2020-2021新课标高考理科数学导数的简单应用典型试题详解突破(9页)
2020版高考数学导数及其应用 Word版含解析

第2课时 导数与方程题型一 求函数零点个数例1 已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x ,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e 22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2 (2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x ,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝⎛⎭⎫12+ln a =12a (e a -1-2ln a ), 令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a >0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点;综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞, 画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=24e 2ln e ln 22e-<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .4.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1), f (x )在(-∞,1)内单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0xf x x a x =-+-=, 所以222222(2)e(2)e .x x f x x x --=---设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0.而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.5.(2018·南通模拟)已知函数f (x )=e x -|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧e x -x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x +1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x -1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x +1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减, f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增. 所以f (x )极大值=f (a )=e a ,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a -a -1≥ka 对任意a <0恒成立.设g (a )=e a -(k +1)a -1,求导得g ′(a )=e a -(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾. ②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意.综上,实数k 的取值范围为[0,+∞).。
高考数学导数及其应用多选题(讲义及答案)附解析

高考数学导数及其应用多选题(讲义及答案)附解析一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-<⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.3.(多选)已知函数()ln ()f x ax x a =-∈R ,则下列说法正确的是( ) A .若0a ≤,则函数()f x 没有极值 B .若0a >,则函数()f x 有极值C .若函数()f x 有且只有两个零点,则实数a 的取值范围是1,e ⎛⎫-∞ ⎪⎝⎭D .若函数()f x 有且只有一个零点,则实数a 的取值范围是1(,0]e ⎧⎫-∞⋃⎨⎬⎩⎭【答案】ABD 【分析】先对()f x 进行求导,再对a 进行分类讨论,根据极值的定义以及零点的定义即可判断. 【详解】解:由题意得,函数()f x 的定义域为(0,)+∞,且11()ax f x a x x'-=-=, 当0a ≤时,()0f x '<恒成立,此时()f x 单调递减,没有极值, 又当x 趋近于0时,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于-∞, ∴()f x 有且只有一个零点,当0a >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 单调递减,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增, ∴当1x a=时,()f x 取得极小值,同时也是最小值, ∴min 1()1ln f x f a a ⎛⎫==+⎪⎝⎭, 当x 趋近于0时,ln x 趋近于-∞,()f x 趋近于+∞,当x 趋近于+∞时,()f x 趋近于+∞, 当1ln 0a +=,即1a e=时,()f x 有且只有一个零点; 当1ln 0a +<,即10a e<<时,()f x 有且仅有两个零点, 综上可知ABD 正确,C 错误. 故选:ABD . 【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点; (2)零点存在性定理:利用定理不仅要函数在区间[]a b ,上是连续不断的曲线,且()()·0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.4.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x'<,且()11f =,则下列结论正确的是( ) A .()2f e >B .10f e ⎛⎫> ⎪⎝⎭C .()1,x e ∀∈,()2f x <D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+> ⎪⎝⎭- 【答案】BCD 【分析】令()()ln F x f x x =-,求导得:'1()()0F x f x x'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;【详解】令()()ln F x f x x =-,∴'1()()0F x f x x'=-<, ()F x ∴在(0,)+∞单调递减, (1)1f =,(1)(1)1F f ∴==,对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误; 以B ,111(1)()110eF F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭,故B 正确; 对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+,(1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭ 1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭,1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭,故D 正确; 故选:BCD. 【点睛】根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.5.对于函数2ln ()xf x x=,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .ff f <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x +>+=在()0,∞+上恒成立,令()2ln 1x g x x +=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x=,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln 2ln ,42f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x<-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立,设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.6.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.7.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B .3412a b ==2a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<; B 选项,3412a b ==log 12a =4log 12b =1212112(log 3log 4)2a b ab a b+=+=+=;C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.8.若方程()2110x m x -+-=和()120x m ex -+-=的根分别为()1212,x x x x <和3x ,()434x x x <,则下列判断正确的是( )A .3201x x <<<B .1310x x -<<C .(),1m ∈-∞-D .11x ⎫∈-⎪⎪⎝⎭【答案】ABD 【分析】根据题意将问题转化为,1x ,2x 和3x ,4x 分别是y m =与11y x x =--和12x xy e-=-交点的横坐标,再用导数研究函数11y x x =--和12x xy e-=-的单调性与取值情况,作出函数图象,数形结合即可解决问题. 【详解】解:由题,1x ,2x 和3x ,4x 分别是11m x x =--和12x xm e-=-的两个根, 即y m =与11y x x =--和12x xy e-=-交点的横坐标. 对于函数11y x x =--,定义域为{}0x x ≠,21'10y x=+>,所以函数在(),0-∞和()0,∞+上单调递增,且1x =时,1y =-;对于函数12x xy e -=-,11'x xy e--=,所以函数在(),1-∞上单调递增,在()1,+∞单调递减,且当,2x y →+∞→-,0x =时,2y =-,1x =时,1y =-;故作出函数11 y xx=--,12xxye-=-的图像如图所示,注意到:当()0,1x∈时,11122xxx xx e---<-<-,由图可知,3201x x<<<,()2,1m∈--,从而()11112,1xx--∈--,解得115,1x⎛⎫--∈-⎪⎪⎝⎭,所以选项AD正确,选项C错误,又121310x x x x-=<<.故选:ABD.【点睛】本题考查利用导数研究函数的零点问题,考查化归转化思想与数形结合思想,是中档题.。
2020年高考数学(理)考点分析与突破训练导数及其应用(解析版).

