数据挖掘课程论文
数据挖掘论文

数据挖掘论文数据挖掘是一种通过自动化方法从大量数据中提取有价值的信息和知识的过程。
这些信息和知识能够用于描述、识别和预测数据模式,以便用于决策制定、数据分析和预测等领域。
在现代的信息技术时代,数据挖掘技术已经成为人们对于大数据处理和分析中不可或缺的工具之一。
本篇论文将从以下几个方面开始介绍数据挖掘:1. 数据挖掘的定义和重要性数据挖掘是在处理具有多个属性的数据时提取有用信息的一个过程。
其目标是发现与一定参数相关的特征或规律性,同时也需要避免对噪声的敏感。
数据挖掘的过程包括以下几个方面:•数据清理:删除和修改不相关、重复或不完整的数据。
•数据集成:将多个来源的数据整合到一个数据库中。
•数据转换:将数据从原始格式转换为可处理的格式。
•数据挖掘:使用机器学习算法等工具发现模式和规律。
数据挖掘对于企业和商业来说非常重要,因为数据挖掘可以帮助企业从庞大的数据中发现并利用有价值的信息和知识,这些信息和知识可以用于提高产品和服务质量、提高客户满意度、优化业务流程等方面。
2. 数据挖掘的应用领域数据挖掘广泛应用于以下领域:•金融:在金融领域,数据挖掘技术可以帮助银行发现欺诈行为、评估信用风险、建立预测模型等。
•零售:在零售领域,数据挖掘技术可以帮助商家理解顾客行为、提高产品销量、发现新兴市场等。
•健康:在医疗保健领域,数据挖掘技术可以帮助医师发现疾病早期症状、制定更准确的治疗方案等。
•电信:在电信领域,数据挖掘技术可以帮助运营商优化网络性能、提高客户满意度、预测客户流失率等。
3. 数据挖掘的方法和技术数据挖掘的方法和技术可以分为以下几类:•分类:根据已知变量推测未知变量的值,通常用于分类和预测分析。
•聚类:将数据分组,使得同一组内的数据相似性较大,不同组之间距离较远。
•关联规则挖掘:从数据中发现频繁出现的组合或关联的模式。
•异常检测:通过发现不正常的模式或行为,帮助识别异常或故障现象。
常用的数据挖掘工具包括Python、R、SAS、Weka等。
基于R语言数据挖掘课程期末论文

西安欧亚学院数据挖掘技术与实验课程论文题目全国近20年来人口增长原因分析学生姓名王川学生学号**************所在分院金融学院专业经济统计学班级统本统计13级管理统计方向提交日期二〇一六年6月25日摘要在“二胎政策”全面实施的背景下,我国人口增长形势将继续持续下去。
而影响人口的增长的因素有人口出生率、婚姻登记数量、居民消费水平、参加生育保险人数和医疗发展程度有关。
对这些数据进行相关分析,结果显示这些因素和人口数量的增长可用多元线性回归方程表示,同时可用多因素方差分析,研究这些因素的不同水平是否对人口的增长产生显著影响。
R软件是一种开源的免费数据分析软件,功能强大,是数据分析工作者的首选软件之一。
关键词:R语言;多元线性回归分析;方差分析。
目录引言 (1)1.1 选题的背景和意义 (1)1.2 研究方法与思路 (1)正文 (2)2.1 前言 (2)2.2 数据分析 (2)2.2.1 数据预处理 (2)2.2.2回归分析 (4)2.2.3方差分析 (8)结论 (13)参考文献 (13)引言1.1 选题的背景和意义二孩政策,是中国实行的一种计划生育政策,规定符合条件的夫妇允许生育“二胎”。
因为是二孩政策,故第一胎为多孩时,不可生第二胎。
2011年11月,中国各地全面实施双独二孩政策;2013年12月,中国实施单独二孩政策;2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策。
在经历了迅速从高生育率到低生育率的转变之后,我国人口的主要矛盾已经不再是增长过快,而是人口红利消失、临近超低生育率水平、人口老龄化、出生性别比失调等问题。
国内20多位顶尖人口学者历经两年的研究指出,我国的人口政策亟待转向,尤其是生育政策应该调整。
1.2 研究方法与思路人口增长的原因大体与人口出生率、婚姻登记数量、居民消费水平、参加生育保险人数和医疗发展程度有关。
数据挖掘毕业论文

数据挖掘毕业论文数据挖掘毕业论文随着信息时代的到来,数据的产生和积累呈现出爆炸式增长的趋势。
如何从这些海量数据中提取有价值的信息,成为了当今科学研究和商业应用领域亟待解决的问题。
数据挖掘作为一门交叉学科,旨在通过运用统计学、机器学习、人工智能等技术,从大规模数据集中发现隐藏的模式、规律和知识,以支持决策和预测。
在我的毕业论文中,我选择了数据挖掘作为研究的主题。
我将从以下几个方面展开论述。
首先,我将介绍数据挖掘的基本概念和方法。
数据挖掘包括数据预处理、特征选择、模型构建和模型评估等步骤。
其中,数据预处理是数据挖掘的关键环节,它包括数据清洗、数据集成、数据变换和数据规约等过程。
