinder 差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve调速阀speed regulator valve。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇:在海上生产平台上使用滚动压缩技术回收储存罐内闪发气体G.B.(比尔)施耐德,SPE, 布莱恩E. 博耶,SPE,马克A.古德伊尔,商科工程摘要位于墨西哥湾外大陆架的一个独立的石油天然气生产操作遭到飓风艾克的袭击并损坏了一些设施。
作为重建的一部分,其中一个海上平台被翻新了。
翻新包括浓缩产品系列控制来自附近生产平台的额外油气产品。
平台的额外产品需要一个蒸发回收系统来回收设备的闪蒸汽。
项目小组选择涡旋压缩机蒸发回收装置(VRU)来回收和重新压缩闪蒸汽。
该项目是在近海环境涡旋压缩蒸汽回收技术的首次应用。
生产者为了使设施能够回收石油储存罐中的闪发蒸汽和装置中的过剩的未使用的闪发蒸汽而安装了蒸汽回收装置。
在项目的初始阶段回收的平均量是大约每天58,000标准立方英尺天然气。
回收的天然气中甲烷含量占总额的69%。
每天甲烷的回收量估计为0.84吨,温室气体回收量估计为17.6吨二氧化碳。
挥发性有机化合物(VOC)每天回收量为1.0吨。
涡旋压缩机蒸汽回收装置满足了美国矿产管理局的放空燃烧和法规的监督要求。
该项目预计时间为15个月(基本支出)。
该项目的重要意义有:1、首次在离岸申请中使用涡旋压缩技术。
2、装置占地面积小对于近海有限操作空间的重要性。
3、涡旋技术比典型的机械压缩机所需的维修少。
4、低成本和低消耗加快经济恢复。
5、回收的闪发蒸汽含有挥发性有机化合物(VOCs)和甲烷以及温室气体。
引言在墨西哥湾外大陆架上的许多石油天然气生产平台和管道遭到2008年11月飓风艾克的破坏。
在墨西哥湾当地的一个主要的独立石油天然气生产商有一些设施被暴风雨毁坏。
作为重建的一部分,其中一个近海平台被翻新。
平台的翻新包括浓缩和改进产品系列控制来自附近生产平台的额外油气产品,由于飓风艾克的影响附近的生产平台不能输送其产品到集合管道中。
平台的额外产品需要一个蒸发回收系统来回收储存罐中的闪蒸汽。
生产商的工程小组决定利用涡旋压缩机来回收和重新压缩来自储存罐和石油设备中的闪发蒸汽。
石油储存罐中的天然气蒸汽资源包含闪发损失、工作损失和呼吸损失。
对于压力容器(如分离器、加热器)或油罐当原油或凝析油中溶解气从高压向低压移动时发生闪发。
随着油压的下降油中未溶解的轻组分被释放或“一闪而过”。
工作损失归因于储存罐压缩空间内的天然气压缩量作为一个罐已经满了。
呼吸损失归因于每天储存罐压缩空间内的天然气压缩量随着罐内温度和压力变化而改变。
对于本文,我们将油罐的排出气体统称为闪蒸汽。
通常情况下,来自近海生产平台的闪发蒸汽要么直接排放到大气中要么烧毁。
历史上蒸发回收装置被用于当投资量大并且要满足排放标准的情况下回收闪发蒸汽。
用于排出闪发蒸汽的典型蒸发回收压缩机是天然气驱动的螺杆压缩机和旋转叶压气机。
美国矿产管理局(MMS)是拥有在墨西哥湾中部和西部地区天然气放空管辖权的管理机构。
美国矿产管理局规定需要一个设施每天回收天然气量大于50,000标准立方英尺,而不是直接排放到大气中或者焚烧。
对于近海生产平台,甲板空间需求是蒸发回收装置的重要考虑因素。
为了适应这一限制条件,涡动压缩机机组的占地面积是传统蒸发回收装置的三分之一。
另外,降低总体维修成本是决定使用涡旋压缩机技术的一个重要因素。
相对于典型机械压缩机每季度换油,涡旋压缩机只需要每年更换一次。
在近海环境使用的机器要求资金提高到典型的陆上压缩机组程度,原因是海水腐蚀环境和近海操作的额外安全控制的要求。
对于这个项目陆上蒸发回收装置的标准已经达到近海条件和管理的规格。
设备和流程的描述和应用涡旋压缩技术涡旋压缩机是一种容积式机器,使用两个交错的螺旋形涡旋盘来压缩天然气。
涡旋压缩技术中,一个涡旋盘是固定的,另一个做离心运动,从而在连续的小滚动空间“泡”间抽动压缩气体,直到在中心处达到最大压力值。
在中心处,气体被释放到固定涡旋盘上的一个排放点。
压缩在滚动轨道上是连续的,大量气泡被同时压缩。
压缩机的驱动装置是电动马达。
涡旋压缩机是一种设计使用高压制冷剂的密闭压缩机。
它有一个宽松的运行范围并且本质上是无泄漏的。
涡旋压缩机技术已被广泛用于制冷系统。
涡旋压缩机蒸发回收装置采用了卧式设计,并且滴糙度、低噪音、低振动,使用变速控制电机。
根据不同情况蒸发回收装置的进气压力范围为-10.4-101.3磅每平方英寸,排气压力范围为43.5-363磅每平方英寸。
压缩比为3-15。
自2004年涡旋压缩技术就被用于石油天然气蒸发回收应用中。
涡旋技术的应用在2009年5月,联邦和生产商开始联合共同修改一个典型陆上涡旋压缩机蒸发回收装置,这个装置用于被毁坏翻新的生产平台上。
这个涡旋压缩机蒸发回收装置包含两个堆叠的模块,每个模块是8英尺长4英尺宽4英尺高的刚撬,每个刚撬含有一个进气洗涤器。
每个模块包含两个15马力的涡旋压缩机和冷却器。
每个模块还包含一个可编程逻辑控制(PLC)和变频驱动器(VFD)的控制面板。
这个双模块机组的设计回收能力是每天200,000标准立方英尺。
一条连接油罐通用出口和石油处理机(例如加热处理器)出口的进气管线被安装在涡旋压缩机蒸发回收装置的进气洗涤器上。
连接石油处理机的进气管线用来收集处理机内的额外天然气,这些天然气是在平台上未使用的燃料天然气。
在涡旋压缩机蒸发回收装置前端的进气管线上安装了一个流量计,用来计量被回收的天然气量。
涡旋压缩机组的排放被输送到现场主压缩机的进气分离器/洗涤器中。
这个主压缩机压缩的天然气最终输送到销售管线中。
当储存罐内闪发蒸汽压力较低时,在涡旋压缩机蒸发回收装置安装一个洗气系统用来回收气体。
该洗气系统的作用是保持蒸发回收装置的运行能够维持涡旋压缩机的油温在最低值华氏235度。
当保持油温等于或高于华氏235度时,闪发蒸汽能够维持气相状态。
为安全起见,在油罐上安装填充气系统来维持罐上每平方英寸约有0.5盎司压力,从而阻止氧气进入罐内。
、图1是一个包含蒸发回收装置的简化流程。
变频驱动器的控制面板安装在马达控制中心(MCC)里,其线路系统也接到位于生产平台下层的涡旋压缩机蒸发回收装置中。
在功能上,涡旋压缩机在回收模式正常运行时能达到每分钟2400转(rpm)。
当罐内产生压力时,压力变送器会发出信号使压缩机的转速提高到4800rpms,同时闪发蒸汽也被回收并压缩。
一旦罐内的闪发蒸汽被回收并且罐内压力下降,那么变频驱动器使压缩机转速降到2400rpms。
然后蒸发回收装置重新回到回收模式。
气体洗涤器回收的任何气体都被用泵输送回储油罐。
蒸发回收装置机组的改进为了满足近海要求,涡旋压缩机组的结构部分已经经过热镀锌处理并适合近海安装,但是其他组件需要修补以抵抗海水的腐蚀环境。
压缩机和一些其他组件已从模块中移除,特别添加了一个三层环氧树脂涂料的图层来抵抗腐蚀环境。
除了近海环境所需的特种涂料外,还有大量的安全系统需要修改以使涡旋压缩机蒸发回收装置遵从美国矿产管理局(MMS)的规定。
近海经营商需要遵守美国石油学会(API)建议措施14C(RP14C)。
美国石油学会建议措施14C包括近海平台安全系统的设计,安装和测试标准。
