聚氨酯胶粘剂的性能检测

合集下载

双酚A型单组分聚氨酯胶粘剂的制备与性能研究

双酚A型单组分聚氨酯胶粘剂的制备与性能研究

双酚A型单组分聚氨酯胶粘剂的制备与性能研究以双酚A(BPA)为扩链剂,采用一步法合成工艺,制备了性能优良的单组分聚氨酯(PU)胶粘剂。

实验结果表明,随BPA与聚醚2000(N-220)物质的量比的增加,拉伸强度和T剥离强度均显著增加,断裂伸长率呈下降趋势;物质的量比为6:5的PU胶粘剂较3:5的PU胶粘剂初始分解温度高9℃,加热到400℃时,失重率降低6.83%;热氧老化后,拉伸强度、断裂伸长率及邵A硬度的保持率均呈下降趋势。

标签:聚氨酯;双酚A;耐热性能;热氧老化PU是多功能高分子聚合物,具有高弹性、良好的挠曲性以及耐磨、耐候、耐溶剂等优良性能,因而在生产实践中得到广泛的应用。

单组分PU胶粘剂使用方便,种类繁多,应用较为广泛,因此发展较快。

但是,单组分PU胶粘剂同时也存在耐热性、耐水性较差及力学性能不佳等缺点,因此通过改性来拓宽其应用领域已经成为重要手段之一[1~4]。

其中,通过改变分子链结构,在分子链中引入苯环、形成梯形聚合物或螺旋型聚合物都可以大幅提高聚合物的耐热及力学性能[5]。

BPA具有价廉易得,使用方便等诸多优点。

BPA型环氧树脂改性PU胶粘剂主要是利用环氧树脂中刚性苯环以及环氧基团开环固化后形成三维网状结构的特点,来提高PU胶粘剂的各项性能[6,7]。

但是环氧树脂价格比BPA高,并且部分改性后还需另外添加环氧树脂固化剂来固化改性后的PU胶粘剂,使用工艺较为繁琐。

因此,直接将BPA引入PU胶粘剂的分子链段,简化生产及固化工艺的同时又提高PU胶粘剂的综合性能,这对单组分PU胶粘剂的生产及应用具有重要意义。

本实验采用一步法合成工艺,将BPA引入PU胶粘剂的分子链中,成功合成了无溶剂的PU胶粘剂,性能较好。

1 实验部分1.1 实验原料N-220,工业级,美国陶氏;甲苯二异氰酸酯(TDI-80/20),工业级,德国拜耳;1,4-丁二醇(BDO),分析纯,国药集团化学试剂有限公司;BPA,分析纯,阿拉丁;一缩二乙二醇(DEG),分析纯,湖北大学化工厂;三羟甲基丙烷(TMP),分析纯,阿拉丁;TiO2,分析纯,天津市福晨化学试剂厂;二月桂酸二丁基锡(DBTDL),分析纯,国药集团化学试剂有限公司;邻苯二甲酸二辛酯(DOP),分析纯,阿拉丁;1 mm厚PU皮革,自购。

动力电池用双组份聚氨酯结构胶粘剂 团体标准

动力电池用双组份聚氨酯结构胶粘剂 团体标准

一、概述动力电池作为新能源汽车的关键部件之一,其安全性和稳定性备受关注。

作为动力电池组件的重要连接材料,胶粘剂的选择和使用对电池组件的性能和安全具有重要影响。

本文旨在提出动力电池用双组份聚氨酯结构胶粘剂的团体标准,以保障动力电池的安全性和性能。

二、动力电池用双组份聚氨酯结构胶粘剂的特性1. 双组份聚氨酯结构胶粘剂是由异氰酸酯和多元醇等原料通过化学反应制备而成的胶粘剂,具有优异的粘接性能和耐化学品性能;2. 在动力电池组件中,双组份聚氨酯结构胶粘剂能够有效粘接锂电池单体、电池模组和电池包等组件,保障电池组件的结构完整性和安全性;3. 此类胶粘剂具有较好的耐高温性能和耐低温性能,能够满足动力电池在不同工况下的使用要求。