特征选择是从原始数据中选择最具代表性的特征,以提高模型的准确性和可解释性。
模型构建是指选择合适的算法和模型来进行数据挖掘任务,如分类、聚类、关联规则挖掘等。
模型评估是对构建的模型进行性能评估和优化,以确保模型的有效性和可靠性。
其次,我将介绍数据挖掘在实际应用中的案例研究。
数据挖掘在各个领域都有广泛的应用,如金融、医疗、电商等。
以金融领域为例,数据挖掘可以用于信用评估、风险管理、欺诈检测等方面。
通过对大量的金融数据进行挖掘,可以发现客户的消费习惯、信用记录等信息,从而为银行和金融机构提供更准确的决策支持。
在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面。
通过对患者的病历、症状等数据进行挖掘,可以提高医生的诊断准确性,为患者提供更好的治疗方案。
接着,我将探讨数据挖掘的挑战和未来发展方向。
随着数据量的不断增大和数据类型的多样化,数据挖掘面临着许多挑战,如数据质量不高、算法效率低下等。
为了应对这些挑战,研究者们提出了许多解决方案,如集成多个算法、优化算法效率等。
此外,随着人工智能的快速发展,数据挖掘与机器学习、深度学习等领域的结合将成为未来的发展方向。
通过将数据挖掘与其他技术相结合,可以进一步提高模型的准确性和预测能力。
最后,我将总结我的研究成果和对数据挖掘的思考。
数据挖掘论文(最新范文6篇)

数据挖掘论文(最新范文6篇)数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。
希望你在阅读了以下数据挖掘论文后对这个内容有更深入的了解。
数据挖掘论文一题目:基于数据挖掘的企业营销管理应用实证摘要:随着市场竞争的日益激烈,以及信息化、移动化和智能化时代的来临,越来越多的企业开始注重借助现代数据挖掘技术,提高企业的营销效果,降低营销成本,并提升企业在市场中的竞争力。
从数据挖掘与企业营销管理的关系入手,得出数据挖掘应用给现代企业营销管理带来的优势,然后构建精确营销平台,将其应用到电信业的营销管理中,以期为数据挖掘技术在现代企业营销中的具体应用提供参考。
关键词:数据挖掘;市场细分;竞争优势随着电子商务的不断发展,使得企业通过网络即可与来自全世界的企业进行商务活动。
而企业的大量交易,也给企业积累了很多业务数据,并以此使得企业的数据信息库越来越大。
而在这些数据中,清晰地记录了企业每年的运作及效益情况。
而要想让这些数据为企业未来的战略和决策服务,就需要充分加强对这些数据的规律、暴露出的问题的分析。
因此,数据挖掘技术进入了人们的视野,并成为人们关注的重点。
通过数据挖掘工具,可以对大量的数据进行分析,并提取其中有用的信息,为企业的决策提供参考,进而提升决策的正确率,达到提升竞争力的目的。
一、数据挖掘与企业营销管理的关系在生产销售中,生产者和消费者一般存在着单一的购买销售关系,而企业营销管理就是运用各种方法将上述单一关系转变为多重关系。
这样就在生产者和消费者之间加入营销者这一角色,三种角色之间也就必然会产生多种联系,这些关系往往牵涉众多,十分复杂。
要想处理好这些关系,就需要企业营销管理人员进行分析论证,找出可以联系的关键桥梁,也就是本文所介绍的"数据挖掘";.数据挖掘是企业营销管理中常用的一种方法,也越来越得到人们的认可。
计算机数据挖掘论文

计算机数据挖掘论文计算机数据挖掘论文计算机数据挖掘论文主要阐述了计算机数据挖掘技术的概念、任务、过程、技术方法、应用领域及挑战。
计算机数据挖掘论文【1】摘要社会生产力的发展带来了科技的不断进步,从而带动了空间数据采集技术的发展,人类迫切需要更新数据挖掘的知识和方法来应对日益复杂的数据。
海量的网络数据记录下人们生产和生活的各种信息,怎样对计算机采集的数据信息进行合理分类、科学应用成为一个为我们所关心的问题。
然而由于数据量越来越大,传统的数据挖掘技术的局限性和弊端也慢慢凸显,更为完善的计算机数据挖掘技术硬象而生。
数据挖掘技术是一种科学有效的数据处理方式,它为应对信息爆炸,海量信息的处理提供了科学有效的手段。
计算机数据挖掘技术顺应了时代和社会的发展,也逐渐成为社会关注的焦点。
【关键词】计算机数据挖掘通过人们长期对数据处理技术的研究和开发,计算机数据挖掘技术应用越来越广泛。
计算机数据挖掘技术在是当前计算机科学研究的活跃领域,在我们的社会生产和生活中都发挥着重要的作用。
计算机数据挖掘技术能够从庞大的信息库中发掘出有价值、有意义的信息并发挥它们在现实生活中的作用,具有广泛的应用前景。
只有充分地了解这门技术,才能更好地运用它。