热点导数及其应用【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】(建议用时:90分钟)1.(2019·全国高考真题(理))已知曲线ln x y ae x x =+在点),(ae 1处的切线方程 为b x y +=2,则( )A .a =e,b =−1B .a =e,b =1C .a =e −1,b =1D .a =e −1,b =−1【答案】D【解析】详解:1ln y '++=x ae x21=+=ae y ,即1a e -=将(1,1)代入b x y +=2得1.12==+b b 故故选D .【名师点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系.2.(2019·安徽高三期中(理))已知函数11,1()4ln ,1x x f x x x +≤⎧=⎨⎩>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是A .10,e ⎛⎫ ⎪⎝⎭B .C .D .1,4e ⎛⎫⎪⎝⎭【答案】B 【解析】试题分析:ln y x =,所以1'y x=,设切点为00(,)x y ,则切线方程为0001()y y x x x -=-,即0001ln ()y x x x x -=-,与直线y ax =重合时,有01a x =,0ln 10x -=,解得0x e =,所以1a e =,当直线与直线114y x =+平行时,直线为14y x =,当1x =时,11ln ln1044x x -=-<,当x e =时,11ln ln 044x x e e -=->,当3x e =时,3311ln ln 044x x e e -=-<,所以ln y x =与14y x =在3(1,),(,)e e e 上有2个交点,所以直线在14y x =和1y x e =之间时与函数()f x 有2个交点,所以11[,)4a e∈,故选B .考点:函数图像的交点问题.3.(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x 的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=, 所以0,2x k k z mπππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.【名师点睛】本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力,三角函数出现在导数里面不常见,故做三角函数对应的导数题目时应注意用三角函数最值问题去解决.4(2019·四川高考模拟(文))已知函数32(x)(5)(4)f x a x b x =+-++,若函数()f x 是奇函数,且曲线()y f x =在点(3,(3))f 的切线与直线y 36x=+垂直,则a b +=( ) A .−32 B .−20C .25D .42【答案】A【解析】先根据函数是奇函数求出a 的值,再根据切线与直线垂直得到b 的值,即得a +b 因为函数f(x)是奇函数,所以--()f x f x =(),所以a =5.由题得43)(2'++=b x x f ,31)3('+==b f k因为切线与直线y 36x=+垂直,所以b+31=-6, 所以b=-37.所以a +b=-32.故选:A【名师点睛】本题主要考查奇函数的性质,考查导数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.(2019·广东高考模拟(理))若函数()(cos )xf x e x a =-在区间,22ππ⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是( )A .()+∞B .(1,)+∞C .)+∞D .[1,)+∞【答案】C【解析】对函数求导只需要,22x ππ⎛⎫∀∈- ⎪⎝⎭,()()sin cos 0xf x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,结合三角函数的性质得到函数的最值为,即可得到参数范围.【详解】由题意,,22x ππ⎛⎫∀∈-⎪⎝⎭,()()sin cos 0x f x e x x a +'=--≤恒成立,即cos sin 4a x x x π⎛⎫≥-=+ ⎪⎝⎭恒成立,当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭,(cos ,1424x x ππ⎛⎤⎛⎫⎛⎫∴+∈-+∈- ⎥ ⎪ ⎪ ⎝⎭⎝⎭⎝⎦,所以实数a 的取值范围是)+∞.故选:C 【名师点睛】这个题目考查了导数在研究函数的单调性中的应用,也考查了不等式恒成立求参的应用,此类题目最常见的方法有:通过变量分离,转化为函数最值问题.6(2018·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =, 且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,则不等式23(2cos )2sin 22x f x +> 的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】构造函数()()1122g x f x x =--,可得()g x 在定义域内R 上是增函数,且()10g =,进而根据23(2cos )2sin 022x f x +->转化成()(2cos )1g x g >,进而可求得答案 【详解】 令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=, 1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-, ∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到 2cos 1x >,又Q 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭故选D【名师点睛】本题考查利用函数的单调性求取值范围,此类题目应学会构造新的函数,利用新的函数去解决问题,此外此类题目最快捷的方法是特殊值与排除法相结合即可快速得到答案,特殊值首选应该选择当0=x 时,结果满足条件,故排除A ,C ,然后观察B,D 选项,带入特殊值3π=x 不满足条件.故选择D.二、填空题7.(2018·河北衡水中学高考模拟(理))若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值范围是__________. 【答案】(0,2]e【解析】设两个切点分别为1122(,),(,)A x y B x y ,两个切线方程分别为2111(1)2()y x x x x --=-,222(ln 1)()ay a x x x x --=-,化简得2112221,ln 1ay x x x y x a x a x =--=+--两条切线为同一条.可得122212ln ax x a x a x =-⎧=-⎨⎩, ,2224(ln 1)a x x =--,令22()44ln (0)g x x x x x =->,()4(12ln )g x x x =-',所以g(x)在递增,)+∞递减,max ()2g x g e ==.所以a ∈(]0,2e ,填(]0,2e .8(2019·临沂第十九中学高考模拟(理))设函数()xf x mπ=.若存在()f x 的极值点0x 满足()22200x f x m ⎡⎤+<⎣⎦,则m 的取值范围是( )A .()(),66,-∞-⋃∞B .()(),44,-∞-⋃∞C .()(),22,-∞-⋃∞D .()(),11,-∞-⋃∞ 【答案】C 【解析】由题意知:()f x的极值为所以()203f x ⎡⎤=⎣⎦,因为00()0xf x m mππ='=,所以0,2x k k z m πππ=+∈,所以01,2x k k z m =+∈即01122x k m =+≥,所以02m x ≥,即2200[()]x f x +≥24m +3,而已知()22200x f x m ⎡⎤+<⎣⎦,所以224m m >+3,故2334m >,解得2m >或2m <-,故选C.考点:本小题主要考查利用导数研究的极值,考查三角函数,考查一元二次不等式的解法,考查分析问题与解决问题的能力.9.(2019·天津高考模拟(理))已知函数()12cos 2xx f x e x e π⎛⎫=--- ⎪⎝⎭,其中e 为自然对数的底数,若()()()22300f af a f +-+<,则实数a 的取值范围为___________.【答案】312a -<< 【解析】【思路分析】利用奇偶性的定义判断函数的奇偶性,利用导数结合不等式与三角函数的有界性判断函数的单调性,再将原不等式转化为223a a <-求解即可. 【详解】()12cos 2x x f x e x e π⎛⎫=--- ⎪⎝⎭Q 12sin xx e x e =--, ()()12sin xx f x e x e --∴-=---()2sin 1x xx e f x e ⎛⎫=--=- ⎪⎝⎭-, ()f x ∴是奇函数,且()00f =,又()12'cos xx f x e ex -=+Q ,2,2c s 1o 2x xe x e +≥≤,()'0f x ∴≥, ()f x ∴在()+-∞∞,上递增, ()()()22300f a f a f ∴+-+<,化为()()()2233f af a f a <--=-,∴232312a a a <-⇒-<<,故答案为312a -<<.【名师点睛】本题主要考查利用导数研究函数的单调性,考查了奇偶性的应用、单调性的应用,属于难题. 解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.10.(2019·安徽高考模拟)设函数21(),()x x xf xg x x e+==,对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则正数k 的取值范围是_______. 【答案】121k e ≥- 【解析】对任意()12,0,x x ∈+∞,不等式()()121g x f x k k ≤+恒成立,则等价为()()121g x k f x k ≤+恒成立,()2112x f x x x x +=++≥=,当且仅当1x x =,即 1x =时取等号,即()f x 的最小值是2,由()x x g x e =,则()()21'x x x x e xe x g x e e --==,由()'0g x >得01x <<,此时函数()g x 为增函数,由()'0g x >得1x >,此时函数()g x 为减函数,即当1x =时,()g x 取得极大值同时也是最大值()11g e =,则()()12g x f x 的最大值为1122e e=,则由112k k e ≥+,得21ek k ≥+,即()211k e -≥,则121k e ≥-,故答案为121k e ≥-.三、解答题11.(2019·浙江高考模拟)已知函数()1ln f x x x x=-- . (1)若()1ln f x x x x=--在()1212,x x x x x =≠ 处导数相等,证明:()()1232ln2f x f x +>- ;(2)若对于任意(),1k ∈-∞ ,直线y kx b =+ 与曲线()y f x =都有唯一公共点,求实数b 的取值范围.【答案】(I )见解析(II )ln 2b ≥- 【思路分析】(1)由题x >0,()2111f x x x'=+-,由f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,得到()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=,由基本不等式得1212x x x x +=⋅>,得124x x ⋅>,由题意得()()()121212ln 1f x f x x x x x +=--,令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->,,利用导数性质能证明()()432ln2g t g >=-.(2)由()f x kx b =+得1ln x x b x k x ---=,令()1ln x x bx h x x---=, 利用反证法可证明证明()1h x <恒成立.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 10x b x h x x ++-='∴≥得2ln 1b x x ≥--+,令()()2ln 10m x x x x=--+>,由此可求b 的取值范围.. 