2008年杭州中考数学试卷及解析
2008年浙江省绍兴市中考数学试卷及答案

浙江省2008年初中毕业生学业考试绍兴市试卷数 学试卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列计算结果等于1的是( ) A .(2)(2)-+-B .(2)(2)---C .2(2)-⨯-D .(2)(2)-÷-2.下列各图中,为轴对称图形的是( )3.如图,沿虚线EF 将ABCD剪开,则得到的四边形ABFE 是( )A .梯形B .平行四边形C .矩形D .菱形 4.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( )A .甲B .乙C .丙D .丁5.将如右图所示的Rt ABC △绕直角边AC 旋转一周,所得几何体的主视图是( )6.如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10B .20C .30D .407.已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >8.将一张纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ (如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1的形状,则CPD ∠的大小是( ) A .120B .90C .60D .45A .B .C .D . AB C (第5题图)A .B .C .D .DCFB A (第3题图) E9.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( ) A .11.5米 B .11.75米 C .11.8米 D .12.25米10.本学期实验中学组织开展课外兴趣活动,各活动小班根据实际情况确定了计划组班人数,并发动学生自愿报名,报名人数与计划人数的前5位情况如下:小班名称 奥数 写作 舞蹈 篮球 航模报名人数215 201 154 76 65 小班名称 奥数 舞蹈 写作 合唱 书法计划人数120 100 90 80 70 若用同一小班的报名人数与计划人数的比值大小来衡量进入该班的难易程度,则由表中数据,可预测( ) A .奥数比书法容易 B .合唱比篮球容易 C .写作比舞蹈容易 D .航模比书法容易试卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上)11.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米, 那么258000用科学记数法可表示为 . 12.分解因式32232x y x y xy -+= .13.如图,已知函数y x b =+和3y ax =+的图象交点为P , 则不等式3x b ax +>+的解集为 .14.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记 本需5元,则买4支圆珠笔、4本日记本需 元.15.如图,轮椅车的大小两车轮(在同一平面上)与地面的触点A B , 间距离为80cm ,两车轮的直径分别为136cm ,16cm ,则此两车轮的圆心相距 cm .16.如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为1S,2S ,O (第13题图)x y 1 P y=x+by=ax+3 (第9题图)(第15题图) A B(第11题图)3S ,…,n S ,则124:S S 的值等于 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(1)计算:1122323tan 30--+-- ;(2)解方程:122x x=-.18.在平面直角坐标系中,已知OAB △,(03)A -,,(20)B -,. (1)将OAB △关于点(10)P ,对称,在图1中画出对称后的图形,并涂黑; (2)将OAB △先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A 处时,车载GPS (全球卫星定位系统)显示村庄C 在北偏西25方向,汽车以35km/h 的速度前行2h 到达B 处,GPS 显示村庄C 在北偏西52方向.(1)求B 处到村庄C 的距离; (2)求村庄C 到该公路的距离.(结果精确到0.1km )(参考数据:sin 260.4384≈ ,cos 260.8988≈ ,sin 520.7880≈ ,cos520.6157 ≈ )(第16题图)(n +1)个图NCy x O B A P (第18题图)yx O BA图1 图220.开学前,小明去商场买书包,商场在搞促销活动,买一只书包可以送2支笔和1本书.(1)若有3支不同笔可供选择,其中黑色2支,红色1支,试用树状图表示小明依次抽取2支笔的所有可能情况,并求出抽取的2支笔均是黑色的概率;(2)若有6本不同书可供选择,要在其中抽1本,请你帮助小明设计一种用替代物模拟抽书的方法.21.在城关中学开展的“我为四川地震灾区献爱心”捐书活动中,校团委为了了解九年级同学的捐书情况,用简单的随机抽样方法从九年级的10个班中抽取50名同学,对这50名同学所捐的书进行分类统计后,绘制了如下统计表:捐书情况统计表种类 文学类 科普类 学辅类 体育类 其它 合计 册数1201801408040560(1)在右图中,补全这50名同学捐书情况的频数分布直方图;(2)若九年级共有475名同学,请你估计九年级同学的捐书总册数及学辅类书的册数.22.定义[]p q ,为一次函数y px q =+的特征数.(1)若特征数是[]22k -,的一次函数为正比例函数,求k 的值;(2)设点A B ,分别为抛物线()(2)y x m x =+-与x y ,轴的交点,其中0m >,且OAB △的面积为4,O 为原点,求图象过A B ,两点的一次函数的特征数.200 180 160 140 120 100 80 60 40 20 0册数 文 学 类(第21题图)捐书情况频数分布直方图 科普类 学辅 类 体育 类 其 它 种类23.学完“几何的回顾”一章后,老师布置了一道思考题: 如图,点M N ,分别在正三角形ABC 的BC CA ,边上, 且BM CN =,AM BN ,交于点Q .求证:60BQM = ∠. (1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出 了许多问题,如:①若将题中“BM CN =”与“60BQM = ∠”的位置交换,得到的是否仍是真命题? ②若将题中的点M N ,分别移动到BC CA ,的延长线上,是否仍能得到60BQM = ∠?