1 计算机数据挖掘技术的概念及对象1.1 计算机数据挖掘技术的概念数据挖掘,就是通过一些方式从大量数据中获得有用或是有潜在利用价值的并应用到现实中的一个过程。
计算机数据挖掘技术是一种热门并且实用性强的科学艺术在我们的社会生活生产中在不同的领域发挥着极其关键的作用。
计算机数据挖掘技术的系统性比较强,面对多样化的信息处理起来也更有技术性。
1.2 计算机数据挖掘技术的对象面对日趋多样化的处理对象,计算机数据挖掘技术可以更迅速准确地处理和提取信息。
运用到企业方面这门技术可以帮助企业巩固经营竞争地位和提高经济效益。
比如金融企业中重要的就是要对进行的投资的风险做出较为准确的评估,从而将风险降到最低。
基于数据挖掘的高校教务系统设计论文(五篇模版)

基于数据挖掘的高校教务系统设计论文(五篇模版)第一篇:基于数据挖掘的高校教务系统设计论文摘要:笔者对现有高校所采用的教务系统进行研究,以联机分析与数据仓库技术为依托来构建决策支持系统。
针对数据仓库构建中采用的逻辑模型及其构建策略等进行深入分析,并对基于四层架构的教学决策支持系统进行了设计,充分展示了决策支持系统在高校教务管理中的应用前景。
关键词:关键词:决策支持系统;数据仓库;多维分析在现有的教学信息化系统中,存储了包括学生的学籍信息、学生的选课数据、各科成绩数据等在内的大量数据,这些数据的条数动辄上百万条,信息和数据量都比较大,同时这些数据中通常能够挖掘出有用的规律信息。
不过,通过对现有应用现状分析可以发现,人们更多的是将各种表单数据进行计算机管理,没有利用计算机的数据挖掘能力对这些数据进行分析,更没有从中找到潜在海量数据中的规律。
教学数据仓库1.1 总体结构在对现有教学管理系统的决策需求进行深入和一线调研的基础上,笔者给出了基于教学数据仓库的决策系统,并对系统中经过结构化的四层教学决策支持系统的总体结构进行了设计。
具体如图1中所示。
图1教学决策支持系统的总体结构图1.1.1 源数据层该层是构建教学系统的最低层,也是实现数据仓库的关键。
在数据仓库中所包含的数据,主要来自于学校现有的与教学相关的各种信息库。
而在这些信息数据库中,存储了学校教学过程中所积累的主要数据,也是学校在制定各项政策和决策中必须参考的主要数据。
这样设计,也更好的说明一个成熟的教学决策系统应该具备广泛的数据来源。
1.1.2 引擎数据的处理层该层的功能主要从现有的教学信息系统中实现数据的抽取,然后对抽取得到的各种数据进行清洗,最后才能够将这些数据都添加到教学数据仓库中。
所以,这就使得数据处理层成为数据仓库构建的关键层。
1.1.3 信息层信息层的作用就是为数据访问层和源数据层提供联通的桥梁,为数据提供特定处理过程,得到经过处理后的不同层次信息。
数据挖掘结课论文_袁博

数据挖掘课程论文题目:数据挖掘中 神经网络方法综述学 号:专 业: 工业工程名:目录一、引言 (3)(一)数据挖掘的定义 (3)(二)神经网络简述 (3)二、神经网络技术基础理论 (3)(一)神经元节点模型 (3)(二)神经网络的拓扑结构 (4)(三)神经网络学习算法 (4)(四)典型神经网络模型 (5)三、基于神经网络的数据挖掘过程 (6)(一)数据准备 (6)(二)规则提取 (7)(三)规则评估 (8)四、总结 (8)一、引言(一)数据挖掘的定义关于数据挖掘的定义不少,其中被广泛接受的定义是:数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声,具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在实用的知识或者模式的过程。
该定义包含了一下几个含义: (1)数据源必须为大量的、真正的并且包含噪声的;(2) 挖掘到的新知识必须为用户需求的、感兴趣的; (3)挖掘到的知识为易理解的、可接受的、有效并且可运用的; (4)挖掘出的知识并不要求合用于所有领域,可以仅支持某个特定的应用发现问题。
[1]这个定义准确的叙述了数据挖掘的作用,即对海量、杂乱无章的数据进行处理和分析,并发现隐藏在这些数据中的实用的知识,为决策提供支持。
(二)神经网络简述神经网络是摹拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身的结构来表达输入和输出的关联知识。
[2]起初,神经网络在数据挖掘中的应用并未被看好,其主要原因是神经网络具有结构复杂、可解释性差、训练时间长等缺陷。
但其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法的陆续提出与优化,特别是各种网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为泛博使用者所青睐。