它确定了每个不良事件可能影响一个流程的要素,并讨论了每种要素类型的安全装置选择标准。
如果不能符合建议措施14C的要求会导致对生产商罚款,在其他情况下,需要中断生产直到遵守规定,这可能导致生产商的收入损失。
具体来说,应对建议措施14C的修改有:1、为气体洗涤器的高液位报警/关机月检安装测试线路。
2、为压缩机排气线的高排气压力报警/关机月检安装测试线路。
3、为储油罐的低压报警/关机月检安装测试线路。
4、添加冗余的油罐压力变送器。
为油罐的高压报警/关机月检安装测试线路。
此外,生产商的近海规格要求一些阀门更换到钢结构,而不是黄铜。
2009年7月涡旋压缩机蒸发回收装置被运到操作平台上。
2009年8月涡旋压缩机蒸发回收装置的互联管道已经完工。
一旦安装完成并且平台投入运行,涡旋压缩机蒸发回收装置也就投入运行了。
数据和结果的介绍投入的美元值:标准双蒸发回收装置机组费135,000海水环境修改费15,000美国矿产管理局的相应修改费5,000安装费40,000启动/调试费6,000总投入201,000这样安装之后,涡旋压缩机蒸发回收装置平均回收的罐内闪发蒸汽量高于初试运营期的每天58,000标准立方英尺。
回收的峰值流量记录为每天215,000标准立方英尺。
用于化学分析的回收气体样本的分子量是26.6,其中甲烷体积大约占69%。
挥发性有机化合物(非甲烷烃,非烷烃碳氢化合物)体积大约占29%。
较高的加热数值大约是每标准立方英尺1540英热单位(BTU)。
闪发蒸汽中的硫化氢气体量被认为是基于设备加工新天然气的最小含量。
以平均回收量和天然气价格每英热单位5美元为标准计算的涡旋压缩机蒸发回收装置基本支出为15个月。
甲烷排放量估计回收值为每天0.84美吨,温室气体二氧化碳的估计回收值为每天17.6美吨。
挥发性有机化合物(VOC)的排放量回收值为每天1.0美吨。
生产商目前正在修改涡旋压缩机蒸发回收装置的控制系统。
这些修改包括安装一个单一的可编程逻辑控制器(PLC)来控制两个模块,更换变送器的压力开关,以及在蒸发回收装置旁边安装一个触屏的控制面板。
这些修改需要符合生产商运营标准。
这些修改的费用将导致额外增加8000美元的初始成本。
结论涡旋压缩技术应用于恶劣的海上环境是一种具有成本效益、最有效的油气回收解决方案。
通过应用涡旋压缩技术回收蒸汽,近海生产商能够满足监管要求,以减少废气排放,提高他们的碳足迹,并能经济地回收闪发蒸汽。
致谢我们衷心感谢威尔士詹姆斯先生和达姆伦罗恩先生,因为有他们的专业知识和辛勤的工作才能取得这个项目的成功。
参考文献1、艾默生环境优化技术。
2008年4月。
全封闭涡旋压缩机在高温压缩气体中的应用/oil_gas/PDF/HermeticScrollCompressorWhitePaper. pdf.2、建议措施14C关于海上生产平台基础表面安全系统的分析、设计、安装和测试,第六版。
1998年3月,华盛顿:美国石油学会。
原文AbstractA major independent oil and gas producer (Producer) with operations located on the Outer Continental Shelf of the Gulf of Mexico had several facilities damaged by Hurricane Ike. As a part of restoring operations, one of the offshore platforms was refurbished.The refurbishment included upgrading the production train to handle additional oil and gas production from other nearby production platforms. The additional production to the platform required a vapor recovery system to recover facility flash gas.The project team chose the scroll compressor vapor recovery unit (VRU) to recover and recompress the flash gas. The project was the first applicationof scroll compression technology for vapor recovery in an offshore environment.The Producer installed the VRU allowing the facility to recover flash gas from the oil storage tanks and excess unused flash gas from the oil treater. The average volume recovered was approximately 58,000 standard cubic feet of natural gas per day during the initial phase of the project. The methane content of the recovered natural gas was approximately 69 percent by volume. The estimated methane recovered was 0.84 US tons per day and the estimated recovery of greenhouse gases were 17.6 US tons per day CO2e. V olatile organic compounds (VOC) recovered were 1.0 US tons per day. The scroll compressor VRU met the regulatory requirements of the U.S. Minerals Management Service’s flaring and venting regulations. The projected payout was 15 months(simple payout).The significance of this project includes:1. First use of scroll compression technology in an offshore application2. Small physical footprint of unit important to offshore operations with limitedspace3. Scroll technology requires less maintenance than typical mechanical compressors4. Lower initial costs and lower operating costs enhance economics of recovery5. Recovered flash gas