③若将题中的条件“点M N ,分别在正三角形ABC 的BC CA ,边上”改为“点M N ,分别在正方形ABCD 的BC CD ,边上”,是否仍能得到60BQM = ∠?……请你作出判断,在下列横线上填写“是”或“否”:① ;② ;③ .并对②,③的判断,选择一个给出证明.24.将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标; (3)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.B DC yB C yEACNQMB(第23题图)浙江省2008年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题(本大题有10题,满分40分) 1.D 2.C 3.A 4.B 5.A 6.B 7.D 8.B 9.C 10.B二、填空题(本大题有6题,满分30分) 11.52.5810⨯12.2()xy x y - 13.1x >14.1215.10016.197三、解答题(本大题有8题,满分80分) 17.(本题满分8分) 解:(1)原式13323233232=-+--⨯=. (2)原方程可化为24x x -=,4x ∴=.经检验,原方程的根为4x =. 18.(本题满分8分)19.(本题满分8分)解:过C 作CD AB ⊥,交AB 于D . (1)52CBD ∠=,26A ∠=,y xO BA P 图1yxO B A图2(1)(2)NBC26BCA ∴∠= ,70BC AB ∴==,即B 处到村庄C 的距离为70km . (2)在Rt CBD △中,sin 52CD CB =⨯ 700.7880=⨯55.2≈.即村庄C 到该公路的距离约为55.2km . 20.(本题满分8分)解:(1)用12A A ,分别表示2支黑色笔,B 表示红色笔,树状图为:第一次抽取第二次抽取2163P ∴==. (2)方法不唯一,例举一个如下: 记6本书分别为12345P P P P P ,,,,,6P . 用普通的正方体骰子掷1次,规定:掷得的点数为1,2,3,4,5,6分别代表抽得的书为12345P P P P P ,,,,,6P . 21.(本题满分10分) 解:(1)如下图.200 180160 140120 1008060 40200 册数文 捐书情况频数分布直方图科学体其 120180 1408040A 1BA 2 A 2 A 2A 1 BB B(2) 50名同学捐书平均数为5605011.2÷=, 47511.25320∴⨯=,14053201330560⨯=, 即可估计九年级同学的捐书为5320册,学辅类书1330册. 22.(本题满分12分) 解:(1) 特征数为[22]k -,的一次函数为22y x k =+-,20k ∴-=, 2k ∴=.(2) 抛物线与x 轴的交点为12(0)(20)A mA -,,,, 与y 轴的交点为(02)B m -,. 若14OBA S =△,则1242m m = ,2m =;若24OBA S =△,则12242m = ,2m =.∴当2m =时,满足题设条件.∴此时抛物线为(2)(2)y x x =+-.它与x 轴的交点为(20)(20)-,,,, 与y 轴的交点为(04)-,, ∴一次函数为24y x =--或24y x =-,∴特征数为[24]--,或[24]-,. 23.(本题满分12分)解:(1)证明:BM NC = ,ABM BCN ∠=∠,AB BC =, ABM BCN ∴△≌△, BAM CBN ∴∠=∠,60BQM BAQ ABQ MBQ ABQ ∴∠=∠+∠=∠+∠= .(2)①是;②是;③否. ②的证明:如图,120ACM BAN ∠=∠= ,CM AN =,AC AB =, ACM BAN ∴△≌△, AMC BNA ∴∠=∠,ACNQMB(第23题图)AC QM BNNQA NBC BMQ ∴∠=∠+∠18060120NBC BNA =∠+∠=-= ,60BQM ∴∠= .③的证明:如图,BM CN = ,AB BC =, Rt Rt ABM BCN ∴△≌△,AMB BNC ∴∠=∠.又90NBM BNC ∠+∠= ,90QBM QMB ∴∠+∠=,90BQM ∴∠= ,即60BQM ∠≠ .24.(本题满分14分) 解:(1)6OP t =-,23OQ t =+.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,.(3)①PQ 能与AC 平行.若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,图1OP A xBDC Q y 图2OP A xBC Qy1D图3OFA xBC yE QPAD NCBQ (第③题图)M则23335t QF OQ QFAC OC +== .253QF t ⎛⎫∴=+ ⎪⎝⎭.EF QF QE QF OQ ∴=-=-22533t t ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭2(51)(51)3t =-+-.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 6326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤, t ∴不存在.。
2008杭州中考真题及答案

2008年浙江省杭州市各类高中招生文化考试英语试卷考生须知:1、本试卷满分120分,考试时间100分钟。
2、答题前,在答题纸上写姓名和准考证号。
3、必须在答题纸的对应答题位置上答题,写在其他地方无效。
1至60小题在答题纸上涂黑作答,答题方式详见答题纸上的说明。
4、做听力题时,先将答案划在试卷上。
录音内容结束后,你将有一分钟的时间将试卷上的答案转涂到答题纸上。
5、考试结束后,试题卷和答题纸一并上交。
试题卷I. 听力部分(25分)一、听短对话,回答问题(共5小题,计5分)听下面5段对话。
每段对话后有一个小题。
从题中所给的A、B、C三个选项中选出最佳选项,并标在试题的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What's the woman looking for?A. Her pen.B. Her pencil.C. Her box.2. How did the man get to school today?A. On foot.B. By bike. G. By bus.3. When does the train leave?A. At 7:30.B. At 8:30.C. At 9:30.4. What's the relationship between the two speakers?A. Husband and wife.B. Teacher and student.C. Doctor and patient.5. Where does the conversation most probably take place?A. At home.B. In a classroom.C. In a restaurant.二、听较长对话,回答问题(共5小题,计l0分)听下面一段对话,回答第6和第7两个小题。