【过程详解】 (I )()2111f x x x'=+- 令()()12f x f x m ''==,得21122211101110m x x m x x ⎧-+-=⎪⎪⎨⎪-+-=⎪⎩,由韦达定理得12111x x +=即1212x x x x +=⋅>,得124x x ⋅>()()()()1212121211ln ln f x f x x x x x x x ⎛⎫∴+=+-+-+ ⎪⎝⎭()1212ln 1x x x x =--令124t x x =⋅>,则()1212ln 1ln 1x x x x t t --=--,令()()ln 14g t t t t =-->, 则()()1104g t t t>'=->,得()()432ln2g t g >=-(II )由()f x kx b =+得1ln x x bxk x---=令()1ln x x bx h x x---=, 则0x →+,()h x →-∞,(),1x h x →+∞→ 下面先证明()1h x <恒成立.若存在()00,x ∈+∞,使得()01h x ≥,0x →+Q ,()h x →-∞,且当自变量x 充分大时,()1ln 1x x bx h x x---=<,所以存在()100,x x ∈,()20,x x ∈+∞,使得()11h x <,()21h x <,取()(){}12max ,1k h x h x =<,则y k =与()y h x =至少有两个交点,矛盾.由对任意(),1k ∈-∞,()h x k =只有一个解,得()h x 为()0,+∞上的递增函数,()22ln 1x b x h x x ++-='∴≥ 得2ln 1b x x ≥--+,令()()2ln 10m x x x x =--+>,则()22212x m x x x x-=-=', 得()()max 2ln2b m x m ≥==-【名师点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题.12.(2019·浙江高考模拟)知函数()2x af x x a+=+,()()2ln 2g x x a a R =+∈.(1)求()f x 的单调区间;(2)证明:存在()0,1a ∈,使得方程()()f x g x =在()1,+∞上有唯一解. 【答案】(1)详见解析(2)详见解析 【思路分析】(1)求出函数f (x )的定义域,对函数f (x )求导得到22y x ax a =+-, 分0∆≤ 与0∆>,得到导函数在各区间段内的符号,得到函数f (x )的单调区间; (2)构造()()()h x f x g x =-,求导分析()h x 的单调性,找到12≤a<1时,()0h x <在(1,1上恒成立,在()1+∞上递增,而h(1)0x <,()20h e >,由函数零点存在定理得到存在()00,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即证得结论. 【过程详解】(1)函数f (x )的定义域为()(),,a a -∞-⋃-+∞,因为()()222x ax af x x a +-=+',令22y x ax a =+-,则2440a a ∆=+≤,即10a -≤≤,则()0f x '≥在()(),,a a -∞-⋃-+∞上恒成立,当1a <-或0a >,由220x ax a +->有x a >-x a <-由220x ax a +-<有a x a -<<-,综上,当10a -≤≤时,()f x 的递增区间是()(),,,a a -∞--+∞,当1a <-或0a >时,()f x 的递增区间是((),,a a -∞--+∞,递减区间是()(,,a a a a ----+;(2)令()()()22ln 2x ah x f x g x x a x a+=-=--+,当()0,1a ∈时,则()()()()()22222222x a x x ax ax ah x x x a x a x+--+-=-=++' ()((()2211x a x x x a x⎡⎤⎡⎤+--⎣⎦⎣⎦=+,因为()1,x ∈+∞,故当11x <<+()0h x '<,当1x 时,()0h x '>,所以()h x在(1,1上递减,在()1++∞上递增,即当11x =()h x 有最小值,又h (1)=1-2a ,当12≤a<1时,h (1)≤0,即()0h x <在(1,1+上恒成立, 又12≤a<1时,()2222ln 22ln 22ln 222x a x x h x x a x a x x lnx x a x x+=-->-->--=--+,取x=2e ,则22224260x lnx e e ,--=--=->即()20h e>,又()h x在()1+∞上递增,而h(1)0x <,由函数零点存在定理知()h x在()1+∞上存在唯一零点,所以当12≤a<1时即存在()0,1a ∈,使得方程()0h x =在()1,+∞上有唯一解,即方程()()f x g x =在()1,+∞上有唯一解.【名师点睛】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查了推理论证能力、运算求解能力,考查了函数与方程、分类与整合、化归与转化等数学思想方法,属于难题.13.(2018·河北衡水中学高考模拟(理))已知函数()ln xf x ax b x=-+在点 ()(),e f e 处的切线方程为2y ax e =-+.(2)若存在20,x e e ⎡⎤∈⎣⎦,满足()014f x e ≤+,求实数a 的取值范围. 【答案】(1) 实数b 的值为e .(2)211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】分析:(1)根据导数的几何意义求得曲线()y f x =在点()(),e f e 处的切线方程,与2y ax e =-+对照后可得b e =.(2)问题可转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解,令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦,结合导数可得()()221124minh x h e e==-,故得实数a的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 详解:(1)函数()f x 的定义域为()()0,11,⋃+∞, ∵()ln xf x ax b x =-+, ∵()2ln 1'ln x f x a x-=-. ∵()'f e a =-, 又()e f e ae b =-+,∵所求切线方程为()()y e ae b a x e --+=--, 即y ax e b =-++.又函数()f x 在点()(),e f e 处的切线方程为2y ax e =-+, ∵b e =.(2)由题意得()00001ln 4x f x ax e e x =-+≤+, 所以问题转化为11ln 4a x x≥-在2,e e ⎡⎤⎣⎦上有解. 令()11ln 4h x x x=-,2,x e e ⎡⎤∈⎣⎦, 则()2222211ln 4'4ln 4ln x xh x x x x x x -=-=(22ln ln 4ln x x x x+-=. 令()ln p x x =-则当2,x e e ⎡⎤∈⎣⎦时,有()1'0p x x ==<. 所以函数()p x 在区间2,e e ⎡⎤⎣⎦上单调递减,所以()()ln 0p x p e e <=-<.所以()'0h x <,所以()h x 在区间2,e e ⎡⎤⎣⎦上单调递减.所以()()22221111ln 424h x h eee e ≥=-=-. 所以实数a 的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭. 【名师点睛】对于恒成立和能成立的问题,常用的解法是分离参数,转化为求函数最值的问题处理.解题时注意常用的结论:若()a f x >有解,则()min a f x >;若()a f x <有解,则()max a f x <.当函数的最值不存在时,可利用函数值域的端点值来代替,解题时特别要注意不等式中的等号能否成立.14.(2019·安徽六安一中高考模拟(理))已知函数()()2ln R 2a f x x x x a =-∈ . (1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <【解析】:(1)当2a =时,()2ln f x x x x =-,利用导数几何意义,能够求出此函数在1x =处的切线斜率,再求出切线方程;(2)对函数()g x 求导,令()()'ln h x g x x ax a ==-+,讨论)'(h x 的单调性,对a 分情况讨论,得出实数a 的取值范围. 试题解析:(1)当2a =时,()2ln f x x x x =-,()'ln 12f x x x =+-,()()11,'11f f =-=-,所以曲线()y f x =在点()()1,1f 处的切线方程为y x =-.(2)由已知得()()2ln 12a g x x x x a x =-+-,则()'ln g x x ax a =-+, 记()()'ln h x g x x ax a ==-+,则()()1110,'ax h h x a x x-==-=, ∵当0a ≤,()0,x ∈+∞时,()'0h x >,函数()'g x 单调递增, 所以当()0,1x ∈时,()'0g x <,当()1,x ∈+∞时,()'0g x >, 所以()g x 在1x =处取得极小值,满足题意.∵当01a <<时,10,x a ⎛⎫∈ ⎪⎝⎭时,()'0h x >,函数()'g x 单调递增, 可得当()0,1x ∈时,()'0g x <,11,x a ⎛⎫∈ ⎪⎝⎭时,()'0g x >当, 所以()g x 在1x =处取得极小值,满足题意.∵当1a =时,当()0,1x ∈时,()'0h x >,函数()'g x 单调递增,()1,x ∈+∞时,()'0h x <,()'g x 在()1,+∞内单调递减,所以当()0,x ∈+∞时,()'0g x ≤,()g x 单调递减,不合题意.∵当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时,()'0h x <,()'g x 单调递减, ()'0g x >,当()1,x ∈+∞时,()'0h x <,()'g x 单调递减,()'0g x <,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a <.【名师点睛】本题主要考查了导数在研究函数单调性、最值上的应用,考的知识点有导数几何意义,导数的应用等,属于中档题.分类讨论时注意不重不漏. 15.(2019·山东高考模拟(理))已知函数()()21ln ,2f x x xg x mx ==. (1)若函数()f x 与()g x 的图象上存在关于原点对称的点,求实数m 的取值范围; (2)设()()()F x f x g x =--,已知()F x 在()0,∞+上存在两个极值点12,x x ,且12x x <,求证:2122x x e >(其中e 为自然对数的底数).【答案】(1)2m e≥-;(2)证明见解析. 【解析】(1)函数21()2g x mx =关于原点对称的函数解析式为212y mx =-.函数()f x 与()g x 的图象上存在关于原点对称的点,等价于方程21ln 2x x mx =-在(0,)+∞有解.即12lnx mx =,2lnx m x ⇒=,令2()lnx g x x=,(0)x >,利用导数研究函数的单调性极值即可得出.(2)2122x x e >等价于122()2ln ln x x +>,等价于12()22ln x x ln >-21()()()ln 2F x f x g x x x mx =--=--,()1ln F x x mx '=---,(0)x >,再利用导数研究函数的单调性、极值,利用分析法即可得证. 【详解】(1)函数()f x 与()g x 的图像上存在关于原点对称的点,即21()()2g x m x --=--的图像与函数()ln f x x x =的图像有交点, 即21()ln 2m x x x --=在(0,)+∞上有解. 