that contained volatile organic compounds (VOCs) andmethane, a greenhouse gasIntroductionMany oil and gas production platforms and pipelines operating in the Outer Continental Shelf of the Gulf of Mexico were damaged by Hurricane Ike in November of 2008. A major independent oil and gas producer (Producer) with operations located on the Gulf of Mexico had several facilities damaged by the storm. As a part of restoring operations, one the offshore platforms was refurbished. The refurbishment of the platform included upgrading and improving the production train to handle additional production from other nearby production platforms that could not send their production to the gathering pipelines due to the effects of Hurricane Ike. The additional production to the platform required the installation of a VRU to recover flash gas from the oil storage tanks. The Producer’s project team decided to utilize scroll compressors to recover and recompress the flash gas from the storage tanks and oil treater.The source of natural gas vapors from oil storage tanks include flashing losses, working losses and breathing losses. Flashing for a pressure vessel (e.g., separator, heater treater) or oil storage tank occurs when the crude oil or condensate with dissolved gases moves from a higher pressure to a lower pressure. As the pressure of the oil drops some of the lighter components dissolved in the oil are released or ―flashed.‖ Working losses are due to displacement of the natural gas vapors within the storage tank vapor space as a tank is filled. Breathing losses are due to displacement of natural gas vapor within the storage tank vapor space due to changes in the tank temperature and pressure throughout the day. For this paper we refer to the vent gas from the oil storage tanks collectively as flash gas.Often flash gases from offshore production platforms are either vented directly to the atmosphere or burned by a flare. Historically VRUs have been used to recoverflash gas when there is sufficient quantity to justify the investment and to meet air emission standards. The typical type of vapor recovery compressors used for vent flash gas has been natural gas driven rotary screw compressors and rotary vane compressors.The United States Minerals Management Service (MMS) is the regulatory agency with jurisdiction over venting of natural gas in the central and western areas of the Gulf of Mexico. MMS regulations require a facility to recover natural gas volumes over 50,000 standard cubic feet per day rather than venting directly to the atmosphere or burning in a flare. For offshore production platforms, deck space requirements are a significant consideration for vapor recovery units. To accommodate this limitation, the scroll compressor package has a footprint one-third the size of a traditional VRUs used. In addition, lower overall maintenance costs were a significant factor in the decision to utilize scroll compressor technology. The scroll compressor requires oil changes once per year compared to quarterly for the typical mechanical compressor. Equipment used in the offshore environment required