三、动力电池用双组份聚氨酯结构胶粘剂的团体标准1. 原材料要求:对双组份聚氨酯结构胶粘剂的原材料进行要求,包括对异氰酸酯、多元醇和其他添加剂的质量要求和限制;2. 制备工艺要求:对双组份聚氨酯结构胶粘剂的制备工艺进行要求,包括反应温度、反应时间、搅拌速度等方面的标准;3. 质量控制要求:对双组份聚氨酯结构胶粘剂的质量控制进行要求,包括产品的外观要求、粘度要求、固化时间要求等;4. 使用要求:对双组份聚氨酯结构胶粘剂在动力电池组件中的使用要求,包括粘接强度要求、耐高温性能要求、耐低温性能要求等;5. 检测方法:对双组份聚氨酯结构胶粘剂的检测方法进行要求,包括粘接强度测试方法、耐高温测试方法、耐低温测试方法等。

四、动力电池用双组份聚氨酯结构胶粘剂团体标准的意义1. 保障动力电池的安全性:通过制定团体标准,可以规范双组份聚氨酯结构胶粘剂的生产和使用,减少因原材料和工艺不合格而导致的电池组件失效和安全隐患;2. 促进行业发展:团体标准的制定将促进双组份聚氨酯结构胶粘剂行业的规范化发展,推动相关技术的进步和市场的健康发展;3. 提高动力电池的性能稳定性:团体标准将对双组份聚氨酯结构胶粘剂的质量进行严格控制,有助于提高动力电池的使用寿命和性能稳定性。

聚氨酯胶粘剂标准

聚氨酯胶粘剂标准

聚氨酯胶粘剂的标准因国家和应用领域而异,以下是一些常见的标准:
1. GB/T 29284-2012《水性聚氨酯胶粘剂》:该标准规定了水性聚氨酯胶粘剂的分类、要求、试验方法、包装、存储和运输等内容。

2. GB/T 33335-2016《鞋类鞋类和鞋类部件鞋底和鞋跟用胶粘剂》:该标准规定了鞋类和鞋类部件用胶粘剂的要求、试验方法、检验规则、标志、包装、运输和贮存等。

3. ASTM D4285-2014《聚氨酯胶粘剂标准规范》:该标准规定了聚氨酯胶粘剂的分类、要求、试验方法、性能指标等。

4. ISO 3798-2004《鞋类-外底和内底之间用粘合剂》:该标准规定了鞋类外底和内底之间用聚氨酯胶粘剂的要求、试验方法、性能指标等。

以上标准仅供参考,如有需要,建议查阅相关领域的国家标准或行业标准。

mdi基水性聚氨酯胶粘剂的合成与性能研究

mdi基水性聚氨酯胶粘剂的合成与性能研究

mdi基水性聚氨酯胶粘剂的合成与性能研究1概述mdi基水性聚氨酯胶粘剂(polyurethane adhesive)是一种穿透性胶粘剂,可以同时实现强度和附着力,是目前工业制造过程中广泛使用的胶粘剂之一。

一般来说,mdi基水性聚氨酯胶粘剂具有优异的机械强度、耐热强度、耐非常冷和高温环境耐久性,广泛应用于家具制造、汽车制造、家电机械以及建筑行业。

2合成过程MDI基水性聚氨酯胶粘剂的研制过程大致可分为以下几个步骤:(1)合成MDI基原料:用特殊的化学原料(如挥发性溶剂,四氯化碳,甲苯)经过精确控制合成反应,以生成MDI(氨基甲酰二苯甲醚)及其他MA(甲氨基苯甲酰二酸)等组份。

(2)合成溶剂:将MDI和MA混合,加入水或醇为溶剂制成合成水性溶液;(3)引入增强剂:注入胶粘剂合成溶液中的增强剂(如矿物油、溶剂油、界面活性剂等)可使该水性聚氨酯胶粘剂的机械之强度和粘接性能更为优异;(4)合成聚氨酯。

将上述各原料混合,加入所需的各种增强剂,利用连乳剂工艺或者聚氨酯柔性膜工艺,进行低温反应或高温反应,以生成具有高强度、高粘接力、耐环境及机械性能的富弹性水性聚氨酯胶粘剂。