即1ln 2x m x=-在(0,)+∞上有解. 设ln ()x x x ϕ=-,(0x >),则2ln 1()x x xϕ'-= 当(0,)x e ∈时,()x ϕ为减函数;当(,)x e ∈+∞时,()x ϕ为增函数,所以min 1()()x e e ϕϕ==-,即2m e≥-. (2)证明:()()21212122ln 2ln 2ln 2ln 2x x e x x x x ⇔+>⇔>->. 可得()()()21ln 2F x f x g x x x mx =--=--, ()1ln F x x mx '=---,()0x >,∵()F x 在()0+∞,上存在两个极值点1x ,2x ,且12x x <, ∵()1ln h x x mx =++,()0x >,在()0+∞,上存在两个零点1x ,2x ,且12x x <, ∵11ln 1x mx =--,22ln 1x mx =--.∵()()1212ln 2x x m x x =-+-,()1122lnx m x x x =--.∵()1121221112221ln 1x ln x x x x x x x x x x x ++==--,令()12 01x t x =∈,,则()121ln ln 1t x x t t +=-, 要证明:()12ln 2ln 2x x >-.即证明:()1ln 2ln 2,011t t t t +>-∈-,, 即证明:()()1ln 2ln 20,011t t t t ---⋅<∈+,. 令()()()1220,011t h t lnt ln t t -=--⋅<∈+,,()10h =. ()()()()()()22222122ln 21212()()ln 22ln 20111t t t t h t t t t t t t +---+'=--⋅==>+++. ∵函数()h t 在()01t ∈,上单调递增.∵()()10h t h <=,即1ln 2ln 21t t t +>--,()01t ∈,成立.∵2x 1x 2>e 2成立. 【名师点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法、分析法,考查了推理能力与计算能力,属于难题.。
2021届高考数学(理)客观题重难点专题09 导数的简单应用(考点精讲)(解析版)

专题09 导数的简单应用-考点精讲重点突破——利用导数研究函数单调性考法(一) 利用单调性比较大小1.已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,不等式f (x )+xf ′(x )<0成立,若a =3f (3),b =-2f (-2),c =f (1),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【解析】选A 令函数F (x )=xf (x ), 则F ′(x )=f (x )+xf ′(x ),∵当x ∈(-∞,0)时,f (x )+xf ′(x )<0, ∴F (x )=xf (x )在(-∞,0)上单调递减,∵f (x )是定义在R 上的奇函数,∴F (x )为偶函数. ∴F (x )=xf (x )在(0,+∞)上单调递增, ∵a =3f (3),b =-2f (-2),c =f (1), ∴a =F (-3),b =F (-2),c =F (1)=F (-1), ∴F (-3)>F (-2)>F (-1),即a >b >c .2.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈()-∞,1时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a 【解析】选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0, 所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数, 所以a =f (0)<f ⎝⎛⎭⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1), 所以c =f (-1)<f (0)=a , 所以c <a <b ,故选C. [解题方略]利用单调性比较大小的关键(1)构造函数,利用已知条件构造新的函数;(2)寻找性质,对所构造的函数判断其单调性与奇偶性;(3)比较,细审比较的各式,还原到新构造的函数中,再利用函数的单调性,即可得大小关系.考法(二) 已知函数单调性求参数的取值范围[典例] 已知函数f (x )=e x +m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时,都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.[解析] 依题意得,对于任意的正数x 1,x 2, 当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数, 于是当x >0时,g ′(x )=f ′(x )-1=e x +mx -1≥0,即x (e x -1)≥-m 恒成立. 设h (x )=x (e x -1),x >0,则有h ′(x )=(x +1)e x -1>(0+1)e 0-1=0(x >0), 故h (x )在区间(0,+∞)上是增函数, h (x )的值域是(0,+∞), 因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞). [答案] [0,+∞) [解题方略]由函数的单调性求参数的取值范围3个策略(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知函数f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[提醒] 已知函数f (x )的单调性求参数的取值范围,切记验证f ′(x )是否恒等于0.[针对训练]1.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-2 6 ] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)【解析】选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x ≥0在(1,+∞)上恒成立,∴g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立, ∴Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0,∴-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5,即a ≥-2 6.2.已知函数f (x )=x 2-12ln x +32在其定义域内的一个子区间(a -1,a +1)内不是单调函数,则实数a 的取值范围是________.【解析】法一:由已知得f (x )的定义域为(0,+∞), ∵函数f (x )=x 2-12ln x +32在区间(a -1,a +1)上不单调,∴f ′(x )=2x -12x =4x 2-12x 在区间(a -1,a +1)上有零点.由f ′(x )=0,得x =12,则⎩⎪⎨⎪⎧a -1≥0,a -1<12<a +1,解得1≤a <32.法二:由已知得f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x ,令f ′(x )>0得x >12,令f ′(x )<0得0<x <12,即函数f (x )的单调递增区间为⎝⎛⎭⎫12,+∞,单调递减区间为⎝⎛⎭⎫0,12.若函数f (x )在其定义域内的一个子区间(a -1,a +1)内是单调函数,则a -1≥12或⎩⎪⎨⎪⎧a +1≤12,a -1≥0,即a ≥32,所以函数f (x )在其定义域内的一个子区间(a -1,a +1)内不是单调函数,需满足1≤a <32.答案:⎣⎡⎭⎫1,32难点精研——利用导数研究函数的极值、最值1.函数的极值设函数f (x )在点x 0附近有定义,如果对x 0附近所有的点x ,都有f (x )<f (x 0),那么f (x 0)是函数的一个极大值;如果对x 0附近的所有的点都有f (x )>f (x 0),那么f (x 0)是函数的一个极小值.极大值与极小值统称为极值.2.函数的最值将函数y =f (x )在[a ,b ]内的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.[提醒] (1)可导函数极值点的导数为0,但导数为0的点不一定是极值点,如函数f (x )=x 3,当x =0时就不是极值点,但f ′(0)=0.(2)极值点不是一个点,而是一个数x 0,当x =x 0时,函数取得极值.在x 0处有f ′(x 0)=0是函数f (x )在x 0处取得极值的必要不充分条件.[典例] (1)已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3][解析] 由题意知f ′(x )=3x 2+6x -9, 令f ′(x )=0,解得x =1或x =-3, 所以f ′(x ),f (x )随x 的变化情况如下表:又f ([答案] D(2)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B.⎝⎛⎭⎫0,12 C .(0,1)D .(0,+∞)[解析] f ′(x )=ln x -2ax +1(x >0),故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1,∴只需0<2a <1,即0<a <12.[答案] B [解题方略]已知函数极值、最值情况求参数值或范围的方法(1)由函数的极值点确定参数问题的关键是转化构造,即转化为f ′(x )=0的根的问题,再构造新函数,通过研究函数单调性,结合图形或直接得出结论.(2)已知f (x )在某点x 0处有极值、最值,求参数的取值(范围)时,应逆向考虑,可先将参数当成常数,按照求极值、最值的一般方法求解,再依据极值、最值与导数的关系,列等式(不等式)求解;也可以根据函数在该点导数f ′(x 0)=0列出等式(不等式),再根据极值、最值与导数的关系及题意进行求解.[针对训练]1.已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.3-1B.34C.43D.3+1【解析】选A 由f (x )=xx 2+a 得f ′(x )=a -x 2(x 2+a )2.当a >1时,若x >a ,则f ′(x )<0,f (x )单调递减, 若1<x <a ,则f ′(x )>0,f (x )单调递增, 故当x =a 时,函数f (x )有最大值12a =33,得a =34<1,不合题意;当a =1时,函数f (x )在[1,+∞)上单调递减, 最大值为f (1)=12,不合题意;当0<a <1时,函数f (x )在[1,+∞)上单调递减, 此时最大值为f (1)=1a +1=33,得a =3-1,符合题意.故a 的值为3-1.2.已知函数f (x )=13x 3-a2x 2+2x +1,且x 1,x 2是f (x )的两个极值点,0<x 1<1<x 2<3,则a 的取值范围是________.【解析】f ′(x )=x 2-ax +2, 由题意知⎩⎪⎨⎪⎧f ′(1)=1-a +2<0,f ′(3)=9-3a +2>0,f ′(0)=2>0,解得3<a <113.答案:⎝⎛⎭⎫3,113。
2020-2021新课标高考理科数学导数解答题解题策略突破(64张)

2.(2018·新课标全国卷Ⅱ)已知函数 f(x)=ex-ax2. (1)若 a=1,证明:当 x≥0 时,f(x)≥1; (2)若 f(x)在(0,+∞)只有一个零点,求 a. 解:(1)证明:当 a=1 时,f(x)≥1 等价于(x2+1)e-x-1≤0. 设函数 g(x)=(x2+1)e-x-1, 则 g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.