现在,你有l 0秒钟的时间阅读这两个小题。
浙江省杭州市中考数学试题分类解析 专题11 圆

浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
浙江省杭州市中考数学真题试题(含解析)

浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
杭州08至11四年中考数学试卷分析

近四年数学中考分析选择题08 09 10 11题号知识点难易度知识点难易度知识点难易度知识点难易度1 科学计数法基础相反数基础有理数的混合运算,有理数的乘方基础算术平方根基础2 一元一次方程的解法基础样本与数据初步分析基础平方根基础剪纸问题中等3 锐角三角函数基础认识直棱柱基础解一元二次方程-公式法基础幂的乘方与积的乘方基础4 平行线的性质基础平面直角坐标系基础随机事件基础多边形内角与外角中等5 分式的化简基础平面直角坐标系、二次根式与分式有意义的条件基础由三视图判断几何体基础直线与圆的位置关系;坐标与图形性质基础6 角的概念基础简单事件的概率基础样本与数据分析中等反比例函数与一次函数的交点问题中等7 简单事件的概率中等相似三角形、勾股中等直线与圆、圆与圆,相切两圆的性质基础一次函数的应用;一次函数的图象中等8 三视图中等特殊平行四边形与梯形中等三角形的初步知识、图形与中等由三视图判断几何体中等填空题08 09 10 11题号知识点难易度知识点难易度知识点难易度知识点难易度11 实数基础图形对称基础科学记数法基础无理数基础12 相似三角形基础因式分解基础提公因式法与公式法的综合运用基础整式的混合运算基础13 统计图基础样本与数据初步分析基础平行线的判定与性质基础众数;中位数基础14 概率中等特殊平行四边形与梯形中等简单事件的概率中等圆周角定理;圆心角、弧、弦的关系中等15 圆与圆的位置关系中等分式方程中等二次根式的加减法;近似数和有效数字基础分式;一元二次方程的判别式中等16 归纳题难圆难圆的基本性质、直线与圆难特殊三角形;平行线的运用难变换,旋转的性质9 直线与圆的位置关系基础因式分解、函数图象基础一元一次不等式(组)中等不等式的性质中等10 平面直角坐标系下的归纳题难平面直角坐标系难二次函数难菱形、三角函数难解答题08 09 10 11题号知识点难易度知识点难易度知识点难易度知识点难易度17 二元一次方程组的应用基础有理数基础图形与坐标基础一次函数;二元一次方程组基础18 函数图形的应用中等圆、正六边形中等尺规作图基础列表法与树状图法;三角形三边关系;作图—复杂作图.中等19 观察、归纳(多边形)中等三视图、圆锥中等命题与证明、反比例函数与一次函数的交点问题中等圆锥的计算;勾股定理;解直角三角形中等20 尺规作图中等尺规作图、勾股中等数据与图表、频数及其分布中等一元二次方程的应用;统计表;条形统计图中等21 数据与图表基础频率及其分布基础分式的化简求值;代数式求值;几何体的表面积中等正多边形和圆;等边三角形的性质;平移的性质中等22 一次函数与反比例函数中等全等三角形中等相似三角形、特殊三角形中等相似三角形的判定与性质;全等三中等角形的判定与性质;勾股定理;三角形中位线定理;直角梯形;锐角三角函数的定义23 全等三角形、动点问题中等不等式的应用中等勾股定理;垂径定理的应用,解直角三角形中等二次函数的图像与性质,以及判别式△的应用;一次函数的图像与性质中等24 三角函数与二次函数难三角函数、函数综合难二次函数、特殊平行四边形与梯形难菱形的特征;相似三角形的应用;勾股定理;二次函数配方法;因式分解难难易度分析08 09 10 11基础分47分基础分47分基础分54分基础分27分中等难度58分中等难度54分中等难度55分中等难度74分难题15分难题19分难题11分难题19分各册书所占比重08 09 10 11七年级61.54%七年级53.85%七年级85.71%七年级69%八年级38.46%八年级76.92%八年级91.67%八年级69%九年级87.5%九年级75%九年级87.5%九年级31%。
2008年浙江省杭州市各类高中招生文化考试答案

2008年浙江省杭州市各类高中招生文化考试数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分) 11. 5.0-; 12+-等, 答案不惟一12.BCD △ CAD △; 9∶16 或BCD △ BAC △; 9∶25或CAD △ BAC △; 16∶2513. 说得不对, 不光看图象, 要看到纵坐标的差距不是很大. 14. 3215.r r 34;5 16. 4或7或9或12或15三. 解答题(8小题共66分) 17. (本题6分) 方程组如下:⎩⎨⎧=+=+944235y x y x , ······················································································· 4分可以用代入消元和加减消元法来解这个方程组. ······························································· 2分 18. (本题6分)(1) 对应关系连接如下: ······························································································ 4分(2) 当容器中的水恰好达到一半高度时, 函数关系图上t 的位置如上: ····················· 2分 19. (本题6分)凸八边形的对角线条数应该是20. ······························································ 2分思考一: 可以通过列表归纳分析得到:思考二: 从凸八边形的每一个顶点出发可以作出5(8-3)条对角线, 8个顶点共40条, 但其一条对角线对应两个顶点, 所以有20条对角线. ······················································· 4分 (如果直接利用公式: 2)3(-n n 得到20而没有思考过程, 全题只给3分) 20. (本题8分)作图如下, BCD ∠即为所求作的γ∠.