3性能特点MDI基水性聚氨酯胶粘剂具有良好的粘接性能,能有效满足特定的粘接任务。

它具有良好的机械强度,耐冷热,抗紫外线等特性,能够提供更稳定的结构支撑,增强制造件整体的可靠性。

它还具有优异的耐热能力和附着力,有效提高了制件性能,确保了粘接件获得良好的湿稳定性。

此外,它不仅具有良好的抗化学腐蚀性能,而且还能有效降低上衣层渗透性,从而改善了产品的耐久性。

4结论MDI基水性聚氨酯胶粘剂具有优异的机械强度、耐热强度、耐非常冷和高温环境耐久性,对建筑行业,家具制造行业,汽车制造行业,家电机械行业等有很大的助力和作用。

同时,它还具有良好的抗化学腐蚀性能,抗紫外线能力,改善表面渗透性,能够持久耐久,更安全,满足现代行业多种需求。

水性聚氨酯检测标准

水性聚氨酯检测标准

水性聚氨酯检测标准水性聚氨酯(PU)是一种广泛应用于涂料、胶粘剂、弹性体和密封材料等领域的重要材料。

随着环保意识的提高,水性PU在市场上的应用越来越广泛。

然而,由于水性PU的特殊性质,其检测标准也显得尤为重要。

本文将针对水性PU的检测标准进行详细介绍,以期为相关行业提供参考。

首先,水性PU的检测标准主要包括以下几个方面:1. 物理性能测试,包括涂层的硬度、耐磨性、拉伸强度、弹性模量等物理性能的测试。

这些测试可以通过一系列标准化的测试方法来进行,例如GB/T、ISO、ASTM等国际标准。

2. 化学成分测试,包括涂层中各种成分的含量、分子结构、化学稳定性等方面的测试。

这些测试需要借助于化学分析仪器,如质谱仪、红外光谱仪等,以确保水性PU产品的化学成分符合相关标准要求。

3. 环境适应性测试,包括水性PU在不同环境条件下的性能表现,如耐候性、耐腐蚀性、耐化学品性等方面的测试。

这些测试可以通过模拟实际使用环境的试验来进行,以评估水性PU在实际使用中的性能表现。

4. 生产工艺控制,包括水性PU生产过程中各个环节的控制要求,如原料质量控制、生产工艺参数控制、产品质量检验等方面的要求。

这些要求可以通过建立标准化的生产工艺流程和质量控制体系来实现。

总的来说,水性PU的检测标准是保证产品质量和性能稳定的重要手段。

只有严格遵循相关标准要求,并通过专业的检测手段进行验证,才能确保水性PU产品在市场上的竞争力和可靠性。

在实际生产中,企业应该重视水性PU检测标准的执行,建立完善的质量管理体系,加强对生产工艺和产品质量的控制,提高产品的稳定性和可靠性。

同时,还应加强与检测机构和研究机构的合作,不断优化产品检测方法和技术,提高产品的检测水平和技术含量。

总之,水性PU的检测标准是保证产品质量和性能稳定的重要保障。

只有严格遵循相关标准要求,并通过专业的检测手段进行验证,才能确保水性PU产品在市场上的竞争力和可靠性。

希望本文能对相关行业有所帮助,谢谢阅读。

MDI基水性聚氨酯胶粘剂的合成与性能研究

MDI基水性聚氨酯胶粘剂的合成与性能研究
a ay e n h r c er e Th fe t fc a n x e d r . r s l kn g n n y r p i h i —e t n e n n lz d a d c a a t i d z e e f c s o h i -e t n e s c o s i i g a e ta d h d o h l c a n x e d ro n i c

水性 聚 氨 酯是 以水 为分 散介 质 的二元 胶 体 体 系 ,
与溶 剂 型 聚氨 酯 相 比, 有无 毒 、 易燃 烧 、 具 不 不污 染 环
水性 聚 氨 酯( U, 对其 性 能进 行 研究 . WP ) 并
境 等优 点. 随着环 境 法 规 的完 善 和人 们 环 保意 识 的增 强, 来 , 近年 水性 聚氨 酯发 展 迅速 ._44一 苯基 甲烷 12 , 二 l】 二 异 氰 酸酯 ( I 性 小 、 学 性 能 优异 , 溶 剂 型 聚 MD) 毒 力 在 氨 酯产 品中 已得 到 了广 泛 的应 用 l 在水 性 聚 氨酯 , 但 中 的应 用 较 少 . 文 以 MD 、 酯 二元 醇 、 羟 甲基 丙 本 I聚 二 酸(MP )三羟 甲基丙 烷 (MP等 为 主 要 原料 合 成 了 D A、 T )
水性聚氨 酯( u : 一 N 0/( H = .nT P n聚酯)O1 (MP ) I %, wP ) ( c ) 一0 )3 , M ) ( n 九 5 ( / = ., D A = . 并对其 乳液和 胶膜进 行分析与 表征, 论 了扩链 剂 、 w 8 讨 交 联 剂和亲水扩链剂对胶膜 的影响, 研究表明, 的水 性聚氨酯结晶度高 、 合成 强度高 、 耐水性好 、 粘接强度大.
a dhe i ba e s ve s d Oi 彻 l I