第8页
解:(1)f′(x)=6x2-2ax=2x(3x-a). 令 f′(x)=0,得 x=0 或 x=a3. 若 a>0,则当 x∈(-∞,0)∪(a3,+∞)时,f′(x)>0; 当 x∈(0,a3)时,f′(x)<0.故 f(x)在(-∞,0),(a3,+∞) 单调递增,在(0,a3)单调递减; 若 a=0,f(x)在(-∞,+∞)单调递增;
第15页
故 h(x)在(2,4a)有一个零点.因此 h(x)在(0,+∞)有两个零 点.
综上,f(x)在(0,+∞)只有一个零点时,a=e42.
第16页
第17页
考点一 导数与不等式 考向 1 不等式证明问题 【例 1】 (2019·成都市第二次诊断)已知函数 f(x)=lnx+
a(1x-1),a∈R. (1)若 f(x)≥0,求实数 a 的取值集合; (2)证明:ex+1x≥2-lnx+x2+(e-2)x.
第14页
①若 h(2)>0,即 a<e42,h(x)在(0,+∞)没有零点; ②若 h(2)=0,即 a=e42,h(x)在(0,+∞)只有一个零点; ③若 h(2)<0,即 a>e42,由于 h(0)=1,所以 h(x)在(0,2)有一 个零点. 由(1)知,当 x>0 时,ex>x2,所以 h(4a)=1-1e64aa3=1-1e62aa32 >1-126aa34=1-1a>0.
2020-2021年新课标高考文科数学导数的简单应用考点考题突破(8页)

2020-2021年新课标高考文科数学导数的简单应用考点考题突破专项检测十七导数的简单应用一、选择题1.曲线y=e x+2x在点(0,1)处的切线方程为(C)A.y=x+1 B.y=x-1C.y=3x+1 D.y=-x+1解析:求导函数y′=e x+2,当x=0时,y′=e0+2=3,所以曲线y=e x +2x在点(0,1)处的切线方程为y=3x+1.2.设函数f(x)=x3-12x+b,则下列结论正确的是(C)A.函数f(x)在(-∞,-1)上单调递增B.函数f(x)在(-∞,-1)上单调递减C.若b=-6,则函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10 D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点解析:对于选项A,B,根据函数f(x)=x3-12x+b,可得f′(x)=3x2-12,令3x2-12=0,得x=-2或x=2,故函数f(x)在(-∞,-2),(2,+∞)上单调递增,在(-2,2)上单调递减,所以选项A,B都不正确;对于选项C,当b=-6时,f′(-2)=0,f(-2)=10,故函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10,选项C正确;对于选项D,当b=0时,f(x)的极大值为f(-2)=16,极小值为f(2)=-16,故直线y=10与函数f(x)的图象有三个公共点,选项D错误.故选C.3.设函数f(x)=x e x+1,则(D)A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点解析:由题意得,f′(x)=(x+1)e x,令f′(x)=0,得x=-1,当x∈(-∞,-1)时,f′(x)<0,当x∈(-1,+∞)时,f′(x)>0,则f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以x =-1为f (x )的极小值点,故选D.4.函数f (x )=12x 2-ln x 的最小值为( A )A.12B .1C .0D .不存在解析:∵f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得最小值,且f (1)=12-ln1=12.5.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f (ln 1x )<2f (1)的解集为( D )A .(e ,+∞)B .(0,e)C .(0,1e )∪(1,e)D .(1e ,e)解析:f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f (ln 1x )=f (-ln x )=f (ln x ),所以f (ln x )+f (ln 1x )<2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于-1<ln x <1,所以1e <x <e.故选D.6.(2019·昆明市模拟)已知函数f (x )=ax 2+bx +c ln x (a >0)在x =1和x =2处取得极值,且极大值为-52,则函数f (x )在区间(0,4]上的最大值为( D )A .0B .-52C .2ln2-4D .4ln2-4解析:f ′(x )=2ax +b +c x =2ax 2+bx +c x(x >0,a >0).因为函数f (x )在x =1和x =2处取得极值,所以f ′(1)=2a +b +c =0 ①,f ′(2)=4a +b +c 2=0 ②.又a >0,所以当0<x <1或x >2时,f ′(x )>0,f (x )是增函数;当1<x <2时,f ′(x )<0,f (x )是减函数.所以当x =1时,f (x )极大值=f (1)=a +b =-52 ③.联立①②③,解得a =12,b =-3,c =2.f (4)=12×16-3×4+2ln4=4ln2-4,经比较函数f (x )在区间(0,4]上的最大值是f (4)=4ln2-4.故选D.7.(2019·成都市第二次诊断)已知直线l 既是曲线C 1:y =e x 的切线,又是曲线C 2:y =14e 2x 2的切线,则直线l 在x 轴上的截距为( B )A .2B .1C .e 2D .-e 2二、填空题8.(2019·新课标全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为y =3x .解析:因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .9.已知奇函数f (x )=⎩⎨⎧e x x -1(x >0),h (x ) (x <0),则函数h (x )的最大值为1-e.解析:当x >0时,f (x )=e x x -1,f ′(x )=e x (x -1)x 2,∴当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.∴x =1时,f (x )取到极小值e -1,即f (x )的最小值e -1.又f (x )为奇函数,且x <0时,f (x )=h (x ),∴h (x )的最大值为-(e -1)=1-e.10.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围是(-1,+∞).解析:f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -x x=-(ax +1)(x -1)x. ①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减;所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是(-1,+∞).三、解答题11.设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若d =3,求f (x )的极值.解:(1)由已知,得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3,或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:)的极小值为f(t2+3)=(3)3-9×3=-6 3.12.(2019·合肥市一模)已知函数f(x)=e x-ln(x+1)(e为自然对数的底数).(1)求函数f(x)的单调区间;(2)若g(x)=f(x)-ax,a∈R,试求函数g(x)极小值的最大值.解:(1)易知x>-1,且f′(x)=e x-1x+1.令h(x)=e x-1x+1,则h′(x)=ex+1(x+1)2>0,∴函数h(x)=e x-1x+1在(-1,+∞)上单调递增,且h(0)=f′(0)=0.可知,当x∈(-1,0)时,h(x)=f′(x)<0,f(x)=e x-ln(x+1)单调递减;当x∈(0,+∞)时,h(x)=f′(x)>0,f(x)=e x-ln(x+1)单调递增.∴函数f(x)的单调递减区间是(-1,0),单调递增区间是(0,+∞).(2)∵g(x)=f(x)-ax=e x-ln(x+1)-ax,∴g′(x)=f′(x)-a.由(1)知,g′(x)在(-1,+∞)上单调递增,当x→-1时,g′(x)→-∞;当x→+∞时,g′(x)→+∞,则g′(x)=0有唯一解,记为x0.可知,当x∈(-1,x0)时,g′(x)<0,g(x)=e x-ln(x+1)-ax单调递减;当x∈(x0,+∞)时,g′(x)>0,g(x)=e x-ln(x+1)-ax单调递增.∴函数g(x)在x=x0处取得极小值,即g(x0)=e x0-ln(x0+1)-ax0,且x0满足e x0-1x0+1=a.∴g(x0)=(1-x0)e x0-ln(x0+1)+1-1x0+1.令φ(x)=(1-x)e x-ln(x+1)+1-1x+1,则φ′(x)=-x[e x+1(x+1)2].可知,当x∈(-1,0)时,φ′(x)>0,φ(x)单调递增;当x∈(0,+∞)时,φ′(x)<0,φ(x)单调递减,∴φ(x)max=φ(0)=1.∴函数g(x)极小值的最大值为1.13.(2019·长春市质量监测)已知曲线y=x-x2在点P(x0,x0-x20)(0≤x0≤1)处的切线为l,则下列各点中,不可能在直线l上的是(D)A.(-1,-1) B.(-2,0)C.(4,1) D.(1,-2)解析:解法1:在点P(x0,x0-x20)处的切线的斜率为y′|x=x0=1-2x0,当x0=0时,x0-x20=0,y′|x=x=1,切线l的方程为y=x.当x0=1时,x0-x20=0,y′|x=x=-1,切线l的方程为y=-x+1.因为x0∈[0,1],所以y′|x=x∈[-1,1],所以切线l扫过的区域如图中阴影部分所示,则不可能在直线l上的点是(1,-2).故选D.解法2:画出切线l的四种情况(包含在点(0,0)和点(1,0)处的两条切线),如图所示,则很容易看出不可能在直线l上的点为(1,-2).