二、神经网络技术基础理论(一) 神经元节点模型生物神经元,也成神经细胞,是构成神经系统的基本单元。
数据挖掘论文精选5篇论文

数据挖掘论⽂精选5篇论⽂数据挖掘论⽂精选5篇论⽂ 数据挖掘⼀: 题⽬:数据挖掘技术在神经根型颈椎病⽅剂研究中的优势及应⽤进展 关键词:数据挖掘技术; 神经根型颈椎病; ⽅剂; 综述; 1 数据挖掘技术简介 数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是⼀种新兴的信息处理技术, 它融汇了⼈⼯智能、模式别、模糊数学、数据库、数理统计等多种技术⽅法, 专门⽤于海量数据的处理, 从⼤量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、⼈们事先不知道的、但⼜是潜在的有⽤的信息和知识, 其⽬的是发现规律⽽不是验证假设。
数据挖掘技术主要适⽤于庞⼤的数据库的研究, 其特点在于:基于数据分析⽅法⾓度的分类, 其本质属于观察性研究, 数据来源于⽇常诊疗⼯作,应⽤的技术较传统研究更先进, 分析⼯具、理论模型与传统研究区别较⼤。
其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。
其⽅法包括分类、聚类、关联、序列、决策树、贝斯⽹络、因⼦、辨别等分析[3], 其结果通常表⽰为概念、规则、规律、模式、约束、可视化等形式图[4]。
当今数据挖掘技术的⽅向主要在于:特定数据挖掘, ⾼效挖掘算法, 提⾼结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。
因其优势和独特性被运⽤于多个领域中, 且结果运⽤后取得显着成效, 因此越来越多的中医⽅剂研究者将其运⽤于⽅剂中药物的研究。
2 数据挖掘术在神经根型颈椎病治⽅研究中的优势 中医对于神经根型颈椎病的治疗准则为辨证论治, 从古⾄今神经根型颈椎病的中医证型有很多, 其治⽅是集中医之理、法、⽅、药为⼀体的数据集合, 具有以“⽅-药-证”为核⼼的多维结构。
⽅剂配伍本质上表现为⽅与⽅、⽅与药、药与药、药与剂量, 以及⽅药与证、病、症交叉错综的关联与对应[5], ⽽中医⽅剂讲究君⾂佐使的配伍, 药物有升降沉浮, 四⽓五味及归经之别, 对于神经根型颈椎病的治疗, 治⽅中药物的种类、炮制⽅法、⽤量、⽤法等都是千变万化的, ⽽这些海量、模糊、看似随机的药物背后隐藏着对临床有⽤的信息和规律, 但这些⼤数据是⽆法在可承受的时间范围内可⽤常规软件⼯具进⾏捕捉、管理和处理的, 是需要⼀个新处理模式才能具有更强的决策⼒、洞察⼒和流程优化能⼒, ⽽数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭⽰背后隐藏的关系和规则, 并且对未知的情况进⾏预测[6]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南大学数据挖掘论文题目:股票交易日线数据挖掘学号:20100602310002姓名:专业:10信管指导老师:分数:目录目录 (2)1. 数据挖掘目的 (3)2.相关基础知识 (3)2.1 股票基础知识 (3)2.2 数据挖掘基础知识 (4)2.2.2数据挖掘的任务 (5)3.数据挖掘方案 (6)3.1. 数据挖掘软件简介 (6)3.2. 股票数据选择 (7)3.3. 待验证的股票规律 (7)4. 数据挖掘流 (8)4.1数据挖掘流图 (8)4.2规律验证 (9)4.2.2规律2验证 (10)4.2.3规律三验证 (12)4.3主要节点说明 (14)5.小结 (15)1.数据挖掘目的数据挖掘的目的就是得出隐藏在数据中的有价值的信息,发现数据之间的内在联系与规律。
对于本次数据挖掘来说,其目的就是学会用clementine对股票的历史数据进行挖掘,通过数据的分析,找出存在股票历史数据中的规律,或者验证已存在的股票规律。
同时也加深自己对股票知识的了解和对clementine软件的应用能力。
为人们决策提供指导性信息,为公司找出其中的客户为公司带来利润的规律,如二八原则、啤酒与尿布的现象等。
2.相关基础知识2.1 股票基础知识2.1.1 股票是一种有价证券,是股份公司在筹集资本时向出资人公开或私下发行的、用以证明出资人的股本身份和权利,并根据持有人所持有的股份数享有权益和承担义务的凭证。
股票代表着其持有人(股东)对股份公司的所有权,每一股同类型股票所代表的公司所有权是相等的,即“同股同权”。
股票可以公开上市,也可以不上市。
在股票市场上,股票也是投资和投机的对象。
对股票的某些投机炒作行为,例如无货沽空,可以造成金融市场的动荡。