NMP 对水性聚氨酯胶粘剂性能的影响

NMP 对水性聚氨酯胶粘剂性能的影响

NMP 对水性聚氨酯胶粘剂性能的影响WPU 外观稳定性黏度/mPa.s吸水率/%剥离强度/(N/25cm)(A)未加NMP(B)以加NMP乳白色蛋黄半透明6个月后分层6个月不分层67478110.39.475101DMPA为固体粉末状,在非水溶剂中的溶解度很小,微溶于乙酸乙酯。

若采用直接加入法,易造成与反应物的混溶性不好、制得的品性能不稳定,所以本实验采用溶液加入法,即将DMPA溶于NMP。

NMP由于具有微溶于水、挥发度低、沸点高、热稳定性及化学稳定性均佳等特点,在水性聚氨酯乳液的合成过程中适量加入NMP,不仅可以使二羟甲基丙酸溶解使其在均相体系中进行反应,而且NMP沸点较高,脱除乙酸乙酯后大部分仍能残留于聚氨酯乳液中。

由于乳液中残留有NMP,在乳液干燥阶段可以改善流延有利于成膜。

为了考察NMP 对乳液性能的影响,作者根据P3(表1)的配料采用以下途径加料:(A)未加NMP,(B)已加NMP(即样品P3),合成了两种水性聚氨酯胶粘剂并比较其性能。

实验发现,与未加NMP合成的乳液相比,已加入NMP合成的聚氨酯乳液的黏度有所增大,胶膜的吸水率降低,胶膜的剥离强度提高(见表2.2),测试结果与项尚林等[12]报道的一致。

另外, NMP 类似表面活性剂,更多的排列分布在颗粒表面,这种排列在一定程度上提高了乳液的稳定性。

表2. 水性聚氨酯胶粘剂组分及配方样品编号[PD]PEG组分DMPA(摩尔数)BDOTELATEADMPA/(mg/kg)硬段含量%P1 P2P3 P4 P50.105 0.040.0200.0250.0300.0350.0400.0400.0350.0300.010.0250.0200.0160.0200.0240.0280.0323.84.85.76.77.642.542.742.943.143.31)样品的固含量pH分别为40~60mg/kg,7~9;2)中和度为80%即以-COOH(mol)含量的80%计3.2 结论采用PEG-1000、IPDI、BDO和DMPA等为主要原料,通过优化实验条件,确定了最佳的合成工艺,研究了影响乳液性能的因素,主要得出以下结论(数据来源:五泰信息咨询 市场调研报告)(市场调研报告)(数据来源: ):(1)预聚反应体系中要严格控制水分质量分数0.5%以下;预聚反应温度为60~75℃,反应时间为4~5h;催化剂质量分数在0.1%~1.0%之间为宜。