故选D.14.(2019·浙江卷)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是43.解析:f (t +2)-f (t )=[a (t +2)3-(t +2)]-(at 3-t )=2a (3t 2+6t +4)-2,因为存在t ∈R ,使得|f (t +2)-f (t )|≤23,所以-23≤2a (3t 2+6t +4)-2≤23有解.因为3t 2+6t +4≥1,所以23(3t 2+6t +4)≤a ≤43(3t 2+6t +4)有解,所以a ≤[43(3t 2+6t +4)]max=43,所以a 的最大值为43.15.(2019·新课标全国卷Ⅱ)已知函数f (x )=ln x -x +1x -1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.解:(1)f (x )的定义域为(0,1)∪(1,+∞).因为f ′(x )=1x +2(x -1)2>0, 所以f (x )在(0,1),(1,+∞)单调递增.因为f (e)=1-e +1e -1<0,f (e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又0<1x 1<1,f (1x 1)=-ln x 1+x 1+1x 1-1=-f (x 1)=0,故f (x )在(0,1)有唯一零点1x 1. 综上,f (x )有且仅有两个零点.(2)因为1x 0=e -ln x 0,故点B (-ln x 0,1x 0)在曲线y =e x 上. 由题设知f (x 0)=0,即ln x 0=x 0+1x 0-1,连接AB ,则直线AB 的斜率k =1x 0-ln x 0-ln x 0-x=1x0-x0+1x0-1-x0+1x0-1-x0=1x0.曲线y=e x在点B(-ln x0,1x0)处切线的斜率是1x0,曲线y=ln x在点A(x0,ln x0)处切线的斜率也是1x0,所以曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=e x 的切线.。
压轴题10 导数的简单应用(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题10导数的简单应用题型/考向一:导数的计算及几何意义题型/考向二:利用导数研究函数的单调性题型/考向三:利用导数研究函数的极值、最值○热○点○题○型一导数的计算及几何意义1.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.3.导数中的公切线问题,重点是导数的几何意义,通过双变量的处理,从而转化为零点问题,主要考查消元、转化、构造函数、数形结合能力以及数学运算素养.一、单选题1.函数()()ln 322f x x x =--的图象在点()()1,1f 处的切线方程是()A .10x y ++=B .230x y ++=C .230x y --=D .30x y --=2.若函数的图象在点处的切线方程为,则=a ()A .1B .0C .-1D .e.已知直线l为曲线A B.10C.5D与函数()的图象都相切,则a b+=()A.1-B.0C.1D.35.曲线22e24xy x-=⋅+在1x=处的切线与坐标轴围成的面积为()A.32B.3C.4916D.4986.已知函数()()21220232023ln 22f x x xf x '=-++-,则()2023f '=()A .2022B .2021C .2020D .20197.若对m ∀∈R ,,a b ∃∈R ,使得()f m a b=-成立,则称函数()f x 满足性质Ω,下列函数不满足...性质Ω的是()A .()23f x x x=+B .()()211f x x =+C .()1ex f x -+=D .()()cos 12f x x =-对于C ,1x -+∈R ,()1e xf x -+∴=的值域为()0,∞+;()1e x f x -+'=- ,()f x '∴的值域为(),0∞-;则()f x 的值域不是()f x '值域的子集,C 不满足性质Ω;对于D ,12x -∈R ,()()cos 12f x x ∴=-的值域为[]1,1-;()()2sin 12f x x '=- ,()f x '∴的值域为[]22-,,则[][]1,12,2-⊆-,D 满足性质Ω.故选:C.8.已知函数()f x 的定义域是()(),00,∞-+∞U ,()f x '为()f x 的导函数,若()()()121f f x f x x'=+-,则()f x 在()0,∞+上的最小值为()A 1-B .15-C 1D .15-二、多选题9.已知函数()332f x x ax =+-的极值点分别为()1212,x x x x <,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线10.若函数()()ln 12f x x -=++的图象上,不存在互相垂直的切线,则a 的值可以是()A .-1B .3C .1D .2因为函数()f x 的图象上,不存在互相垂直的切线,所以()min 0f x '≥,即10a -≥,解得1a ≤,故选:AC11.给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数,记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数,以下四个函数在π0,2⎛⎫ ⎪⎝⎭上是凸函数的是()A .()sin cos f x x x=-B .()ln 3f x x x=-C .()331f x x x =-+-D .()exf x x -=12.设函数在区间,a b 上的导函数为f x ,f x 在区间,a b 上的导函数为f x ,若区间(),a b 上()0f x ''<,则称函数()f x 在区间(),a b 上为“凸函数”.已知()5421122012f x x mx x =--在()1,2上为“凸函数”则实数m 的取值范围的一个必要不充分条件为()A .1m >-B .m 1≥C .1m >D .0m >○热○点○题○型二利用导数研究函数的单调性利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.一、单选题1.函数()2e =-xf x x 的单调递增区间为()A .(),0∞-B .()ln2,+∞C .(],ln2∞-D .[)0,∞+【答案】C【详解】()2e xf x x =- ,()2e x f x ∴-'=,令()0f x ¢>,得ln 2x <,所以函数()2e =-xf x x 的单调递增区间为(],ln2∞-.故选:C2.已知函数()2,0,ln ,,x a xf x x x a x⎧<<⎪⎪=⎨⎪≥⎪⎩若()f x 在()0,∞+上单调递减,则实数a 的取值范围是()A .21,e ⎡⎤⎣⎦B .[]e,2eC .2,e e ⎡⎤⎣⎦D .[)e,+∞=A .c b a <<B .c a b<<C .b a c<<D .b c a<<【答案】A【详解】设()e 1xf x x =--,因为()e 1x f x '=-,所以当0x <时,()0f x '<,()f x 在(),0∞-上单调递减,4.若函数满足xf x f x >-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <【答案】B【详解】由()()xf x f x '>-,设()()g x xf x =,则()()()0g x xf x f x ''=+>,所以()g x 在R 上是增函数,又a b >,所以()()g a g b >,即()()af a bf b >,故选:B.5.已知()f x 是定义在R 上的偶函数,当0x ≥时,()e sin xf x x =+,则不等式()π21e f x -<的解集是()A .1π,2+⎛⎫+∞⎪⎝⎭B .1π0,2+⎛⎫⎪⎝⎭C .π1e 0,2⎛⎫+ ⎪⎝⎭D .1π1π,22-+⎛⎫⎪⎝⎭6.已知函数()f x 与()g x 定义域都为R ,满足()()()1e xx g x f x +=,且有()()()0g x xg x xg x ''+-<,()12e g =,则不等式()4f x <的解集为()A .()1,4B .()0,2C .(),2-∞D .()1,+∞7.已知函数(),若存在0使得00恒成立,则0的取值范围()A .10,1e ⎡⎤+⎢⎥⎣⎦B .211,e 2e⎡⎤+-⎢⎥⎣⎦C .11,1e ⎡⎤+⎢⎥⎣⎦D .21,e 2⎡⎤-⎣⎦【答案】D 【详解】由00()()f t x f x t =+-,可得00()()f t t x f x +=+,设函数()()e x h x f x x x =+=+,则()e 10xh x '=+>在R 上恒成立,所以()e xh x x =+单调递增,所以0t x =,则0()b f x t =-()e tf t t t =-=-,[]1,2t ∈-,令()e t g t t =-,[]1,2t ∈-,则()e 1tg t '=-,当0=t 时,()0g t '=,令()0g t '>得:(]0,2t ∈,令()0g t '<得:[)1,0t ∈-,所以()()0min 0=e 01g t g =-=,又()11e 1g --=+,()22e 2g =-,其中21e 2e 1-->+,所以实数b 的取值范围是21,e 2⎡⎤-⎣⎦.故选:D.8.已知函数()312x f x x +=+,()()42e xg x x =-,若[)12,0,x x ∀∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值范围是()A .21,e e ⎡⎤⎢⎥⎣⎦B .22,e ⎤-⎦C .)2⎡++∞⎣D .()2e,⎡+∞⎣二、多选题9.已知函数()(1)e x f x x =+的导函数为()f x ',则()A .函数()f x 的极小值点为21e -B .(2)0f '-=C .函数()f x 的单调递减区间为(,2)-∞-D .若函数()()g x f x a =-有两个不同的零点,则21(,0)e a ∈-【答案】BCD【详解】由()(1)e x f x x =+,得()(2)e x f x x '=+,当2x =-时,(2)0f '-=,B 正确;当<2x -时,()0f x '<,函数()f x 单调递减,当2x >-时,()0f x ¢>,函数()f x 单调递增,观察图象知,当210e a -<<时,直线所以函数()()g x f x a =-有两个不同的零点时,故选:BCD10.