2.1.2 开盘价开盘价又称开市价,是指某种证券在证券交易所每个交易日开市后的第一笔买卖成交价格。
世界上大多数证券交易所都采用成交额最大原则来确定开盘价。
2.1.3 收盘价收盘价是指某种证券在证券交易所一天交易活动结束前最后一笔交易的成交价格。
如当日没有成交,则采用最近一次的成交价格作为收盘价,因为收盘价是当日行情的标准,又是下一个交易日开盘价的依据,可据以预测未来证券市场行情;所以投资者对行情分析时,一般采用收盘价作为计算依据。
.2.1.4 最高价指某种证券在每个交易日从开始到收市的交易过程中所产生的最高价。
2.1.5最低价指某种证券在每个交易日从开始到收市的交易过程中所产生的最低价。
2.1.6成交量成交量是指一个时间单位内对某项交易成交的数量。
一般情况下,成交量大且价格上涨的股票,趋势向好。
成交量持续低迷时,一般出现在熊市或股票整理阶段,市场交投不活跃。
成交量是判断股票走势的重要依据,对分析主力行为提供了重要的依据。
2.1.7 K 线K 线图这种图表源处于日本德川幕府时代(1603~1867 年),被当时日本米市的商人用来记录米市的行情与价格波动,后因其细腻独到的标画方式而被引入到股市及期货市场。
通过 K 线图,我们能够把每日或某一周期的市况现完全记录下来,股价经过一段时间的盘档后,在图上即形成一种特殊区域或形态,不同的形态显示出不同意义。
插入线、抱线和利好刺激线这三种 K 线组合是最常见的经典见底形态。
2.1.8 日线任何一天的开盘价\收盘价\最高价\最低价,划出的一跟中间粗一些,两端细一些的线,就是日线,日线是每天一根的 K 线.5PMA,10PMA,20PMA。
分别代表 5 日、10 日、20 日均线。
黄色的是 5PMA 即 5 日均线;紫色的是 10PMA 即 10 日均线;绿色的是 20PMA 即 20 日均线。
2.2 数据挖掘基础知识2.2.1 数据挖掘数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以 TB 计,如何从海量的数据中提取有用的知识成为当务之急。
数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。
是知识发现(Knowledge Discovery in 的关键步骤。
Database).2.2.2数据挖掘的任务(1)关联分析(association analysis)关联规则挖掘是由 Rakesh Apwal 等人首先提出的。
两个或两个以上变量的取值之间存在某种规律性,就称为关联。
数据关联是数据库中存在的一类重要的、可被发现的知识。
关联分为简单关联、时序关联和因果关联。
关联分析的目的是找出数据库中隐藏的关联网。
一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
(2) 聚类分析(clustering)聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。
聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。
(3) 分类(classification)分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。
分类是利用训练数据集通过一定的算法而求得分类规则。
分类可被用于规则描述和预测。
(4)预测(predication)预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。
预测关心的是精度和不确定性,通常用预测方差来度量。
(5)时序模式(time-series pattern)时序模式是指通过时间序列搜索出的重复发生概率较高的模式。
与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。
(6) 偏差分析(deviation)在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。
偏差检验的基本方法就是寻找观察结果与参照之间的差别。
2.2.3 数据挖掘方法(1)神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性,非常适合解决数据挖掘的问题。
(2)遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。
遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