MDI基水性聚氨酯胶粘剂的合成与性能研究

MDI基水性聚氨酯胶粘剂的合成与性能研究

刘都宝1,纪学顺1,张文荣1,许戈文1,2(1.安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,安徽合肥230039;2.安徽安大华泰新材料有限公司,安徽合肥230088)摘要:以4,4′-二苯基甲烷二异氰酸酯(MDI)、聚酯二元醇、二羟甲基丙酸(DMPA)、三羟甲基丙烷(TMP)等为主要原料合成了水性聚氨酯(WPU):n(—NCO)/n(—OH)=3.5,n(TMP)/n(聚酯)=0.1,w(DMPA)=1.8%,并对其乳液和胶膜进行分析与表征,讨论了扩链剂、交联剂和亲水扩链剂对胶膜的影响,研究表明,合成的水性聚氨酯结晶度高、强度高、耐水性好、粘接强度大.关键词:MDI;水性聚氨酯;胶粘剂;性能中图分类号:TQ433.4+32文献标识码:A文章编号:1004-0439(2008)10-0025-03MDI基水性聚氨酯胶粘剂的合成与性能研究SynthesisandpropertiesofwaterbornepolyurethaneadhesivebasedonMDILIUDu-bao1,JIXue-shun1,ZHANGWen-rong1,XUGe-wen1,2(1.SchoolofChemistryandChemicalEngineering,TheKeyLaboratoryofEnvironment-FriendlyPolymerMaterialsofAnhuiProvince,AnhuiUniversity,Hefei230039,China;2.AnhuiAndaHuataiNewMaterialsCo.,Ltd.,Hefei230088,China)Abstract:Waterbornepolyurethane(WPU)wassynthesizedusing4,4′-diphenyl-methane-diisocyanate(MDI),polyesterglycol,dimethylolpropionicacid(DMPA)andtrimethylolpropane(TMP)asmainrawmaterials,n(—NCO)/n(—OH)=3.5,n(TMP)/n(polyester)=0.1,w(DMPA)=1.8%.Theemulsionandgluefilmaqueouspolyurethanewasanalyzedandcharacterized.Theeffectsofchain-extenders,crosslinkingagentandhydrophilicchain-extenderonwaterbornepolyurethanefilmwerediscussed.Theresultsshowedthatthewaterbornepolyurethanehadhighcrystallinity,highstrength,goodwaterresistanceandhighadhesivestrength.Keywords:MDI;waterbornepolyurethane;adhesive;properties收稿日期:2008-01-14作者简介:刘都宝(1983-),男,安徽泗县人,安徽大学化学化工学院研究生,研究方向:水基高分子材料.水性聚氨酯是以水为分散介质的二元胶体体系,与溶剂型聚氨酯相比,具有无毒、不易燃烧、不污染环境等优点.随着环境法规的完善和人们环保意识的增强,近年来,水性聚氨酯发展迅速.[1-2]4,4′-二苯基甲烷二异氰酸酯(MDI)毒性小、力学性能优异,在溶剂型聚氨酯产品中已得到了广泛的应用[3-4],但在水性聚氨酯中的应用较少.本文以MDI、聚酯二元醇、二羟甲基丙酸(DMPA)、三羟甲基丙烷(TMP)等为主要原料合成了水性聚氨酯(WPU),并对其性能进行研究.1实验1.1原料与仪器4,4′-二苯基甲烷二异氰酸酯(MDI),固态,工业级,进口分装;聚酯二元醇(聚酯,羟值=112),烟台万华,工业级;亲水扩链剂二羟甲基丙酸(DMPA),工业级,广州市汇采涂料化学品有限公司;丙酮(Ac),上海东懿化学印染助剂TEXTILEAUXILIARIESVol.25No.10Oct.2008第25卷第10期2008年10月印染助剂25卷试剂公司;扩链剂一缩二乙二醇(DEG),分析纯,上海化工三厂;扩链剂乙二胺(EDA),化学纯,上海信合化工有限公司;交联剂三羟甲基丙烷(TMP)、扩链剂乙二醇(EG),化学纯,天津市博迪化工有限公司;催化剂二丁基锡二月桂酸酯(化学纯)、三乙胺(TEA),中国医药集团上海化学试剂公司.