对于三次函数()3ax bx f x =+,给出定义:设f x 是函数的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、解答题11.已知函数()321132f x x ax =-,a ∈R .(1)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)讨论()f x 的单调性.当0a =时,()20f x x '=≥,()f x \在R 上单调递增;当a<0时,若()(),0,x a ∈-∞⋃+∞,则()0f x ¢>;若(),0x a ∈,则()0f x '<;()f x \在()(),,0,a ∞∞-+上单调递增,在(),0a 上单调递减;当0a >时,若()(),0,x a ∈-∞⋃+∞,则()0f x ¢>;若()0,x a ∈,则()0f x '<;()f x \在()(),0,,a -∞+∞上单调递增,在()0,a 上单调递减;综上所述:当0a =时,()f x 在R 上单调递增;当a<0时,()f x 在()(),,0,a ∞∞-+上单调递增,在(),0a 上单调递减;当0a >时,()f x 在()(),0,,a -∞+∞上单调递增,在()0,a 上单调递减.12.已知函数()222ln 12x x f x x -+=.求函数()f x 的单调区间;○热○点○题○型三利用导数研究函数的极值、最值1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.一、单选题1.函数()32142f x x x x =+-的极小值为()A .43-B .1C .52-D .10427.函数的定义域为R ,导函数f x 的图象如图所示,则函数f x ()A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点【答案】C【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,当1x x <或23x x x <<或4x x >时,()0f x ¢>,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增,在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x ,所以函数()f x 有两个极大值点、两个极小值点.故选:C .3.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎥⎝⎦4.已知函数()e ln 2xx f x x =+-的极值点为1x ,函数()2h x x =的最大值为2x ,则()A .12x x >B .21x x >C .12x x ≥D .21x x ≥.若函数在1x =处有极大值,则实数的值为()A .1B .1-或3-C .1-D .3-6.已知函数()()2ln 11f x x x =+++,则()A .0x =是()f x 的极小值点B .1x =是()f x 的极大值点C .()f x 的最小值为1ln 2+D .()f x 的最大值为37.若函数()3ln f x a x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是()A .2e ,4⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .(]3e ,09⎧⎫-∞⎨⎬⎩⎭ D .32e e ,49 纟禳镲çú-¥睚çú镲棼铪8.已知定义域为()0,∞+的函数()f x 满足()()1f x xf x x'+=+,()10f '=,()1122g x a ax x=+--,若01a <<,则()()f x g x -的极值情况是()A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极小值,也无极大值二、多选题9.已知函数()2211e e x x f x -+=+,则()A .()f x 为奇函数B .()f x 在区间()0,2上单调递减C .()f x 的极小值为22e D .()f x 的最大值为411e +10.设函数()ln x f x ax x =-,若函数()f x 有两个极值点,则实数a 的值可以是()A .12B .18C .2D .14-观察图象知,当a<0或10a 4<<时,直线y a =与函数于是当a<0或10a 4<<时,2ln 1(ln )x a x -=在(0,1)(1,⋃+∞所以实数a 的取值范围是a<0或10a 4<<,即a 的值可以是三、解答题11.已知函数()()322113f x x ax a x b =-+-+(a ,b ∈R ),其图象在点()()1,1f 处的切线方程为30x y +-=.(1)求a ,b 的值;(2)求函数()f x 的单调区间和极值;(3)求函数()f x 在区间[]2,5-上的最大值.12.已知函数()ln f x x a=+,其中a 为常数,e 为自然对数的底数.(1)当1a =-时,求()f x 的单调区间;(2)若()f x 在区间(]0,e 上的最大值为2,求a 的值.∴max ,∴,∴3e a =-③若e a -≥,即e a -≤时,在(0,e)上()0f x ¢>,∴()f x 在(0,e)上是增函数,故()f x 在(0,e]上的最大值为()()max e e 12f x f a ==+=,∴e a =不符合题意,舍去,综合以上可得e a =.。
2020版高考数学大二轮专题突破理科通用版专题突破练6 热点小专题一 导数的应用 Word版含解析

姓名,年级:时间:专题突破练6热点小专题一导数的应用一、选择题1.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1 C。
2 D。
3x3—2ax2-(a-2)x+5恰好有三个单调区间,则实数a的取值范围是2.若函数f(x)=43()A.—1≤a≤2B.-2≤a≤1C.a>2或a<-1D.a〉1或a〈-23.(2019湖南六校联考,理5)已知f(x)是奇函数,当x>0时,f(x)=—x,则函数x-2在x=-1处的切线方程是()A.2x—y-1=0B。
x-2y+2=0C.2x-y+1=0D.x+2y—2=04。
若0〈x1<x2<1,则()A.e x2−e x1>ln x2—ln x1B。
e x2−e x1〈ln x2—ln x1C。
x2e x1>x1e x2D。
x2e x1<x1e x25。
(2019天津卷,理8)已知a∈R,设函数f(x)={x2-2ax+2a,x≤1,x-alnx,x>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A。
[0,1] B.[0,2]C。
[0,e] D。
[1,e]6。
(2019河北武邑中学调研二,理6)已知函数f(x)=a e x—x2-(2a+1)x,若函数f(x)在区间(0,ln 2)上有极值,则实数a的取值范围是()A.(-∞,-1)B。
(—1,0)C.(-2,—1)D.(-∞,0)∪(0,1)7。
若x=-2是函数f(x)=(x2+ax—1)e x—1的极值点,则f(x)的极小值为() A.-1 B.—2e-3C。
5e-3D.18。
(2019河北唐山一模,理11)设函数f(x)=a e x-2sin x,x∈[0,π]有且仅有一个零点,则实数a的值为()A。
√2eπ4B。
√2e-π4C.√2eπ2D.√2e-π29.(2019陕西第二次质检,理12)已知函数f(x)={xe x,x≥0,-x,x<0,又函数g(x)=f2(x)+tf(x)+1(t∈R)有4个不同的零点,则实数t的取值范围是()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021新课标高考理科数学导数的简单应用典型试题详解突破专项检测十九导数的简单应用一、选择题1.曲线y=e x+2x在点(0,1)处的切线方程为(C)A.y=x+1 B.y=x-1C.y=3x+1 D.y=-x+1解析:求导函数y′=e x+2,当x=0时,y′=e0+2=3,所以曲线y=e x +2x在点(0,1)处的切线方程为y=3x+1.2.设函数f(x)=x3-12x+b,则下列结论正确的是(C)A.函数f(x)在(-∞,-1)上单调递增B.函数f(x)在(-∞,-1)上单调递减C.若b=-6,则函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10 D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点解析:对于选项A,B,根据函数f(x)=x3-12x+b,可得f′(x)=3x2-12,令3x2-12=0,得x=-2或x=2,故函数f(x)在(-∞,-2),(2,+∞)上单调递增,在(-2,2)上单调递减,所以选项A,B都不正确;对于选项C,当b=-6时,f′(-2)=0,f(-2)=10,故函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10,选项C正确;对于选项D,当b=0时,f(x)的极大值为f(-2)=16,极小值为f(2)=-16,故直线y=10与函数f(x)的图象有三个公共点,选项D错误.故选C.3.设函数f (x )=x e x +1,则( D )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点解析:由题意得,f ′(x )=(x +1)e x ,令f ′(x )=0,得x =-1,当x ∈(-∞,-1)时,f ′(x )<0,当x ∈(-1,+∞)时,f ′(x )>0,则f (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,所以x =-1为f (x )的极小值点,故选D.4.函数f (x )=12x 2-ln x 的最小值为( A )A.12B .1C .0D .不存在解析:∵f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得最小值,且f (1)=12-ln1=12.5.