capital upgrades to the typical onshore compression package due to the saltwater corrosive environment and additional safety controls required for operating offshore. For this project the standard onshore VRU was upgraded to meet specifications for the offshore conditions and regulations.Description and Application of Equipment and ProcessesScroll Compression Technology.Scroll compression technology is a positive displacement machine that uses two interleaved spiral-shaped scrolls to compress natural gas. With scroll compression technology, one of the scrolls is fixed, while the other orbits eccentrically, thereby trapping and pumping or compressing gas between through successively smaller scroll volume ―pockets‖ until the gas reaches maximum pressure at the center. At the center, the gas is released through a discharge point in the fixed scroll. Compression is continuous since during orbit of the orbiting scroll, multiple gas pockets are compressed simultaneously.The driver for the compressor is an electric motor. The scroll compressor is a hermetic compressor designed for use with high-pressure refrigerants. It has a broad range of operation and is intrinsically leak free. Scroll compressor technology has been widely used in cooling system applications.The scroll compressor VRU installed had a horizontal design that has a low profile, low noise, low vibration, and uses variable speed control motors. Depending on the application, the range of inlet pressures of gas to the scroll compressor VRUs may vary from -10.4 to 101.3 pounds per square inch gage and the discharge pressures can range from 43.5 to 363 pounds per square inch gage. The compression ratio ranges from 3 to 15.Scroll compression technology has been used in oil and gas vapor recovery applications since 2004.Application of Scroll Technology.In May of 2009, COMM and the Producer began working together to modify a typical onshore scroll compressor VRU for the platform that was damaged and beingrefurbished.The scroll compressor VRU consisted of two stacked modules each 8-foot long by 4-foot wide by 4-foot high steel skids each with an inlet gas scrubber. Each module contained two 15-horsepower scroll compressors and an aftercooler. Each module also included a control panel with Programmable Logic Control (PLC) and variable frequency drive (VFD). The design recovery capacity of this twin module package used was 200,000 standard cubic feet per day.A suction line connected to the oil storage tanks’ common vent and to the oil treater (i.e., heater treater) vent was installed to the inlet scrubber of the scroll compressor VRU. The suction line to the oil treater was used to collect excess gas from the oil treater that was not used as platform fuel gas. A flow meter was placed on the suction line prior to the inlet of the scroll compressor VRU to measure the amount of natural gas recovered. The discharge of the scroll compressor package was piped to the suction separator/scrubber of the onsite main compressor. This main compressor compresses natural gas for ultimate injection into the sales pipeline.A purge gas system