仪器:KDC-16H型高速离心机,邵尔A橡塑硬度计,XLW-智能电子拉力实验机(济南兰光),Nexus-870型FT-IR全反射红外光谱仪(美国Nicolet仪器公司),NDJ-T型旋转式粘度计.1.2水性聚氨酯树脂的合成(1)原料预处理:聚酯二元醇在120℃真空干燥箱中脱水4h;DMPA、TMP、TEA、Ac使用前用4A分子筛浸泡2星期.(2)合成工艺:在干燥氮气的保护下,将真空脱水后的聚酯、MDI按计量加入三口烧瓶中,混合均匀后升温至85℃左右反应1h,再加入适量DMPA并加几滴催化剂,85℃左右反应1h,最后加入扩链剂DEG、交联剂TMP和少量Ac,60℃反应至—NCO含量不再变化,降温至45℃出料.将预聚体用TEA中和后加水,进行高速乳化,得白色乳液,减压蒸馏脱去溶剂,即得产品.1.3水性聚氨酯性能测定乳液稳定性:采用高速离心机(3000r/min离心处理20min)测试;成膜硬度:用橡塑硬度计进行测试.膜厚度应大于6mm,并在按下1s时读数;软化点:水性聚氨酯胶粘剂在玻璃板上流平成膜,干燥后取下胶膜.将胶膜和其他基材进行热压,能够粘接其他基材所需的最低加热温度即为软化点;耐水性:已热压复合的PVC样条放在水中浸泡24h后测定其剥离强度,剥离强度大幅度下降为耐水性差,无变化为耐水性好;固体质量分数采用质量法测定;剥离强度:在PVC膜上均匀涂布1层水性聚氨酯胶粘剂,涂布量为10 ̄15g/m2,充分干燥后得到带胶膜.带胶膜和PVC膜再进行热压复合,测定2层PVC膜之间的T型剥离强度;红外光谱:采用全反射红外光谱仪测试;拉伸强度:将膜制成长40mm、宽3mm哑铃状,在电子拉力实验机上测试强度,拉伸速度为150mm/min;粘度:采用旋转式粘度计按GB/T2794-1995测定.2结果与讨论2.1胶膜红外光谱图由图1可见,3301cm-1为N—H伸缩振动吸收峰,N—H的游离态吸收峰在3449cm-1左右,氢键化在3295cm-1附近,说明胶膜的N—H键已完全氢键化.2972cm-1、2927cm-1、2871cm-1分别为CH3、CH2、CH的伸缩振动吸收峰,1730cm-1为酯羰基吸收峰.硬段上的羰基,游离态吸收峰在1732cm-1左右,有序化氢键的吸收峰在1701 ̄1703cm-1左右.因此,胶膜中有部分CO氢键化.1598cm-1、1535cm-1、1452cm-1为苯环特征吸收峰,1226cm-1为C—N伸缩振动吸收峰,1100cm-1为C—O—C吸收峰,表明聚合反应形成了水性聚氨酯结构.[5]2.2影响胶粘剂性能的因素2.2.1n(—NCO)/n(—OH)由表1可看出,随着n(—NCO)/n(—OH)的增大,胶膜的拉伸强度增大,胶膜变硬,耐水性好.原因是随着n(—NCO)/n(—OH)的增大,分子链中刚性基团(如氨基甲酸酯、苯环)含量增多,而柔性链段(如脂肪链、酯键等)含量降低.粘接试验时发现,剥离强度随着n(—NCO)/n(—OH)的增大而增大,原因是分子链中极性基团的增加使胶粘剂与基材之间的氢键增加,粘接强度更大.选择n(—NCO)/n(—OH)=3.5.2.2.2交联剂由表2可见,随着TMP用量的增加,胶膜硬度、拉伸强度增加,耐水性提高.原因是TMP比例增加,硬段比例增大,极性基团增多,胶膜表现出来的性能是拉—表1n(—NCO)/n(—OH)对水性聚氨酯性能的影响n(—NCO)/n(—OH)乳液外观2.0乳白2.5半透明偏白3.0半透明3.5半透明有蓝光4.0半透明有蓝光耐水性差一般较好好好邵A硬度2835415258拉伸强度/MPa12.516.221.224.430.1剥离强度/(N・cm-1)5.26.77.58.29.1注:胶粘剂的固体质量分数为40%.2610期伸强度增大,胶膜变硬,耐水性变好.粘接试验时发现,随着TMP用量的增加,水性聚氨酯胶粘剂的粘接性能明显提高.