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f (ln 1x )<2f (1)的解集为( D )A .(e ,+∞)B .(0,e)C .(0,1e )∪(1,e)D .(1e ,e) 解析:f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以f (ln 1x )=f (-ln x )=f (ln x ),所以f (ln x )+f (ln 1x )<2f (1)可变形为f (ln x )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于-1<ln x <1,所以1e <x <e.故选D.6.(2019·昆明市模拟)已知函数f (x )=ax 2+bx +c ln x (a >0)在x =1和x =2处取得极值,且极大值为-52,则函数f (x )在区间(0,4]上的最大值为( D )A .0B .-52C .2ln2-4D .4ln2-4解析:f ′(x )=2ax +b +c x =2ax 2+bx +c x(x >0,a >0).因为函数f (x )在x =1和x =2处取得极值,所以f ′(1)=2a +b +c =0 ①,f ′(2)=4a +b +c 2=0 ②.又a >0,所以当0<x <1或x >2时,f ′(x )>0,f (x )是增函数;当1<x <2时,f ′(x )<0,f (x )是减函数.所以当x =1时,f (x )极大值=f (1)=a +b =-52 ③.联立①②③,解得a =12,b =-3,c =2.f (4)=12×16-3×4+2ln4=4ln2-4,经比较函数f (x )在区间(0,4]上的最大值是f (4)=4ln2-4.故选D.7.(2019·成都市第二次诊断)已知直线l 既是曲线C 1:y =e x 的切线,又是曲线C 2:y =14e 2x 2的切线,则直线l 在x 轴上的截距为( B )A .2B .1C .e 2D .-e 2 解析:设直线l 与曲线C 1:y =e x 的切点为A (x 1,e x 1),与曲线C 2:y =14e 2x2的切点为B (x 2,14e 2x 22).由y =e x ,得y ′=e x ,所以曲线C 1在点A 处的切线方程为y -e x 1=e x 1(x -x 1),即y =e x 1x -e x 1(x 1-1) ①.由y =14e 2x 2,得y ′=12e 2x ,所以曲线C 2在点B 处的切线方程为y -14e 2x 22=12e 2x 2(x -x 2),即y =12e 2x 2x -14e 2x 22 ②.因为①②表示的切线为同一直线,所以⎩⎪⎨⎪⎧ e x 1=12e 2x 2,e x 1(x 1-1)=14e 2x 22,解得⎩⎪⎨⎪⎧x 1=2,x 2=2,所以直线l 的方程为y =e 2x -e 2,令y =0,可得直线l 在x 上的截距为1,故选B.二、填空题8.(2019·新课标全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为y =3x .解析:因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .9.已知奇函数f (x )=⎩⎨⎧e x x -1(x >0),h (x ) (x <0),则函数h (x )的最大值为1-e.解析:当x >0时,f (x )=e x x -1,f ′(x )=e x (x -1)x 2,∴当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x >1时,f ′(x )>0,函数f (x )单调递增.∴x =1时,f (x )取到极小值e -1,即f (x )的最小值e -1.又f (x )为奇函数,且x <0时,f (x )=h (x ),∴h (x )的最大值为-(e -1)=1-e.10.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围是(-1,+∞).解析:f (x )的定义域为(0,+∞),f ′(x )=1x -ax -b ,由f ′(1)=0,得b =1-a .∴f ′(x )=1x -ax +a -1=-ax 2+1+ax -x x=-(ax +1)(x -1)x. ①若a ≥0,当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减;所以x =1是f (x )的极大值点.②若a <0,由f ′(x )=0,得x =1或x =-1a .因为x =1是f (x )的极大值点,所以-1a >1,解得-1<a <0.综合①②得a 的取值范围是(-1,+∞).三、解答题11.设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若d =3,求f (x )的极值.解:(1)由已知,得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0.(2)由已知得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3)=(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3,或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的极大值为f(t2-3)=(-3)3-9×(-3)=63;函数f(x)的极小值为f(t2+3)=(3)3-9×3=-6 3.12.(2019·合肥市一模)已知函数f(x)=e x-ln(x+1)(e为自然对数的底数).(1)求函数f(x)的单调区间;(2)若g(x)=f(x)-ax,a∈R,试求函数g(x)极小值的最大值.解:(1)易知x>-1,且f′(x)=e x-1x+1.令h(x)=e x-1x+1,则h′(x)=ex+1(x+1)2>0,∴函数h(x)=e x-1x+1在(-1,+∞)上单调递增,且h(0)=f′(0)=0.可知,当x∈(-1,0)时,h(x)=f′(x)<0,f(x)=e x-ln(x+1)单调递减;当x∈(0,+∞)时,h(x)=f′(x)>0,f(x)=e x-ln(x+1)单调递增.∴函数f(x)的单调递减区间是(-1,0),单调递增区间是(0,+∞).(2)∵g(x)=f(x)-ax=e x-ln(x+1)-ax,∴g′(x)=f′(x)-a.由(1)知,g′(x)在(-1,+∞)上单调递增,当x→-1时,g′(x)→-∞;当x→+∞时,g′(x)→+∞,则g′(x)=0有唯一解,记为x0.可知,当x∈(-1,x0)时,g′(x)<0,g(x)=e x-ln(x+1)-ax单调递减;当x∈(x0,+∞)时,g′(x)>0,g(x)=e x-ln(x+1)-ax单调递增.∴函数g(x)在x=x0处取得极小值,即g(x0)=e x0-ln(x0+1)-ax0,且x0满足e x0-1x0+1=a.∴g(x0)=(1-x0)ex0-ln(x0+1)+1-1x0+1.令φ(x)=(1-x)e x-ln(x+1)+1-1x+1,则φ′(x)=-x[e x+1(x+1)2].可知,当x∈(-1,0)时,φ′(x)>0,φ(x)单调递增;当x∈(0,+∞)时,φ′(x)<0,φ(x)单调递减,∴φ(x)max=φ(0)=1.∴函数g(x)极小值的最大值为1.13.(2019·长春市质量监测)已知曲线y=x-x2在点P(x0,x0-x20)(0≤x0≤1)处的切线为l,则下列各点中,不可能在直线l上的是(D)A.(-1,-1) B.(-2,0)C.(4,1) D.(1,-2)解析:解法1:在点P(x0,x0-x20)处的切线的斜率为y′| x=x=1-2x0,当x0=0时,x0-x20=0,y′| x=x=1,切线l的方程为y=x.当x0=1时,x0-x20=0,y′| x=x=-1,切线l的方程为y=-x+1.因为x 0∈[0,1],所以y ′|x =x 0∈[-1,1],所以切线l 扫过的区域如图中阴影部分所示,则不可能在直线l 上的点是(1,-2).故选D.解法2:画出切线l 的四种情况(包含在点(0,0)和点(1,0)处的两条切线),如图所示,则很容易看出不可能在直线l 上的点为(1,-2).故选D.14.(2019·浙江卷)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是43.解析:f (t +2)-f (t )=[a (t +2)3-(t +2)]-(at 3-t )=2a (3t 2+6t +4)-2,因为存在t ∈R ,使得|f (t +2)-f (t )|≤23,所以-23≤2a (3t 2+6t +4)-2≤23有解.因为3t 2+6t +4≥1,所以23(3t 2+6t +4)≤a ≤43(3t 2+6t +4)有解,所以a ≤[43(3t 2+6t +4)]max=43,所以a 的最大值为43.15.(2019·新课标全国卷Ⅱ)已知函数f (x )=ln x -x +1x -1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.解:(1)f (x )的定义域为(0,1)∪(1,+∞).因为f ′(x )=1x +2(x -1)2>0, 所以f (x )在(0,1),(1,+∞)单调递增.因为f (e)=1-e +1e -1<0,f (e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又0<1x 1<1,f (1x 1)=-ln x 1+x 1+1x 1-1=-f (x 1)=0,故f (x )在(0,1)有唯一零点1x 1. 综上,f (x )有且仅有两个零点.(2)因为1x 0=e -ln x 0 ,故点B (-ln x 0,1x 0)在曲线y =e x 上. 由题设知f (x 0)=0,即ln x 0=x 0+1x 0-1,连接AB ,则直线AB 的斜率k =1x 0-ln x 0-ln x 0-x 0=1x 0-x 0+1x 0-1-x 0+1x 0-1-x 0=1x 0. 曲线y =e x在点B (-ln x 0,1x 0)处切线的斜率是1x 0,曲线y =ln x 在点A (x 0,ln x 0)处切线的斜率也是1x 0,所以曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.。