was installed and used to recycle gas through the scroll compressor VRU when there is insufficient pressure from flash gas in the storage tanks. The purpose of the purge gas system is to keep VRU operating to maintain the scroll compressor’s oil temperature at a minimum of 235 degrees Fahrenheit. By maintaining the oil temperature at or above 235 degrees F, the flash gas will remain in a gas phase.As a safety measure, a blanket gas system was installed on the storage tanks to maintain approximately 0.5 ounce per square inch of pressure on the tanks to keep oxygen from entering the tanks.Figure 1 contains a simplified process flow for the VRU.The control panels with VFD’s were located in the motor control center (MCC) and wiring was run to the scroll compressor VRU which was located on a lower deck of the platform.Functionally, the scroll compressor operates normally in the recycle mode at 2400 revolutions per minute (rpm). When the pressure builds in the oil storage tanks, a pressure transmitter sends a signal enabling the speed of the compressor to increase to 4800 rpms and the flash gas is recovered and compressed. Once the flash gas from the storage tanks is recovered and the pressure drops in the storage tanks, the VFD ramps the compressor speed down to 2400 rpms. Then the VRU is in recycle mode again. Any liquids recovered by the gas scrubber are pumped back to the oil storage tanks. Modifications to VRU Package.To meet offshore specification, the structural components of the scroll compressor package were already hot dipped galvanized and suitable for offshore installation but other components required refinishing to withstand the corrosive saltwater environment. The compressors and several other components were removed from the modules and specially coated with a three part epoxy coating to withstand the corrosive environment.In addition to the special coatings needed for offshore, there was a number of safety system modifications needed to make the scroll compressor VRU compliant with theUnited States Minerals Management Service (MMS) regulations. Offshore operators are required to abide by the American Petroleum Institute (API) Recommended Practices 14C (RP 14C). API RP 14C contains the criteria for designing, installing and testing a safety system on an offshore platform. It identifies each undesirable event that could affect a process component and discusses safety device selection criteria for each component type.Failure to meet RP 14C requirements can result in fines to the operators and in some cases, require an interruption of production which could result in losses of income to the operator until compliance is restored.Specifically, the modifications in response to RP-14C were:1. Installation of test circuit for monthly testing of high level alarm/shutdown on the gas scrubber2. Installation of test circuit for monthly testing of high discharge pressurealarm/shutdown on compressor discharge line3. Installation of test circuit for monthly testing of low pressure alarm/shutdown on oil storage tanks4. Addition on redundant oil storage tank pressure transmitter. Installation