原因是交联剂与水性聚氨酯乳液发生了交联反应,使水性聚氨酯胶粘剂的分子质量明显增加,体系的内聚力和界面作用力增加,剥离强度明显增加.选择n(TMP)/n(聚酯)=0.10.2.2.3扩链剂由表3可见,一缩二乙二醇胶膜的软化点最低,结晶速率中等,成膜时间较长(成膜速度较慢).原因是一缩二乙二醇含有1个可以自由旋转的醚键,胶膜结晶度相应降低,但极性醚键又相应增加了其粘接强度;乙二胺合成的WPU乳液,硬段及脲键含量增加,硬段氢键程度提高,硬段微区形成更高程度的氢键网络,其结构更规整,但其合成的整个分子链中存在氨基甲酸酯和脲键,所以其结晶性较一缩二乙二缩差,成膜速度较乙二醇差;乙二醇胶膜与一缩二乙二醇胶膜相比,软化点高、剥离强度大.以软化点和剥离强度为主要考察因素,本文选择一缩二乙二醇作为扩链剂.2.2.4亲水扩链剂DMPA用量由表4可以看出,在w(DMPA)=1.2% ̄2.1%时,随着DMPA用量的增大,乳液逐渐由乳白变成半透明,乳液稳定性及剥离强度增加,但粘度也相应增加,耐水性下降.原因是DMPA用量增加,使羧基含量增加,双电层厚度增加,粒子之间相互排斥增大,所以,乳液稳定.同时,羧基含量增加时,极性基团增多,羧基侧基主链中供氢基团的氢键作用也增加,内聚力和粘接力增强.当w(DMPA)=2.4%时,羧基含量过多,双电层厚度增加,使粒子缔合作用明显,乳液变稠,硬段含量过高,分子链运动困难,不利于粘接强度的提高.[6]因此,选取w(DMPA)=1.8%为宜.3结论(1)n(—NCO)/n(—OH)=3.5时,合成的水性聚氨酯乳液外观好,胶膜的力学性能优良,耐水性佳,且剥离强度大.(2)随着TMP用量的增加,胶膜硬度、拉伸强度增加,耐水性提高,粘接性能明显提高,选择n(TMP)/n(聚酯)=0.10.(3)综合考虑结晶速率、结晶性、软化点和粘接性能,选择DEG作为扩链剂,其合成的胶粘剂软化点低,粘接强度大,结晶速率中等、结晶性相对较好.(4)随着DMPA用量的增大,乳液外观好,稳定性相对提高,但DMPA用量过大,会造成乳液变稠,粘度变大,稳定性变差,w(DMPA)=1.8%时较好.参考文献:[1]左海丽,吴晓青,崔璐娟.含有磺酸和羧酸基团的水性聚氨酯的研究[J].中国胶粘剂,2007,16(1):11-15.[2]赵雨花,亢茂青,王心葵.高性能水性聚氨酯胶粘剂[J].化工新型材料,2005,33(9):73-75.[3]刘凉冰,刘红梅,贾林才.PCL/MDI体系聚氨酯弹性体力学性能的研究[J].特种橡胶制品,2007,28(1):10-13.[4]李让.MDI系列品种及其应用[J].聚氨酯工业,1995(4):24-27.[5]鲍俊杰,钟达飞,谢伟,等.内交联水性聚氨酯胶粘剂的研究[J].粘接2006,27(3):1-3.[6]潘亚文,梁嘉君,项尚林,等.合成条件对单组分水性聚氨酯胶粘剂性能的影响[J].包装工程,2007,28(2):10-13.表4DMPA用量对水性聚氨酯胶粘剂性能影响w(DMPA)/%乳液外观1.2乳白2.4半透明乳液稳定性不稳定不稳定表观粘度/mPa・s22131剥离强度/(N・cm-1)6.87.7耐水性好差2.1半透明稳定748.0差1.5乳白不稳定357.3好1.8乳白有蓝光稳定547.9较好注:中和度100%.表2n(TMP)/n(聚酯)对乳液和胶膜性能的影响n(TMP)/n(聚酯)乳液外观0.00半透明蓝光明显0.05半透明有蓝光0.10半透明0.15乳白0.20乳白耐水性一般较好好好好邵A硬度4144475052拉伸强度/MPa18.520.323.124.625.2剥离强度/(N・cm-1)6.87.07.47.77.9注:胶粘剂的固体质量分数为35%.表3不同扩链剂对WPU性能的影响扩链剂软化点/℃乙二醇90 ̄94一缩二乙二醇80 ̄86乙二胺101 ̄105结晶性膜很白膜发白膜微黄很不透明剥离强度/(N・cm-1)7.27.47.8成膜时间/h121613注:25℃成膜,倒入成模板乳液厚度1mm.欢迎投稿、订阅惠登广告刘都宝等:MDI基水性聚氨酯胶粘剂的合成与性能研究27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚氨酯胶粘剂的性能检测
聚氨酯胶粘剂作为一类产品,具有一定的评价标准。