(3)决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。
它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
(4) 统计分析方法在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。
(5)模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。
(6)粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。
粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。
粗集处理的对象是类似二维关系表的信息表。
(7)覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。
首先在正例集合中任选一个种子,到反例集合中逐个比较。
与字段取值构成的选择子相容则舍去,相反则保留。
按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
3.数据挖掘方案3.1. 数据挖掘软件简介本次的数据挖掘所运用的软件是 Clementine 软件。
这种工具可把直观的用户图形界的数据挖掘应用工具。
SPSS 是Clementine面与多种分析技术相结合。
这些技术包括神经元网络、关联规则和规则归纳技术,这些分析能力由一个易于使用的可视化编程环境所提供。
作为一个数据挖掘平台,Clementine 结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。
强大的数据挖掘功能和显著的投资回报率使得Clementine 在业界久负盛誉。
同那些仅仅着重于模型的外在表现而忽略了数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比, Clementine 其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率。
Clementinee 所使用的图形表现是在屏幕上拖动、按下和连接功能节点。
节点的类型分为数据访问节点、数据操纵节点、数据可视化节点、机器学习节点和模型分析节点。
模型产生过程由从托盘中选择正确的节点、把它们放到屏幕上和连接节点组成。
Clementinee 提供了丰富的数据访问能力,其中包括对展开文件和关系数据库(通过 ODBC)的访问。
Clementine 具有通过把建模结果写回一个与ODBC 兼容的 DBMS 而使它们保持一致的能力。
Clementine 可在 WindowsNT 的Intel Penhum 系统运行。
Clementine 的数据可视化能力包括分布图、线性图和网络分析。
C1emetine 是一个强大的产品。
以公布的用户基推测试来看,它在可伸缩性、预测准确率和处理的时间方面都表现得很好。
总的来说,C1gneBtine 对小规模和大规模的分析实现都很合适。
3.2. 股票数据选择股票的选择是随机选择的。
用股票代码/67=02(我学号的后两位)计算可得所要研究的股票(此过程运用 Excel 表格的取余,然后用筛选即可选出符合条件的股票)。
所以根据公式可计算出多支符合条件的股票,从中我选择自己感兴趣的股票深证万科A(000002和上证道博股份(600132)。
同时用它们的日线作为参考,对股票的数据进行研究。
3.3. 待验证的股票规律股市的涨跌是呈现周期性变化的且涨幅呈正态分布?3.3.1这种现象指的是在股市开盘后的一种周期性的现象,具体表现在股票价格上上的周期性涨落,当股市达到高潮后,一段时间后又将返回下跌,返回低潮。
3.3.2国家对房地产行业的宏观调控政策对股市中房地产行业是否有影响?房价上涨对地产股有什么影响?指近10年来,国家为了控制房地产的价格在一个合理的范围内,所出台的一系列与房地产行业相关的政策,这条规律就是研究在政策出台之后,股市中的房地产行业是否会受其影响而产生波动。
3.3.3不同类型的上市公司由于产业的不同企业发展的经历差异其所表现出的股价涨幅波动也是否是有差异?4.数据挖掘流4.1数据挖掘流图分别做出万科和道博股份的数据流图如图1、图2所示:万科的数据流图1 图图2道博股份的数据流图图3万科道博股份合并后的数据流图4.2规律验证4.2.1规律一验证对于规律一我们可以把两支股票的直方图都做出来进行比较验证分析股票涨幅分布中存在的规律。