········· 图形正确4分, 痕迹2分, 结论2分21. (本题8分)(1) 补全表格: ········································································································· 4分(2) 折线图: ··············································································································· 4分22. (本题10分)(1) 将点132P ⎛⎫ ⎪⎝⎭,代入函数关系式t a y =, 解得23=a , 有ty 23=将1=y 代入ty 23=, 得23=t , 所以所求反比例函数关系式为33()22y t t =≥; ········ 3分 再将)1,(23代入kt y =, 得32=k ,所以所求正比例函数关系式为23(0)32y t t =≤≤. ··············································································································································· 3分 (2) 解不等式4123<t, 解得 6>t , 所以至少需要经过6小时后,学生才能进入教室. ························································· 4分 23. (本题10分)(1) ∵△ABC 是等腰△,CH 是底边上的高线,∴AC BC ACP BCP =∠=∠,, 又∵CP CP =, ∴△ACP ≌△BCP ,∴CBP CAP ∠=∠, 即CBF CAE ∠=∠; ······························································· 3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴△ACE ≌△BCF ,∴BF AE =; ··································································· 3分 (3) 由(2)知△ABG 是以AB 为底边的等腰△,∴ABG ABC S S ∆∆= 等价于AC AE =, 1)当∠C 为直角或钝角时,在△ACE 中,不论点P 在CH 何处,均有AC AE >,所以结论不成立;2)当∠C 为锐角时, =∠A -9021∠C ,而A CAE ∠<∠,要使AC AE =,只需使∠C =∠CEA ,此时,∠=CAE 180°–2∠C , 只须180°–2∠C <-9021∠C ,解得 60°<∠C < 90°. ·························· 4分(也可在CEA ∆中通过比较C ∠和CEA ∠的大小而得到结论) 24. (本题12分)(1) ∵ 平移2tx y -=的图象得到的抛物线F 的顶点为Q ,∴ 抛物线F 对应的解析式为:b t x t y +--=2)(. ···················································· 2分 ∵ 抛物线与x 轴有两个交点,∴0>b t . ······································································ 1分令0=y , 得-=t OB t b,+=t OC tb,∴ -=⋅t OC OB (|||||tb )( +t t b )|-=2|t 22|OA t tb == , 即22t t tb ±=-, 所以当32t b =时, 存在抛物线F 使得||||||2OC OB OA ⋅=. ······ 2分 (2) ∵BC AQ //, ∴ b t =, 得F : t t x t y +--=2)(,解得1,121+=-=t x t x . ······························································································· 1分 在∆Rt AOB 中,1) 当0>t 时,由 ||||OC OB <, 得)0,1(-t B , 当01>-t 时, 由=∠ABO tan 23=||||OB OA =1-t t , 解得3=t , 此时, 二次函数解析式为241832-+-=x x y ; ··························································· 2分 当01<-t 时, 由=∠ABO tan 23=||||OB OA =1+-t t , 解得=t 53, 此时,二次函数解析式为-=y 532x +2518x +12548. ······················································ 2分 2) 当0<t 时, 由 ||||OC OB <, 将t -代t , 可得=t 53-, 3-=t , (也可由x -代x ,y -代y 得到) 所以二次函数解析式为 =y 532x +2518x –12548或241832++=x x y . ····················· 2分。
2008年杭州市初三数学各类高中招生文化考试模拟试卷

word2008年某某市各类高中招生文化考试模拟试卷数 学考生须知:● 本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟. ● 答题时, 应该在答题卷密封区内写明校名,某某和某某号.● 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应. ● 考试结束后,上交试题卷和答题卷.一. 仔细选一选(本题有10个小题,每小题3分,共30分) 1.下列运算正确的是( ).·x 3=x 3 2+x 2=x 4C.(-4xy 2)2=-8x 2y 2D.(-2x 2)(-4x 3)=8x521-=x y 中,自变量x 的取值X 围是( ) A. x ≥2 B. x>2 C. x ≤2 D. x<23.图(一)是一台计算机D 盘属性图的一部分,从中可以看出该硬盘容量的大小,请用科学记数法将该硬盘容量表示为字节.(保留3位有效数字)A .102.0110⨯B .102.0210⨯ C .92.0210⨯D .102.01810⨯ 4.角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是( ) A 、SSS B 、ASA C 、SAS D 、AAS5.下图是由几个相同的小正方体搭成的一个几何体,它的左视图是( )6.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度间(min)t 的函数图象大致为( )(cm)h 与注水时 7、下面有关概率的叙述,正确的是( ).A 、投掷一枚图钉,钉尖朝上的概率和钉尖着地的概率不相同B 、因为购买彩票时有“中奖”与“不中奖”两种情形,所以购买彩票中奖的概率为21C 、投掷一枚均匀的正方体骰子,每一种点数出现的概率都是61,所以每投掷6次,肯定出现一次6点D 、某种彩票的中奖概率是1%,买100X 这样的彩票一定中奖8.如图,CD 是⊙O 的直径,A 、B 是⊙O 上的两点,若∠ABD =20°,则∠ADC 的度数为( ).A 、40°B 、50°C 、60°D 、70°9.在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴的正方向的夹角为α,则用[ρ,α]表示点P 的极坐标。