这种评价标准基本分为两类,第一类是对聚氨酯胶粘剂本身的特性的评价,包括它的相对密度、粘度、固含量、挤出特性、下垂度、施工适用期、固化速度以及贮存稳定性等。

第二类是要在聚氨酯胶粘剂实施粘合后,对粘合效果的评价。

另外,不同品种的聚氨酯胶粘剂应用于不同的粘合目的,还有各自特定的评价指标,例如磁粉胶浆粘合剂、鞋用粘合剂、建筑密封粘合剂以及汽车风挡玻璃粘合剂等,它们有共同的评价指标,此外还有根据各自产品的特点制定的特定产品评价标准。

下面,洛阳天江化工新材料有限公司就聚氨酯胶粘剂共同的粘合效果评价和检测这方面对聚氨酯胶粘剂的性能检测做一下简单介绍。

评价聚氨酯胶粘剂的粘合效果,一般要经过两步,即感观性检测和量化性检测。

一、感观性检测
感观性检测通常用是在选择聚氨酯胶粘剂的品种方面,在聚氨酯胶粘剂进行粘合施工前对其粘合强度进行初步评价。

具体的操作步骤为将用聚氨酯胶粘剂粘合好的基材进行剥离等破坏性试验,通过观察粘合层的状况来判断聚氨酯胶粘剂的粘接强度。

破坏的粘合层大致可以分为以下三种情况:
1、若粘合界面被破坏,则说明聚氨酯胶粘剂与被粘物表面处的粘接效果最差,由此可以推断出现这种情况是由于被粘物基材的表面处理不佳所致。

2、若粘合层被破坏,则说明聚氨酯胶粘剂与被粘基体表面的粘合效果良好,由此,可以判断聚氨酯胶粘剂与被粘基体之间有较好的粘接能力。

3、若在对被粘物进行强制分离时被粘物基体遭到破坏,则说明聚氨酯胶粘剂的性能优良,粘合强度大于被粘物基材的撕裂或拉伸强度。

二、量化性检测
对聚氨酯胶粘剂的量化性检测是在统一的受力状态和检测条件下,根据有关粘合效果的检测标准对聚氨酯胶粘剂进行的一类检测,通过量化性检测的实验结果可以十分直观、科学地判断聚氨酯胶粘剂粘合效果的优、良、好、坏,并以量化的方式直观的表现出来。

虽然有关聚氨酯胶粘剂粘合性能检测的标准各有差别,但基本方式分为以下几种:
1、T型粘接强度检测
T型粘接强度的测定方法多用于高强度硬质基材之间粘接强度的测定,具体操作工序为:在规定面积的硬质基材试样表面上涂覆聚氨胶粘剂,并根据粘接工艺条件进行粘接处理,然后将试样置于拉力试验机的专用夹具中,以规定速度沿轴线做匀速拉伸,直至粘合分离。

最后根据拉开分离施加的作用力和粘接面积,计算出聚氨酯胶粘剂的拉伸粘合强度。

2、剪切强度检测
与T型粘接强度检测类似,剪切强度的测定方法也常用于高强度硬质基材之间粘合强度的测定,但两种检测方法的操作步骤有很大差异。

洛阳天江化工的专家告诉我们,剪切强度的具体检测步骤为:首先将片状试件按规定的面积和粘合工艺条件进行粘合后,固定在拉力试验机的专用夹具上做匀速拉伸,使粘合层承受越来越大的剪切外力,直至粘合层分离。

最后根据粘合面积和测定的作用力,计算聚氨酯胶粘剂的剪切粘合强度。

3、剥离强度检测
剥离强度的测定方法主要是针对软质基材或软质基材与硬质基材之间粘合强度的评价。

首先,在规定尺寸标准的硬质基材和软质基材的规定面积中,按粘合工艺条件实施粘合,然后将试样置于拉力试验机上,使其做180°匀速拉伸,直至粘合层分离,最后根据在试件上施加的剥离外力和粘接长度,计算出聚氨酯胶粘剂的剥离强度。

最后,洛阳天江化工新材料有限公司再次提醒,对聚氨酯胶粘剂粘合强度的测定应根据不同基材、粘合用途以及功能选择合适的测定方法,此外,评价聚氨酯胶粘剂粘合效果所采用的方法和标准也不尽相同,应根据实际情况,选择合适的评定方法及标准。

相关文档
最新文档