of test circuit for monthly testing of high pressure alarm/shutdown on oil storage tanks. Additionally, the Producer’s offshore specificati ons required the replacement of several valves to steel construction rather than brass.The scroll compressor VRU was shipped to the platform in July 2009. The interconnecting piping to and from the scroll compressor VRU was completed in August 2009. Once the installation was completed and the platform was placed into operation, the scroll compressor VRU was brought into operation.Presentation of Data and ResultsFor this installation, the scroll compressor VRU had an average recovery of tank flash gas over the initial operating period of 58,000 standard cubic feet per day. The peak flowrate documented was 215,000 standard cubic feet of flash gas per day. A sample of the recovered flash gas that was chemically analyzed had a molecular weight of 26.6 and contained approximately 69 percent by volume of methane. V olatile organic compounds (nonmethane, nonethane hydrocarbons) amounted to approximately 29 percent by volume. The higher heating value was approximately 1540 British Thermal Units (BTU) per standard cubic feet.The hydrogen sulfide content of the flash gas was considered de minimus based on the facility processing sweet natural gas.The calculated simple payout of this scroll compressor VRU based on the average recovery and gas price of USD 5/MMBTU is 15 months.The estimated methane emissions recovered were 0.84 US tons per day and theestimated recovery of greenhouse gases were 17.6 US tons per day CO2e. V olatile organic compound (VOC) emissions recovered were 1.0 US tons per day.The Producer is in the process of modifying the scroll compressor VRU control system. These modifications include the installation of a single programmable logic controller (PLC) to control both modules, replacement of pressure switches with transmitters and the installation of a touch screen control panel next to the VRU. The modifications are needed to meet the P roducer’s operating standards. The cost of this modification will result in an extra initial cost of USD 8,000.ConclusionsThe application of scroll based compression technology in the harsh offshore environment is a cost effective and most efficient solution for vapor recovery. By utilizing scroll compression technology for vapor recovery, offshore operators can meet regulatory requirements to reduce emissions, improve their carbon footprint and economically recover flash gas.AcknowledgmentsOur sincerest thanks go to Mr. James Welsh and Mr. Ron Damron for their expertise and diligence in making this project successful.Reference List1. Emerson Climate Technologies. April 2008. A Hermetic Scroll Compressor For Application To High Heat-Of-Compression Gases,/oil_gas/PDF/HermeticScrollCompressorWhitePap er.pdf.2. RP 14C, Recommended Practice for Analysis, Design, Installation and Testing of Basic Surface Safety Systems on Offshore Production Platforms, sixth edition. March 1998. Washington, DC: API.第二篇:减轻高压注气压缩机爆炸风险摘要这篇文章阐述了由安可收购公司和卡尔加里大学共同进行的一项研究,这是关于安可公司在蒙大拿州东南部压缩机高压注气(HPAI)工程的合成润滑油燃烧安全性的研究。