2008年浙江省中考数学试卷

浙江省2008年初中毕业生学业考试数学试题卷考生须知:1. 全卷共4页,有3大题,24小题. 满分为150分,考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸的对应位置上.并认真核对答题纸上粘贴的条形码的“姓名、准考证号”与考生本人姓名、准考证号是否一致.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现! 参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac ab --.试 卷 Ⅰ说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. 计算-2+3的结果是A .1B .-1C .-5D .-62.据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首.近似数348.4亿元的有效数字的个数是A.3个 B. 4个 C.5个 D .6个3.国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是A .6969元B .7735元C .8810元D .10255元 4.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是 A.正方体 B.圆锥 C.球D .圆柱5.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为6.已知A ∠、B ∠互余,A ∠比B ∠大30 .设A ∠、B ∠的度数分别为x、y ,下列方程组中符合题意的是 A .180,30x y x y +=⎧⎨=-⎩ B . 180,30x y x y +=⎧⎨=+⎩ C .90,30x y x y +=⎧⎨=+⎩ D .90,30x y x y +=⎧⎨=-⎩1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .7.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是 A .0.1 B .0.2 C .0.3 D .0.7 8.下列命题中,真命题是A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 9.圆锥的底面半径为3cm ,母线为9cm ,则圆锥的侧面积为 A .6π2cm B .9π2cm C .12 π2cm D .27π2cm10.已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为A .-1B . 1C . -3D . -4试 卷 Ⅱ说明:本卷共有2大题,14小题,共110分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:24xy x -= ▲ .12.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可 得在这期间我市年出口总额的极差是 ▲ 亿美元. 13.函数1y x a=-,当2x =时没有意义,则a 的值为 ▲ .14.如图,若//A B C D ,E F 与A B C D 、分别相交于点E F 、,E P 与EF D ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 ▲ 度.15.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你 学过的函数中,写出一个满足上述特征的函数解析式 ▲ . 16.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ▲ ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12(12题图)D分,第24题14分,共80分) 17.(1)计算:6045-+;(2)解方程:1321xx =+18. 如图,小明用一块有一个锐角为30 的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)19. “一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川. (1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中医生甲和护士A 的概率.20.已知:如图△ABC 内接于⊙O ,O H AC ⊥于H ,过A 点的切线与OC 的延长线交于点D ,30B ∠=0,O H = (1)A O C ∠的度数;(2)劣弧 A C 的长(结果保留π);(3)线段AD 的长(结果保留根号).21.义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位) 22.已知:等腰三角形OAB 在直角坐标系中的位置如图,点A的坐标为(3-),点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标; (2)若将三角形O A B 沿x 轴向右平移a 个单位,此时点A恰好落在反比例函数y x=的图像上,求a 的值;(3)若三角形O A B 绕点O 按逆时针方向旋转α度(090α<<).①当α=30时点B 恰好落在反比例函数k y x=的图像上,求k 的值.②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.23.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结D G、B E,且a=3,b=2,k=12,求22BE DG+的值.24.如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E.(1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.①求梯形上底AB的长及直角梯形OABC的面积;②当42<<t时,求S关于t的函数解析式;(2)在第(1)题的条件下,当直线l向左或向右平移时(包括l与直线BC重合),在直.线.AB..上是否存在点P,使PDE∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.浙江省2008年初中毕业生学业考试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.(2)(2)x y y +- 12. 8.04 13. 214.060 15. 形如2(0,0),(0,0)y kx b k b y ax bx c a b =+>>=++>> 16.(1)2 (2)8三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17. 解:6045-+=222-+(每项算对各给1分)3分=2.5……………………………………………………………………………… 1分(2.)321x x =+ ………………………………………………………………………1分1x = ……………………………………………………………………………2分 经检验:1x =是原方程的解 …………………………………………………1分18. 解: 0tan 30=4C D …………………………………………………………3分C D=…………2分 C E1.68 4.0+≈ ……2分∴ 这棵树的高大约有4.0米高. ……………………………………………………1分19. 解:(1)用列表法或树状图表示所有可能结果如下:………………………………4分 (1)列表法: (2)树状图:(2)P (恰好选中医生甲和护士A )=16………………………………………3分∴恰好选中医生甲和护士A 的概率是16……………………………………1分D20.解:(1)060AOC ∠= ………………………………2分(2)在三角形AOC 中,O H A C ⊥ ∴ 01030O H A O C O S == ……………………1分 ∴ A C 的长= 6010101801803n r πππ⨯⨯==……1分∴ A C 的长是103π………………………………………………1分(3) ∵AD 是切线 ∴AD O A ⊥ …………………………………………1分∵060AOC ∠=∴AD =…………………………………………………1分 ∴线段AD的长是……………………………………………………1分21.解:(1)设年平均增长率为x ,根据题意得:272893(1)114508x +=………3分 解得1x ≈0.2526,2x ≈ 2.2526- (不合题意,舍去) …………………………1分 ∴所求的年平均增长率约为25.3%. ……………………………………………1分(2)设每年新增汽车为x 辆,根据题意得:[]114508(14%)(14%)158000x x -+-+≤……………………………………3分解得26770.12x ≤ ………………………………………………………1分∴每年新增汽车最多不超过26770辆 …………………………………1分 22.解:(1)3),(6,0)A B '' ………(每个点坐标写对各得2分)…………4分(2) ∵3y =∴3x=…1分∴x =…………………1分∴a =…………………2分(3) ① ∵030α=∴相应B 点的坐标是(3)--………………………………1分 ∴.k =…………………………………………………1分 ② 能 ………………………………………………………1分 当060α=时,相应A ,B点的坐标分别是(3),(3,----,经经验:它们都在y x=的图像上∴060α= ……………………………………………………………1分23.解:(1)①,BG DE BG DE =⊥ ……………………………………………………2分②,BG DE BG DE =⊥仍然成立 …………………………………………1分 在图(2)中证明如下∵四边形A B C D 、四边形A B C D 都是正方形 ∴ B C C D =,C G C E =, 090BCD ECG ∠=∠=∴B C G D C E ∠=∠……………………………………………………1分∴B C G D C E ∆≅∆ (SAS )………………………………………………1分∴BG D E = C B G C D E∠=∠ 又∵B H C D H O ∠=∠ 090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠= ∴090DOH ∠=∴B G D E ⊥ ………………………………………………1分(2)B G D E ⊥成立,BG D E =不成立 ……………………………………2分简要说明如下∵四边形A B C D 、四边形C E F G 都是矩形,且A B a =,B C b =,C G kb =,C E ka =(a b ≠,0k >) ∴B C C G b D CC Ea==,090BCD ECG ∠=∠=∴B C G D C E ∠=∠∴B C G D C E ∆∆ ………………………………………………1分∴C B G C D E ∠=∠又∵B H C D H O ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴B G D E ⊥ …………………………………………………………1分(3)∵B G D E ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+又∵3a =,2b =,k =12∴ 222222365231()24B D G E +=+++= ………………………………………1分∴22654BE D G += ………………………………………………1分24.解:(1)①2A B = ………………………………………………………………2分842O A ==,4O C =,S梯形OABC=12 ……………………………………2分②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t tt t =--⨯-=-+-………………………………4分(2) 存在 …………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P ---…(每个点对各得1分)……5分对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴Rt ODE ∆ 在中,2O E O D =∴,设2O D b O E b ==,.1Rt O D E Rt P PD ∆≈∆,(图示阴影)b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4)E 点在0点与A 点之间不可能; ② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能.③ 以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4), E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线D E 的中垂线方程:1()22b y b x -=-+,令4y =得3(8,4)2b P -DE ==得2332640b b -+=解得 121883b b P P ==∴=3b ,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线P E 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得P E D E =即=22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P -第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线P D 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD D E =即=12544b b PP ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去). 综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出A B a O C b ==、、O A h =、设b a k h-=,则P 点的情形如下直角分类情形 1k ≠1k =P ∠为直角1(,)P h h1(,)P h h -2(,)P h h - E ∠为直角3(,)1hk P h k -+2(,)2h P h -4(,)1hk P h k -D ∠为直角5((1),)P h k h -+ 3(0,)P h 6((1),)P h k h --4(2,)P h h -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年杭州市各类高中招生文化考试数 学考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟, 2.答题时,应该在答题卷指定位置内写明校名.姓名和准考证号, 3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应,4. 考试结束后,上交试题卷和答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内,注意可以用多种不同的方法来选取正确答案.1.北京2008奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为( )A.425.810×2mB. 525.810×2mC.52.5810×2mD. 62.5810×2m2.已知11x y =⎧⎨=-⎩是方程23x ay -=的一个解,那么a 的值是( )A .1B .3C .-3D .-13.在直角坐标系xOy 中,点(4,)P y 在第一象限内,且OP 与x 轴的正半轴的夹角为60°,则y 的值是( )A 43B .43C .8D .2 4.如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则E ∠=( )A .70°B .80°C .90°D .100°E A BF CD 第4题图5.化简22 x yy x y x---的结果是( )A.x y--B.y x-C.x y-D.x y+6.设一个锐角与这个角的补角的差的绝对值为a,则( )A. 0<<90a°°B. 0<90a°≤°C. 0<<90a°°或90<<180a°°D.0<<180a°°7.在一次质检抽测中,随机抽取某摊位20袋食盐,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据以上抽测结果,任买一袋该摊位的食盐,质量在497.5g~501.5g之间的概率为( ) A.15B.14C.310D.7208.由大小相同的正方体木块堆成的几何体的三视图如右图所示,则该几何体中正方体木块的个数是( )A. 6个B. 5个C. 4个D. 3个9.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E,则三角形ADE和直角梯形EBCD周长之比为( )A.34∶B. 45∶C. 56∶D.67∶10.如图,记抛物线21y x=-+的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为1P,2P,…1nP-,过每个分点作x轴的垂线,分别与抛物线交于点1Q,2Q,…1nQ-,再记直角三角形11OPQ,122PP Q的面积分别为1S,2S,这样就有21312nSn-=,22342nSn-=,…;记121nW S S S-=+++…,当n越来越大时,你猜想W最接近的常数是( )A.23B.12C.13D.14主视图左视图俯视图第8题图二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.写出一个比-1大的负有理数是 ;比-1大的负无理数是 . 12.在R t △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5, 写出其中的一对相似三角形是 和 ; 并写出它的面积比 .13.小张根据某媒体上报道的一张条形统计图(如右),在随笔中写道:“……今年在我市的中学生艺术节上, 参加合唱比赛的人数比去年激增……“,小张说的对 不对?为什么?(请你用一句话对小张的说法作一个 评价); .14. 从1到9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是 . 15.如图,大圆O 的半径OC 是小圆1O 的直径,且有OC 垂直于 圆O 的直径AB,圆1O 的切线AD 交OC 的延长线于点E, 切点为D,已知圆1O 的半径为r,则1AO = ;DE= .O 1OE DC B(第15题)2007 2008 年份人数 12401220 1200 0 中学生艺术节参加合唱人数统计图(第13题) DC A (第12题)16.如图,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是 .或 或⇒三、全面答一答(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部份也可以. 17.(本小题满分6分)课本中介绍了我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头(只)?如果假设鸡有x 只,兔有y 只,请你列出关于x , y 的二元一次方程组;并写出你求解这个方程组的方法.18.(本小题满分6分)如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, (1)请分别找出与各容器对应的水的高度h 和时间t 的函数关系图象,用直线段连接起来 (2)当容器中的水恰好达到一半高度时,请在各函数关系图的t 轴上标出此时t 值对应点T19.( 在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.20. (本小题满分8分)⇒(第16题)如图,已知α∠,β∠,用直尺和圆规求作一个γ∠,使得12γαβ∠=∠-∠(第20题)(只须作出正确图形,保留作图痕迹,不必写出作法)21.(本小题满分8分)据2008年5月14日钱江晚报“浙江人的买车热情真实高”报道,至2006年底,我省汽车保有量情况如下图1所示.(1) 请你根据图1直方图提供的信息将上表补全;(2) 请在下面图2中将私人汽车占汽车总量的比例用折线图表示出来.22.(本小题满分10分) 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y 与t 的函数关系式βα2002年—2006浙江省私人汽车占总量的比例%7060 50 40 302000 年度为tay =(a 为常数),如图所所示,据图中提供的信息,解答下列问题: (1) 写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量取之范围;(2) 据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?23.(本小题满分10分) 如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE =∠CBF; (2) 证明:AE=BF;(3) 以线段AE,BF 和AB 为边构成一个新的三角形ABG(点E 与点F 重合于点G),记△ABC 和△ABG 的面积分别为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围.24.(本小题满分12分)在直角坐标系xOy 中,设点A(0,t),点Q(t,b),平移二次函数2-tx =y 的图像,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交与B,C 两点(∣OB ∣<∣OC ∣).连接AB.(1) 是否存在这样的抛物线F,使得∣OA ∣2=∣OB ∣·∣OC ∣?请你说明理由;C BH第22题图(2) 如果AQ ∥BC,且tan ∠ABO=23,求抛物线F 对应的二次函数的解析式.参考答案:2008年杭州市各类高中招生文化考试数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分) 1—5 CABCA 6-10 DBCDC二、认真填一填(本题有6个小题,每小题4分,共24分) 缺少答案三、全面答一答: 17.我所用的方法是加减消元法,过程如下: (2)-(1)×2 得:2y=24 解得 y=12 将 y=12代入(1)得: x=23所以 2312x y =⎧⎨=⎩答:鸡有23只,兔有12只.18.352494x y x y +=⎧⎨+=⎩(1)(2)第2419. 解:通过观察凸四边形和五边形对角线的条数,可得到凸八边形的对角线条数应该是20条.思考过程:凸n 边形每个顶点不能和它自己以及它的两个邻点作对角线,所以可做的对角线条数是(n -3), 凸n 边形有n 个顶点,所以可做n(n -3)条,由于对角线AB和BA 是同一条,所以凸n 边形共有1(3)2n n -条对角线. 当n=8时,有18(83)45202⨯⨯-=⨯=条对角线. 20.答:.ABDγ∠∠就是所求的 21. (1)(2)22.(1)由点P 的坐标(3,21)可求出反比例函数的关系式为x y 23=(x >23),βDCBAαC C则当y=1时,x=23,设正比例函数的关系式为kx y =,把点(23,1)代入可得k=32,即正比例函数的关系式为x y 32=(23≥k ≥0);(2)把y=0.25代入反比例函数x y 23=(x >23),得x=6,所以至少要经过6个小时后学生才能进入教室.23.(1)∵△ABC 为等腰三角形 ∴AC=BC ∠CAB=∠CBA又∵CH 为底边上的高,P 为高线上的点 ∴PA=PB∴∠PAB=∠PBA∵∠CAE=∠CAB-∠PAB ∠CBF=∠CBA-∠PBA ∴∠CAE =∠CBF (2)∵AC=BC∠CAE =∠CBF ∠ACE=∠BCF∴△ACE ~△BCF(AAS) ∴AE=BF(3)若存在点P 能使S △ABC =S △ABG ,因为AE=BF,所以△ABG 也是一个等腰三角形,这两个三角形面积相等,底边也相同,所以高也相等,进而可以说明△ABC ~△ABG,则对应边AC=AE,∠ACE=∠AEC,所以0°≤∠C <90° 24.(1)这样的抛物线F 是不存在的.假定这样的抛物线F 存在,因为顶点为Q,而且F 是由2-tx =y 平移的得到的,所以F 的关系式为b y +t)--t(x =2,化简得b x t y +t -2+-tx =322根据二次函数和一元二次方程的关系,函数y 图像与x 轴的交点B,C 的横坐标等于方程0=+t -2+tx -322b x t 的两个根,设这两个根为x 1 ,x 2 ,则x 1·x 2=ac =t -3b t =t b-2t ,∣OA ∣2 =t 2, ∣OB ∣·∣OC ∣=tb-2t ,若二者相等的话,b=0,这样Q 就在x 轴上,抛物线F 不可能与x 轴有两个交点B,C.和假定产生矛盾,所以这样的抛物线F 是不存在的. (2)∵AQ ∥BC∴Q 点纵坐标和A 点纵坐标相同. 即Q(t,t)∵tan ∠ABO=23.OA=t ∴OB=ABO AB ∠tan =t 32F 是由2-tx =y 平移得到,顶点为Q(t,t),所以关系式为t y +t)--t(x =2把B 点坐标(t 32,0)代入关系式得,0=+t)-t 32t(-2t ,解得t 1=0(舍去),t 2=-3(舍去),t 3=3,把t=3代入原关系式得抛物线F 的关系式为2418+3=2x x y。